Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Proniosomes for Oral Delivery of Aceclofenac: Impact of Paddle Versus Dialysis Methods on In vitro-in vivo Correlation (IVIVC) Predictions

Author(s): Rana Mhd Farid Sammour, Samah Hamed Almurisi, Muhammad Taher and Aliasgar Shahiwala*

Volume 13, Issue 3, 2023

Published on: 13 March, 2023

Page: [186 - 195] Pages: 10

DOI: 10.2174/2210303113666230221100526

Price: $65

conference banner
Abstract

Background: This study aims to assess the suitability of in vitro drug release methods, dialysis and paddle methods for predicting in vivo behaviour of Aceclofenac (ACE) proniosomes.

Methods: ACE proniosomes are prepared using different carriers: glucose, maltodextrin and mannitol by the slurry method. The release studies of ACE proniosomes formulations were performed using the paddle, and dialysis methods while in vivo studies were performed in albino rats. Graphical presentation, model-dependent and model-independent approaches were applied to compare two dissolution methods.

Results: More than 70% of the drug was released from ACE proniosomes over 60 min by paddle method while not more than 5% was released in the same period by dialysis method. The paddle method provides a reproducible and faster release, whereas poor drug release occurred with the dialysis method. For the paddle method, lower values of similarity factor (f2) and greater differences in the dissolution efficiency (DE) amongst different formulations and in comparison, to that of the pure drug indicates that it is a more discriminative method compared to dialysis. The paddle method also illustrated high regression coefficients (r2) of 0.81, 0.998 and 0.975 for FN1, FN2, and FN3, respectively for level A IVIVC, while poor or no relation (r2 < 0.1) was detected in the case of dialysis method.

Conclusion: Based on the results, the paddle method is concluded to be the more suitable method compared to the dialysis method for in vitro drug release studies of a novel dosage form such as proniosomes.

Graphical Abstract

[1]
Sakore, S.; Chakraborty, B. In vitro-in vivo correlation (IVIVC): a strategic tool in drug development. J. Bioequivalence Bioavailab., 2011, 3, 1-12.
[2]
Uppoor, V.R.S. Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations. J. Control. Release, 2001, 72(1-3), 127-132.
[http://dx.doi.org/10.1016/S0168-3659(01)00268-1] [PMID: 11389991]
[3]
Emami, J. In vitro - in vivo correlation: from theory to applications. J. Pharm. Pharm. Sci., 2006, 9(2), 169-189.
[PMID: 16959187]
[4]
D’Souza, S.S.; DeLuca, P.P. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm. Res., 2006, 23(3), 460-474.
[http://dx.doi.org/10.1007/s11095-005-9397-8] [PMID: 16400516]
[5]
Ranjan, A.; Jha, P.K. Experiments and modeling of controlled release behavior of commercial and model polymer-drug formulations using dialysis membrane method. Drug Deliv. Transl. Res., 2020, 10(2), 515-528.
[http://dx.doi.org/10.1007/s13346-019-00696-1] [PMID: 31828534]
[6]
Islam, S.M.A.; Islam, S.; Shahriar, M.; Dewan, I. Comparative in vitro dissolution study of aceclofenac marketed tablets in two different dissolution media by validated analytical method. J. Appl. Pharm. Sci., 2011, 1(9), 87.
[7]
Liu, T.; Guo, R. Structure and transformation of the niosome prepared from PEG 6000/Tween 80/Span 80/H2O lamellar liquid crystal. Colloids Surf. A Physicochem. Eng. Asp., 2007, 295(1-3), 130-134.
[http://dx.doi.org/10.1016/j.colsurfa.2006.08.041]
[8]
Khatoon, M.; Shah, K.U.; Din, F.U.; Shah, S.U.; Rehman, A.U.; Dilawar, N.; Khan, A.N. Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Deliv., 2017, 24(2), 56-69.
[http://dx.doi.org/10.1080/10717544.2017.1384520] [PMID: 29130758]
[9]
Kroll, A.; Pillukat, M.H.; Hahn, D.; Schnekenburger, J. Current in vitro methods in nanoparticle risk assessment: Limitations and challenges. Eur. J. Pharm. Biopharm., 2009, 72(2), 370-377.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.009] [PMID: 18775492]
[10]
Sammour, R.; Taher, M.; Chatterjee, B.; Shahiwala, A.; Mahmood, S. Optimization of aceclofenac proniosomes by using different carriers, part 1: development and characterization. Pharmaceutics, 2019, 11(7), 350.
[http://dx.doi.org/10.3390/pharmaceutics11070350] [PMID: 31323799]
[11]
Song, S.; Tian, B.; Chen, F.; Zhang, W.; Pan, Y.; Zhang, Q.; Yang, X.; Pan, W. Potentials of proniosomes for improving the oral bioavailability of poorly water-soluble drugs. Drug Dev. Ind. Pharm., 2015, 41(1), 51-62.
[http://dx.doi.org/10.3109/03639045.2013.845841] [PMID: 24111828]
[12]
Shehata, T.M.; Abdallah, M.H.; Ibrahim, M.M. Proniosomal oral tablets for controlled delivery and enhanced pharmacokinetic properties of acemetacin. AAPS PharmSciTech, 2015, 16(2), 375-383.
[http://dx.doi.org/10.1208/s12249-014-0233-5] [PMID: 25319057]
[13]
Nasr, M. In vitro and in vivo evaluation of proniosomes containing celecoxib for oral administration. AAPS PharmSciTech, 2010, 11(1), 85-89.
[http://dx.doi.org/10.1208/s12249-009-9364-5] [PMID: 20058106]
[14]
Mishra, N.; Srivastava, V.; Kaushik, A.; Vivek, C.V.; Srivastava, G. Formulation and in-vitro evaluation of niosomes of aceclofenac. J. Sci. Innov. Res., 2014, 3(3), 337-341.
[http://dx.doi.org/10.31254/jsir.2014.3311]
[15]
Yuksel, N.; Kanik, A.E.; Baykara, T. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and -independent methods. Int. J. Pharm., 2000, 209(1-2), 57-67.
[http://dx.doi.org/10.1016/S0378-5173(00)00554-8] [PMID: 11084246]
[16]
Rathi, J.C.; Tamizharasi, S.; Dubey, A.; Rathi, V. Development and characterization of niosomal drug delivery of gliclazide. J. Young Pharm., 2009, 1(3), 205.
[http://dx.doi.org/10.4103/0975-1483.57065]
[17]
Ilango, K.B.; Kavimani, S. Mathematical modeling of drug release from, colon site specific drug delivery systems. World J. Pharm. Pharm. Sci., 2014, 3(11), 1051-1064.
[18]
Almurisi, S.H.; Doolaanea, A.A.; Akkawi, M.E.; Chatterjee, B.; Ahmed, S.A.K.; Islam, S.M.Z. Formulation development of paracetamol instant jelly for pediatric use. Drug Dev. Ind. Pharm., 2020, 46(8), 1373-1383.
[http://dx.doi.org/10.1080/03639045.2020.1791165] [PMID: 32619118]
[19]
Adeli, E. The use of spray freeze drying for dissolution and oral bioavailability improvement of Azithromycin. Powder Technol., 2017, 319, 323-331.
[http://dx.doi.org/10.1016/j.powtec.2017.06.043]
[20]
Hailu, G.S.; Gutema, G.B.; Hishe, H.Z.; Ali, Y.S.; Asfaw, A.A. Comparative in vitro bioequivalence evaluation of different brands of amoxicillin capsules marketed in Tigray, Ethiopia. Int. J. Pharm. Sci. Nanotechnol., 2013, 6(1), 1966-1971.
[http://dx.doi.org/10.37285/ijpsn.2013.6.1.7]
[21]
Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J., 2010, 12(3), 263-271.
[http://dx.doi.org/10.1208/s12248-010-9185-1] [PMID: 20373062]
[22]
Philip, A.K.; Pathak, K. Wet process-induced phase-transited drug delivery system: a means for achieving osmotic, controlled, and level A IVIVC for poorly water-soluble drug. Drug Dev. Ind. Pharm., 2008, 34(7), 735-743.
[http://dx.doi.org/10.1080/03639040801911032] [PMID: 18608466]
[23]
Williams, R.O., III; Watts, A.B.; Miller, D.A. Formulating poorly water soluble drugs; Springer: New York, 2012, 22, .
[http://dx.doi.org/10.1007/978-1-4614-1144-4]
[24]
Veerareddy, P.R.; Bobbala, S.K.R. Enhanced oral bioavailability of isradipine via proniosomal systems. Drug Dev. Ind. Pharm., 2013, 39(6), 909-917.
[http://dx.doi.org/10.3109/03639045.2012.717945] [PMID: 22998221]
[25]
Alam, M.S.; Ahad, A.; Abidin, L.; Aqil, M.; Mir, S.R.; Mujeeb, M. Embelin-loaded oral niosomes ameliorate streptozotocin-induced diabetes in Wistar rats. Biomed. Pharmacother., 2018, 97, 1514-1520.
[http://dx.doi.org/10.1016/j.biopha.2017.11.073] [PMID: 29793314]
[26]
Ahnfelt, E.; Sjögren, E.; Axén, N.; Lennernäs, H. A miniaturized in vitro release method for investigating drug-release mechanisms. Int. J. Pharm., 2015, 486(1-2), 339-349.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.076] [PMID: 25843760]
[27]
Heng, D.; Cutler, D.J.; Chan, H.K.; Yun, J.; Raper, J.A. What is a suitable dissolution method for drug nanoparticles? Pharm. Res., 2008, 25(7), 1696-1701.
[http://dx.doi.org/10.1007/s11095-008-9560-0] [PMID: 18320295]
[28]
Zhao, X.; Li, J.; Feng, Y.; Yu, G.; Zhou, Q.; He, F.; Xiao, D.; Chen, K.; Zhang, L. Self-aggregation behavior of hydrophobic sodium alginate derivatives in aqueous solution and their application in the nanoencapsulation of acetamiprid. Int. J. Biol. Macromol., 2018, 106, 418-424.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.038] [PMID: 28803972]
[29]
Yu, M.; Yuan, W.; Li, D.; Schwendeman, A.; Schwendeman, S.P. Predicting drug release kinetics from nanocarriers inside dialysis bags. J. Control. Release, 2019, 315, 23-30.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.016] [PMID: 31629038]
[30]
Soni, T.; Nagda, C.; Gandhi, T.; Chotai, N.P. Development of discriminating method for dissolution of aceclofenac marketed formulations. Dissolut. Technol., 2008, 15(2), 31-35.
[http://dx.doi.org/10.14227/DT150208P31]
[31]
Karmoker, J.R.; Sarkar, S.; Joydhar, P.; Chowdhury, S.F. Comparative in vitro equivalence evaluation of some Aceclofenac generic tablets marketed in Bangladesh. Pharma Innov., 2016, 5(3, Part A), 3.
[32]
Cascone, S. Modeling and comparison of release profiles: Effect of the dissolution method. Eur. J. Pharm. Sci., 2017, 106, 352-361.
[http://dx.doi.org/10.1016/j.ejps.2017.06.021] [PMID: 28627469]
[33]
Diaz, D.A.; Colgan, S.T.; Langer, C.S.; Bandi, N.T.; Likar, M.D.; Van Alstine, L. Dissolution similarity requirements: how similar or dissimilar are the global regulatory expectations? AAPS J., 2016, 18(1), 15-22.
[http://dx.doi.org/10.1208/s12248-015-9830-9] [PMID: 26428517]
[34]
Kamboj, S; Saini, V; Bala, S Formulation and characterization of drug loaded nonionic surfactant vesicles (niosomes) for oral bioavailability enhancement. Sci World J., 2014, 2014
[35]
Sudhamani, T.; Ganesan, V.; Priyadarsini, N.; Radhakrishnan, M. Formulation and evaluation of ibuprofen loaded maltodextrin based proniosome. Int J Biopharm., 2010, 1(2), 75-81.
[36]
Zambito, Y.; Pedreschi, E.; Di Colo, G. Is dialysis a reliable method for studying drug release from nanoparticulate systems?-A case study. Int. J. Pharm., 2012, 434(1-2), 28-34.
[http://dx.doi.org/10.1016/j.ijpharm.2012.05.020] [PMID: 22617795]
[37]
Schwarzl, R.; Du, F.; Haag, R.; Netz, R.R. General method for the quantification of drug loading and release kinetics of nanocarriers. Eur. J. Pharm. Biopharm., 2017, 116, 131-137.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.015] [PMID: 28017797]
[38]
Murthy, K.V.R.; Raju, V. Development and validation of new discriminative dissolution method for carvedilol tablets. Indian J. Pharm. Sci., 2011, 73(5), 527-536.
[http://dx.doi.org/10.4103/0250-474X.99000] [PMID: 22923865]
[39]
Patnaik, S.; Chunduri, L.A.A.; Akilesh, M.S.; Bhagavatham, S.S.; Kamisetti, V. Enhanced dissolution characteristics of piroxicam-Soluplus® nanosuspensions. J. Exp. Nanosci., 2016, 11(12), 916-929.
[http://dx.doi.org/10.1080/17458080.2016.1178402]
[40]
Akinleye, M.O.; Amaeze, O.U.; Opeodu, O.T.; Okubanjo, O.O. Effect of Ciklavit®-a Nigerian Poly-herbal Formulation on the Dissolution Profile of Proguanil Tablets: Potential for Herb-drug Interaction. J. Pharm. Res. Int., 2016, 6(7), 1-9.
[41]
Siewert, M.; Dressman, J.; Brown, C.K.; Shah, V.P.; Aiache, J.M.; Aoyagi, N.; Bashaw, D.; Brown, C.; Brown, W.; Burgess, D.; Crison, J.; DeLuca, P.; Djerki, R.; Dressman, J.; Foster, T.; Gjellan, K.; Gray, V.; Hussain, A.; Ingallinera, T.; Klancke, J.; Kraemer, J.; Kristensen, H.; Kumi, K.; Leuner, C.; Limberg, J.; Loos, P.; Margulis, L.; Marroum, P.; Moeller, H.; Mueller, B.; Mueller-Zsigmondy, M.; Okafo, N.; Ouderkirk, L.; Parsi, S.; Qureshi, S.; Robinson, J.; Shah, V.; Siewert, M.; Uppoor, R.; Williams, R. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech, 2003, 4(1), 43-52.
[http://dx.doi.org/10.1208/pt040107] [PMID: 12916916]
[42]
D’Souza, S.; Faraj, JA.; Giovagnoli, S.; DeLuca, PP. IVIVC from long acting olanzapine microspheres. Int. J. Biomater., 2014, 2014407065
[http://dx.doi.org/10.1155/2014/407065]
[43]
Hu, C.; Rhodes, D.G. Erratum to ‘Proniosomes: A novel drug carrier Preparation’. Int. J. Pharm., 2000, 206(1-2), 109-122.
[http://dx.doi.org/10.1016/S0378-5173(00)00513-5] [PMID: 11058815]
[44]
Akhter, S.; Kushwaha, S.; Warsi, M.H.; Anwar, M.; Ahmad, M.Z.; Ahmad, I.; Talegaonkar, S.; Khan, Z.I.; Khar, R.K.; Ahmad, F.J. Development and evaluation of nanosized niosomal dispersion for oral delivery of Ganciclovir. Drug Dev. Ind. Pharm., 2012, 38(1), 84-92.
[http://dx.doi.org/10.3109/03639045.2011.592529] [PMID: 21726136]
[45]
Arzani, G.; Haeri, A.; Daeihamed, M.; Bakhtiari-Kaboutaraki, H.; Dadashzadeh, S. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge. Int. J. Nanomedicine, 2015, 10, 4797-4813.
[PMID: 26251598]
[46]
Sezgin-Bayindir, Z.; Onay-Besikci, A.; Vural, N.; Yuksel, N. Niosomes encapsulating paclitaxel for oral bioavailability enhancement: preparation, characterization, pharmacokinetics and biodistribution. J. Microencapsul., 2013, 30(8), 796-804.
[http://dx.doi.org/10.3109/02652048.2013.788088] [PMID: 23631385]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy