[1]
Thiruvengadam, M.; Venkidasamy, B.; Subramanian, U.; Samynathan, R.; Ali Shariati, M.; Rebezov, M.; Girish, S.; Thangavel, S.; Dhanapal, A.R.; Fedoseeva, N.; Lee, J.; Chung, I.M. Bioactive compounds in oxidative stress-mediated diseases: Targeting the NRF2/ARE signaling pathway and epigenetic regulation. Antioxidants, 2021, 10(12), 1859.
[http://dx.doi.org/10.3390/antiox10121859] [PMID: 34942962]
[http://dx.doi.org/10.3390/antiox10121859] [PMID: 34942962]
[2]
Satoh, H.; Moriguchi, T.; Takai, J.; Ebina, M.; Yamamoto, M. Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer Res., 2013, 73(13), 4158-4168.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4499] [PMID: 23610445]
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4499] [PMID: 23610445]
[3]
Fan, H.; Paiboonrungruan, C.; Zhang, X.; Prigge, J.R.; Schmidt, E.E.; Sun, Z.; Chen, X. Nrf2 regulates cellular behaviors and Notch signaling in oral squamous cell carcinoma cells. Biochem. Biophys. Res. Commun., 2017, 493(1), 833-839.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.049] [PMID: 28821430]
[http://dx.doi.org/10.1016/j.bbrc.2017.08.049] [PMID: 28821430]
[4]
Lan, A.; Li, W.; Liu, Y.; Xiong, Z.; Zhang, X.; Zhou, S.; Palko, O.; Chen, H.; Kapita, M.; Prigge, J.R.; Schmidt, E.E.; Chen, X.; Sun, Z.; Chen, X.L. Chemoprevention of oxidative stress-associated oral carcinogenesis by sulforaphane depends on NRF2 and the isothiocyanate moiety. Oncotarget, 2016, 7(33), 53502-53514.
[http://dx.doi.org/10.18632/oncotarget.10609] [PMID: 27447968]
[http://dx.doi.org/10.18632/oncotarget.10609] [PMID: 27447968]
[5]
Lee, Y.M.; Auh, Q.S.; Lee, D.W.; Kim, J.Y.; Jung, H.J.; Lee, S.H.; Kim, E.C. Involvement of Nrf2-mediated upregulation of heme oxygenase-1 in mollugin-induced growth inhibition and apoptosis in human oral cancer cells. BioMed Res. Int., 2013, 2013, 210604.
[http://dx.doi.org/10.1155/2013/210604] [PMID: 23738323]
[http://dx.doi.org/10.1155/2013/210604] [PMID: 23738323]
[6]
Chuang, C.Y.; Lin, C.W.; Su, C.W.; Chen, Y.T.; Yang, W.E.; Yang, S.F.; Su, S.C. Deoxyshikonin mediates heme oxygenase-1 induction and apoptotic response >via p38 signaling in tongue cancer cell lines. Int. J. Mol. Sci., 2022, 23(13), 7115.
[http://dx.doi.org/10.3390/ijms23137115] [PMID: 35806120]
[http://dx.doi.org/10.3390/ijms23137115] [PMID: 35806120]
[7]
Kavitha, K.; Thiyagarajan, P.; Rathna Nandhini, J.; Mishra, R.; Nagini, S. Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes. Biochimie, 2013, 95(8), 1629-1639.
[http://dx.doi.org/10.1016/j.biochi.2013.05.004] [PMID: 23707664]
[http://dx.doi.org/10.1016/j.biochi.2013.05.004] [PMID: 23707664]
[8]
Krajka-Kuźniak, V.; Baer-Dubowska, W. Modulation of Nrf2 and NF-κB signaling pathways by naturally occurring compounds in relation to cancer prevention and therapy. Are combinations better than single compounds? Int. J. Mol. Sci., 2021, 22(15), 8223.
[http://dx.doi.org/10.3390/ijms22158223] [PMID: 34360990]
[http://dx.doi.org/10.3390/ijms22158223] [PMID: 34360990]
[9]
Sun, Y.; Ren, J.; Wang, F. [6]‐Gingerol impedes 7,12‐dimethylbenz(a)anthracene‐induced inflammation and cell proliferation‐associated hamster buccal pouch carcinogenesis through modulating Nrf2 signaling events. J. Biochem. Mol. Toxicol., 2021, 35(4), e22689.
[http://dx.doi.org/10.1002/jbt.22689] [PMID: 33347680]
[http://dx.doi.org/10.1002/jbt.22689] [PMID: 33347680]
[10]
Lee, H.M.; Patel, V.; Shyur, L.F.; Lee, W.L. Copper supplementation amplifies the anti-tumor effect of curcumin in oral cancer cells. Phytomedicine, 2016, 23(12), 1535-1544.
[http://dx.doi.org/10.1016/j.phymed.2016.09.005] [PMID: 27765374]
[http://dx.doi.org/10.1016/j.phymed.2016.09.005] [PMID: 27765374]
[11]
Liu, R.; Peng, J.; Wang, H.; Li, L.; Wen, X.; Tan, Y.; Zhang, L.; Wan, H.; Chen, F.; Nie, X. Oxysophocarpine retards the growth and metastasis of oral squamous cell carcinoma by targeting the Nrf2/HO-1 axis. Cell. Physiol. Biochem., 2018, 49(5), 1717-1733.
[http://dx.doi.org/10.1159/000493615] [PMID: 30231242]
[http://dx.doi.org/10.1159/000493615] [PMID: 30231242]
[12]
Liu, Y.C.; Peng, B.R.; Hsu, K.C.; El-Shazly, M.; Shih, S.P.; Lin, T.E.; Kuo, F.W.; Chou, Y.C.; Lin, H.Y.; Lu, M.C. 13-Acetoxysarcocrassolide exhibits cytotoxic activity against oral cancer cells through the interruption of the Keap1/Nrf2/p62/SQSTM1 pathway: The need to move beyond classical concepts. Mar. Drugs, 2020, 18(8), 382.
[http://dx.doi.org/10.3390/md18080382] [PMID: 32718084]
[http://dx.doi.org/10.3390/md18080382] [PMID: 32718084]
[13]
Shiau, J.P.; Chuang, Y.T.; Yang, K.H.; Chang, F.R.; Sheu, J.H.; Hou, M.F.; Jeng, J.H.; Tang, J.Y.; Chang, H.W. Brown algae-derived fucoidan exerts oxidative stress-dependent antiproliferation on oral cancer cells. Antioxidants, 2022, 11(5), 841.
[http://dx.doi.org/10.3390/antiox11050841] [PMID: 35624705]
[http://dx.doi.org/10.3390/antiox11050841] [PMID: 35624705]
[14]
Fouzder, C.; Mukhuty, A.; Kundu, R. Kaempferol inhibits Nrf2 signalling pathway via downregulation of Nrf2 mRNA and induces apoptosis in NSCLC cells. Arch. Biochem. Biophys., 2021, 697, 108700.
[http://dx.doi.org/10.1016/j.abb.2020.108700] [PMID: 33271149]
[http://dx.doi.org/10.1016/j.abb.2020.108700] [PMID: 33271149]
[15]
Dong, J.; Li, Y.; Xiao, H.; Luo, D.; Zhang, S.; Zhu, C.; Jiang, M.; Cui, M.; Lu, L.; Fan, S. Cordycepin sensitizes breast cancer cells toward irradiation through elevating ROS production involving Nrf2. Toxicol. Appl. Pharmacol., 2019, 364, 12-21.
[http://dx.doi.org/10.1016/j.taap.2018.12.006] [PMID: 30529626]
[http://dx.doi.org/10.1016/j.taap.2018.12.006] [PMID: 30529626]