Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Mini-Review Article

Roles of the Stereochemical Code and the Entropic Index q in the Protein Folding Process: How to Map Out Folding Intermediate Conformations

Author(s): João Paulo Dal Molin*, Victor Henrique Ribeiro Silva, Letícia Antonelli de Rosa, Ricardo Oliveira dos Santos Soares, Pablo Andrei Silva and Antonio Caliri

Volume 13, Issue 2, 2023

Published on: 28 April, 2023

Page: [91 - 137] Pages: 47

DOI: 10.2174/1877946813666230220115356

Price: $65

Abstract

Background: Here, the inverse protein folding problem is approached from the viewpoint of the entropic index q. We present a brief overview of the problem. Further, we provide general information about the three-dimensional structure of proteins and the universal characteristics of the folding process.

Methods: We explain how the stereochemical model was conceived. Our main objective is to change how Monte Carlo (MC) simulations are performed. We replace the Boltzmann weight with the Tsallis weight in order to achieve better sampling. This change leads to the q Monte Carlo method (MCq). There are two main ways to employ the index q: one is to set it as a fixed parameter (MCq*), and the other is to set it as an autonomous variable associated with the instantaneous molecular radius of gyration, a feature that is allowed by the Beck-Cohen superstatistics. In addition, we propose a meaningful physical interpretation for the index q. Furthermore, we explain how to assemble amino acid sequences for the inverse problem.

Results: We present several results and discuss the implications associated with the MC and MCq methods. The latter method is an efficient approach to tracking down folding intermediate conformations, which can enable us to better find and define folding pathways for successive configurations of a polymeric chain kept in solution at the same macroscale temperature, T.

Conclusion: We have explained how and why protein kinetics becomes significantly more advantageous when we employ q ≠ 1. However, this is only possible if we set the correct upper value of qmax.

Graphical Abstract

[1]
Branden, C.; Tooze, J. Introduction to protein structure; Garland Science: United States of America, 1999.
[2]
Schulz, G.E.; Schirmer, R.H. Principles of protein structure; Springer-Verlag: United States of America, 1996.
[3]
Anfinsen, C.B. Principles that govern the folding of protein chains. Science, 1973, 181(4096), 223-230.
[http://dx.doi.org/10.1126/science.181.4096.223] [PMID: 4124164]
[4]
Popov, E.M. Protein folding as a nonlinear nonequilibrium thermodynamic process. IUBMB Life, 1999, 47(3), 443-453.
[http://dx.doi.org/10.1080/15216549900201473] [PMID: 10204081]
[5]
(a) Urry, D.W. What sustains life? consilient mechanisms for protein-based machines and materials; Springer: Singapore, 2006. ;
(b) Pain, R.H. Mechanisms of protein folding; Oxford University Press: Oxford, 2000.
[6]
Dill, K.A.; Ozkan, S.B.; Weikl, T.R.; Chodera, J.D.; Voelz, V.A. The protein folding problem: When will it be solved? Curr. Opin. Struct. Biol., 2007, 17(3), 342-346.
[http://dx.doi.org/10.1016/j.sbi.2007.06.001] [PMID: 17572080]
[7]
Dill, K.A.; Ozkan, S.B.; Shell, M.S.; Weikl, T.R. The protein folding problem. Annu. Rev. Biophys., 2008, 37(1), 289-316.
[http://dx.doi.org/10.1146/annurev.biophys.37.092707.153558] [PMID: 18573083]
[8]
da Silva, R.A.; da Silva, M.A.A.; Caliri, A. Deterministic folding: The role of entropic forces and steric specificities. J. Chem. Phys., 2001, 114(9), 4235-4242.
[http://dx.doi.org/10.1063/1.1344181]
[9]
Tarragó, M.E.P.; Rocha, L.F.O.; daSilva, R.A.; Caliri, A. Steric constraints as folding coadjuvant. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 2003, 67(3), 031901.
[http://dx.doi.org/10.1103/PhysRevE.67.031901] [PMID: 12689095]
[10]
Dal Molin, J.P.; Silva, M.A.A.; Silva, I.R.; Caliri, A. Nonextensive statistical mechanics applied to protein folding problem: Kinetics aspects. Braz. J. Phys., 2009, 39(2a), 435-438.
[http://dx.doi.org/10.1590/S0103-97332009000400016]
[11]
Dal Molin, J.P.; da Silva, M.A.A.; Caliri, A. Effect of local thermal fluctuations on folding kinetics: A study from the perspective of nonextensive statistical mechanics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2011, 84(4), 041903.
[http://dx.doi.org/10.1103/PhysRevE.84.041903] [PMID: 22181171]
[12]
Tsallis, C. Introduction to nonextensive statistical mechanics: Approaching a complex world; Springer: New York, 2009.
[13]
a) Beck, C. Dynamical foundations of nonextensive statistical mechanics. Phys. Rev. Lett., 2001, 87, 180601.;
b) Beck, C. Non-additivity of Tsallis entropies and fluctuations of temperature. Europhys. Lett., 2002, 57, 329.;
c) Cohen, E.G.D. Superstatistics. Physica A, 2003, 322, 267.;
d) Abe, S.; Beck, C.; Cohen, E.G.D. Superstatistics, thermodynamics, and fluctuations. Phys. Rev. E., 2007, 76, 031102.;
e) Beck, C. Generalized statistical mechanics for superstatistical systems. Phil. Trans. R. Soc. A, 2011, 369, 453.
[http://dx.doi.org/10.1098/rsta.2010.0280] [PMID: 21149383]
[14]
Plaxco, K.W.; Simons, K.T.; Baker, D. Contact order, transition state placement and the refolding rates of single domain proteins 1 1Edited by P. E. Wright. J. Mol. Biol., 1998, 277(4), 985-994.
[http://dx.doi.org/10.1006/jmbi.1998.1645] [PMID: 9545386]
[15]
Dal Molin, J.P.; Caliri, A. Entropic formulation for the protein folding process: Hydrophobic stability correlates with folding rates. Physica A, 2018, 490, 1111-1124.
[http://dx.doi.org/10.1016/j.physa.2017.07.027]
[16]
Kim, M.S.; Pinto, S.M.; Getnet, D.; Nirujogi, R.S.; Manda, S.S.; Chaerkady, R.; Madugundu, A.K.; Kelkar, D.S.; Isserlin, R.; Jain, S.; Thomas, J.K.; Muthusamy, B.; Leal-Rojas, P.; Kumar, P.; Sahasrabuddhe, N.A.; Balakrishnan, L.; Advani, J.; George, B.; Renuse, S.; Selvan, L.D.N.; Patil, A.H.; Nanjappa, V.; Radhakrishnan, A.; Prasad, S.; Subbannayya, T.; Raju, R.; Kumar, M.; Sreenivasamurthy, S.K.; Marimuthu, A.; Sathe, G.J.; Chavan, S.; Datta, K.K.; Subbannayya, Y.; Sahu, A.; Yelamanchi, S.D.; Jayaram, S.; Rajagopalan, P.; Sharma, J.; Murthy, K.R.; Syed, N.; Goel, R.; Khan, A.A.; Ahmad, S.; Dey, G.; Mudgal, K.; Chatterjee, A.; Huang, T.C.; Zhong, J.; Wu, X.; Shaw, P.G.; Freed, D.; Zahari, M.S.; Mukherjee, K.K.; Shankar, S.; Mahadevan, A.; Lam, H.; Mitchell, C.J.; Shankar, S.K.; Satishchandra, P.; Schroeder, J.T.; Sirdeshmukh, R.; Maitra, A.; Leach, S.D.; Drake, C.G.; Halushka, M.K.; Prasad, T.S.K.; Hruban, R.H.; Kerr, C.L.; Bader, G.D.; Iacobuzio-Donahue, C.A.; Gowda, H.; Pandey, A. A draft map of the human proteome. Nature, 2014, 509(7502), 575-581.
[http://dx.doi.org/10.1038/nature13302] [PMID: 24870542]
[17]
Nelson, D.L.; Cox, M.M. Lehninger principles of biochemistry; W.H. Freeman: New York, 2021.
[18]
Rose, G.D. Protein folding and the Paracelsus challenge. Nat. Struct. Biol., 1997, 4(7), 512-514.
[http://dx.doi.org/10.1038/nsb0797-512] [PMID: 9228938]
[19]
Chothia, C. One thousand families for the molecular biologist. Nature, 1992, 357(6379), 543-544.
[http://dx.doi.org/10.1038/357543a0] [PMID: 1608464]
[20]
Micheletti, C.; Lattanzi, G.; Maritan, A. Elastic properties of proteins: Insight on the folding process and evolutionary selection of native structures. J. Mol. Biol., 2002, 321(5), 909-921.
[http://dx.doi.org/10.1016/S0022-2836(02)00710-6] [PMID: 12206770]
[21]
a) Onuchic, J.N.; Wolynes, P.G. Theory of protein folding. Curr. Opin. Struct. Biol., 2004, 14, 70.;
b) Nassar, R.; Dignon, G.L.; Razban, R.M.; Dill, K.A. The protein folding problem: The role of theory. J. Mol. Biol., 2021, 433, 167126.
[22]
Rose, G.D.; Fleming, P.J.; Banavar, J.R.; Maritan, A. A backbone-based theory of protein folding. Proc. Natl. Acad. Sci. USA, 2006, 103(45), 16623-16633.
[http://dx.doi.org/10.1073/pnas.0606843103] [PMID: 17075053]
[23]
Ben-Naim, A. Myths and verities in protein folding theories; World Scientific Publishing Co: Singapore, 2016.
[http://dx.doi.org/10.1142/9842]
[24]
Englander, S.W.; Mayne, L. Reply to eaton and wolynes: How do proteins fold? Proc. Natl. Acad. Sci. USA, 2017, 114(46), E9761-E9762.
[http://dx.doi.org/10.1073/pnas.1716929114] [PMID: 29087353]
[25]
Eaton, W.A.; Wolynes, P.G. Theory, simulations, and experiments show that proteins fold by multiple pathways. Proc. Natl. Acad. Sci. USA, 2017, 114(46), E9759-E9760.
[http://dx.doi.org/10.1073/pnas.1716444114] [PMID: 29087352]
[26]
Levinthal, C. Are there pathways for protein folding? J. Chem. Phys., 1968, 65, 44.
[27]
Creighton, T.E. Protein folding; W.H. Freeman: New York, 1992.
[28]
Rocha, L.F.O.; Tarragó Pinto, M.E.; Caliri, A. The water factor in the protein-folding problem. Braz. J. Phys., 2004, 34(1), 90-101.
[http://dx.doi.org/10.1590/S0103-97332004000100013]
[29]
Pelesko, J.A. Self-assembly: The science of things that put themselves together; Chapman and Hall: United States of America, 2007.
[http://dx.doi.org/10.1201/9781584886884]
[30]
Mashaghi, A.; van Wijk, R.J.; Tans, S.J. Circuit topology of proteins and nucleic acids. Structure, 2014, 22(9), 1227-1237.
[http://dx.doi.org/10.1016/j.str.2014.06.015] [PMID: 25126961]
[31]
Naganathan, A.N.; Muñoz, V. Scaling of folding times with protein size. J. Am. Chem. Soc., 2005, 127(2), 480-481.
[http://dx.doi.org/10.1021/ja044449u] [PMID: 15643845]
[32]
Gillespie, B.; Plaxco, K.W. Using protein folding rates to test protein folding theories. Annu. Rev. Biochem., 2004, 73(1), 837-859.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073904] [PMID: 15189160]
[33]
Shakhnovich, E.; Gutin, A. Enumeration of all compact conformations of copolymers with random sequence of links. J. Chem. Phys., 1990, 93(8), 5967-5971.
[http://dx.doi.org/10.1063/1.459480]
[34]
Rocha, L.F.O.; Silva, I.R.; Caliri, A. Distinct conformational properties determined by implicit and explicit representation of protein-solvent interactions. An analytical and computer simulation study. Physica A, 2009, 388(19), 4097-4104.
[http://dx.doi.org/10.1016/j.physa.2009.06.042]
[35]
Li, H.; Tang, C.; Wingreen, N.S. Nature of driving force for protein folding: A result from analyzing the statistical potential. Phys. Rev. Lett., 1997, 79(4), 765-768.
[http://dx.doi.org/10.1103/PhysRevLett.79.765]
[36]
Goodstein, D.L. States of Matter, 2nd ed; Dover Phoenix Editions: New York, 2002.
[37]
Landau, D.P.; Binder, K. A guide to monte carlo simulations in statistical physics; Cambridge University Press: United Kingdom, 2009.
[http://dx.doi.org/10.1017/CBO9780511994944]
[38]
Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculation by fast computing machines. J. Chem. Phys., 1953, 21(6), 1087-1092.
[http://dx.doi.org/10.1063/1.1699114]
[39]
Dill, K.A.; Bromberg, S.; Yue, K.; Chan, H.S.; Ftebig, K.M.; Yee, D.P.; Thomas, P.D. Principles of protein folding - a perspective from simple exact models. Protein Sci., 1995, 4(4), 561-602.
[http://dx.doi.org/10.1002/pro.5560040401] [PMID: 7613459]
[40]
Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol., 1963, 7(1), 95-99.
[http://dx.doi.org/10.1016/S0022-2836(63)80023-6] [PMID: 13990617]
[41]
Gutin, A.M.; Abkevich, V.I.; Shakhnovich, E.I. Evolution-like selection of fast-folding model proteins. Proc. Natl. Acad. Sci. USA, 1995, 92(5), 1282-1286.
[http://dx.doi.org/10.1073/pnas.92.5.1282] [PMID: 7877968]
[42]
Silva, I.R.; Dos Reis, L.M.; Caliri, A. Topology-dependent protein folding rates analyzed by a stereochemical model. J. Chem. Phys., 2005, 123(15), 154906.
[http://dx.doi.org/10.1063/1.2052607] [PMID: 16252971]
[43]
Istomin, A.Y.; Jacobs, D.J.; Livesay, D.R. On the role of structural class of a protein with two-state folding kinetics in determining correlations between its size, topology, and folding rate. Protein Sci., 2007, 16(11), 2564-2569.
[http://dx.doi.org/10.1110/ps.073124507] [PMID: 17962408]
[44]
Shi, Y.; Zhou, J.; Arndt, D.; Wishart, D.S.; Lin, G. Protein contact order prediction from primary sequences. BMC Bioinformatics, 2008, 9(1), 255.
[http://dx.doi.org/10.1186/1471-2105-9-255] [PMID: 18513429]
[45]
Censoni, L.; Martínez, L. Prediction of kinetics of protein folding with non-redundant contact information. Bioinformatics, 2018, 34(23), 4034-4038.
[http://dx.doi.org/10.1093/bioinformatics/bty478] [PMID: 29931141]
[46]
Bohidar, H.M. Fundamentals of polymer physics and molecular biophysics; Cambridge University Press: India, 2015.
[47]
Baker, D.; Agard, D.A. Kinetics versus thermodynamics in protein folding. Biochemistry, 1994, 33(24), 7505-7509.
[http://dx.doi.org/10.1021/bi00190a002] [PMID: 8011615]
[48]
Pastore, A.; Martin, S.R.; Temussi, P.A. Generalized view of protein folding: In medio stat virtus. J. Am. Chem. Soc., 2019, 141(6), 2194-2200.
[http://dx.doi.org/10.1021/jacs.8b10779] [PMID: 30566837]
[49]
Head-Gordon, T.; Brown, S. Minimalist models for protein folding and design. Curr. Opin. Struct. Biol., 2003, 13(2), 160-167.
[http://dx.doi.org/10.1016/S0959-440X(03)00030-7] [PMID: 12727508]
[50]
Cartwright, J. Roll over, boltzmann. Phys. World, 2014, 27(5), 31-35.
[http://dx.doi.org/10.1088/2058-7058/27/05/39]
[51]
Cooper, A. Thermodynamic fluctuations in protein molecules. Proc. Natl. Acad. Sci. USA, 1976, 73(8), 2740-2741.
[http://dx.doi.org/10.1073/pnas.73.8.2740] [PMID: 1066687]
[52]
a) Baranger, M. Why tsallis statistics? Physica A, 2002, 305, 27.;
b) Plastino, A. Why Tsallis’ statistics? Physica A, 2004, 344, 608.;
c) Rajagopal, A.K.; Pande, C.S.; Abe, S Nanothermodynamics: A generic approach to material properties at nanoscale 2004. Available from: arXiv:condmat/0403738 [cond-mat.stat-mech]
[http://dx.doi.org/10.48550/arXiv.cond-mat/0403738]
[53]
a) Beck, C.; Lewis, G.S.; Swinney, H.L. Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow. Phys. Rev. E., 2001, 63, 035303.;
b) Beck, C.; Cohen, E.G.D.; Swinney, H.L. From time series to superstatistics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2005, 72, 056133.
[http://dx.doi.org/10.1103/PhysRevE.72.056133] [PMID: 16383714]
[54]
Piazza, R. Soft matter - The stuff that dreams are made of; Copernicus Books: Netherlands, 2011.
[55]
Lutz, E. Anomalous diffusion and Tsallis statistics in an optical lattice. Phys. Rev. A, 2003, 67(5), 051402.
[http://dx.doi.org/10.1103/PhysRevA.67.051402]
[56]
Douglas, P.; Bergamini, S.; Renzoni, F. Tunable Tsallis distributions in dissipative optical lattices. Phys. Rev. Lett., 2006, 96(11), 110601.
[http://dx.doi.org/10.1103/PhysRevLett.96.110601] [PMID: 16605807]
[57]
Dal Molin, J.P. The role of the stereochemical code and local thermal fluctuations in the protein folding process, Doctoral Thesis, University of São Paulo, FCFRP: Ribeirão Preto, São Paulo 2011. Available from: https://teses.usp.br/teses/disponiveis/60/60136/tde-16032011-143419/fr.php
[58]
Caliri, A.; Dal Molin, J.P. Computational methods in the study of biological macromolecules. Bookstore of Physics, 1st ed; Filho, E.D., Ed.; São Paulo, 2019.
[59]
Kauzmann, W. Some factors in the interpretation of protein denaturation. Adv. Protein Chem., 1959, 14, 1-63.
[http://dx.doi.org/10.1016/S0065-3233(08)60608-7] [PMID: 14404936]
[60]
Karplus, M.; Dinner, A.R. The roles of stability and contact order in determining protein folding rates. Nat. Struct. Biol., 2001, 8(1), 21-22.
[http://dx.doi.org/10.1038/83003] [PMID: 11135664]
[61]
Taketomi, H.; Ueda, Y. Gō N. Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int. J. Pept. Protein Res., 1975, 7(6), 445-459.
[http://dx.doi.org/10.1111/j.1399-3011.1975.tb02465.x] [PMID: 1201909]
[62]
Bryngelson, J.D.; Onuchic, J.N.; Socci, N.D.; Wolynes, P.G. Funnels, pathways, and the energy landscape of protein folding: A synthesis. Proteins, 1995, 21(3), 167-195.
[http://dx.doi.org/10.1002/prot.340210302] [PMID: 7784423]
[63]
Contessoto, V.G.; Junior, A.B.O.; Chahine, J.; Oliveira, R.J.; Leite, V.B.P. Introdução ao problema de enovelamento de proteínas. Rev. Bras. Ensino Fis., 2018, 40, e4307.
[64]
Tanford, C. The hydrophobic effect and the organization of living matter. Science, 1978, 200(4345), 1012-1018.
[http://dx.doi.org/10.1126/science.653353] [PMID: 653353]
[65]
Rocha, L.F.O.; da Silva, M.A.A.; Caliri, A. Entropic force and folding of macromolecules. Phys. Lett. A, 1996, 220(1-3), 178-182.
[http://dx.doi.org/10.1016/0375-9601(96)00505-1]
[66]
Dal Molin, J.P.; Caliri, A. The early events of the protein folding process. Curr. Phys. Chem., 2013, 3, 69.
[http://dx.doi.org/10.2174/1877946811303010010]
[67]
Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys., 1988, 52(1-2), 479-487.
[http://dx.doi.org/10.1007/BF01016429]
[68]
Tsallis, C. What should a statistical mechanics satisfy to reflect nature? Physica D, 2004, 193(1-4), 3-34.
[http://dx.doi.org/10.1016/j.physd.2004.01.006]
[69]
Tsallis, C. Thermostatistically approaching living systems: Boltzmann-Gibbs or nonextensive statistical mechanics? Phys. Life Rev., 2006, 3(1), 1-22.
[http://dx.doi.org/10.1016/j.plrev.2005.11.001]
[70]
Tsekouras, G.A.; Tsallis, C. Generalized entropy arising from a distribution of q indices. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2005, 71(4), 046144.
[http://dx.doi.org/10.1103/PhysRevE.71.046144] [PMID: 15903763]
[71]
Faísca, P.F.N. The mystery of protein shape. Physics Gazette, 2006, 29, 34.
[72]
Echenique, P. Introduction to protein folding for physicists. Contemp. Phys., 2007, 48(2), 81-108.
[http://dx.doi.org/10.1080/00107510701520843]
[73]
Kaya, H.; Chan, H.S. Contact order dependent protein folding rates: Kinetic consequences of a cooperative interplay between favorable nonlocal interactions and local conformational preferences. Proteins, 2003, 52(4), 524-533.
[http://dx.doi.org/10.1002/prot.10478] [PMID: 12910452]
[74]
Chekmarev, S.F.; Krivov, S.V.; Karplus, M. Folding time distributions as an approach to protein folding kinetics. J. Phys. Chem. B, 2006, 110, 8865.
[http://dx.doi.org/10.1021/jp056799o] [PMID: 16640446]
[75]
Okamoto, Y. Protein folding problem as studied by new simulation algorithms. Recent Res. Devel. Pure Appl. Chem., 1998, 2, 1.
[76]
Straub, J.E. Protein folding and optimization algorithms, in the encyclopedia of computational chemistry; John Wiley and Sons: Chichester, 1998.
[77]
Hansmann, U.H.E.; Okamoto, Y.; Onuchic, J.N. The folding funnel landscape for the peptide met-enkephalin. Proteins, 1999, 34(4), 472-483.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19990301)34:4<472:AID-PROT7>3.0.CO;2-X] [PMID: 10081960]
[78]
Hansmann, U.H.E.; Okamoto, Y. Tackling the protein folding problem by a generalized-ensemble approach with Tsallis statistics. Braz. J. Phys., 1999, 29(1), 187.
[http://dx.doi.org/10.1590/S0103-97331999000100017]
[79]
Moret, M.A.; Bisch, P.M.; Mundim, K.C.; Pascutti, P.G. New stochastic strategy to analyze helix folding. Biophys. J., 2002, 82(3), 1123-1132.
[http://dx.doi.org/10.1016/S0006-3495(02)75471-4] [PMID: 11867432]
[80]
Agostini, F.P.; Soares-Pinto, D.D.O.; Moret, M.A.; Osthoff, C.; Pascutti, P.G. Generalized simulated annealing applied to protein folding studies. J. Comput. Chem., 2006, 27(11), 1142-1155.
[http://dx.doi.org/10.1002/jcc.20428] [PMID: 16732545]
[81]
Melo, M.C.R.; Bernardi, R.C.; Fernandes, T.V.A.; Pascutti, P.G. GSAFold: A new application of GSA to protein structure prediction. Proteins, 2012, 80(9), 2305-2310.
[http://dx.doi.org/10.1002/prot.24120] [PMID: 22622959]
[82]
Pak, Y.; Enyedy, I.J.; Varady, J.; Kung, J.W.; Lorenzo, P.S.; Blumberg, P.M.; Wang, S. Structural basis of binding of high-affinity ligands to protein kinase C: Prediction of the binding modes through a new molecular dynamics method and evaluation by site-directed mutagenesis. J. Med. Chem., 2001, 44(11), 1690-1701.
[http://dx.doi.org/10.1021/jm000488e] [PMID: 11356104]
[83]
Yang, L.; Grubb, M.P.; Gao, Y.Q. Application of the accelerated molecular dynamics simulations to the folding of a small protein. J. Chem. Phys., 2007, 126(12), 125102.
[http://dx.doi.org/10.1063/1.2709639] [PMID: 17411164]
[84]
Ma, W.J.; Hu, C.K. Physical mechanism for biopolymers to aggregate and maintain in non-equilibrium states. Sci. Rep., 2017, 7(1), 3105.
[http://dx.doi.org/10.1038/s41598-017-03136-7] [PMID: 28596529]
[85]
Hu, C.K. Slow dynamics in proteins and polymer chains. AIP Conf. Proc., 2013, 1518, 541.
[86]
Hu, C.K. Proteins aggregation and human diseases. J. Phys. Conf. Ser., 2015, 604, 012009.
[http://dx.doi.org/10.1088/1742-6596/604/1/012009]
[87]
Tsallis, C.; Bemski, G.; Mendes, R.S. Is re-association in folded proteins a case of nonextensivity? Phys. Lett. A, 1999, 257(1-2), 93-98.
[http://dx.doi.org/10.1016/S0375-9601(99)00270-4]
[88]
Diambra, L.; Cintra, L.C.; Chen, Q.; Schubert, D.; Costa, L.F. Cell adhesion protein decreases cell motion: Statistical characterization of locomotion activity. Physica A, 2006, 365(2), 481-490.
[http://dx.doi.org/10.1016/j.physa.2005.10.006]
[89]
Moret, M.A. Self-organized critical model for protein folding. Physica A, 2011, 390(17), 3055-3059.
[http://dx.doi.org/10.1016/j.physa.2011.04.008]
[90]
Wilk, G. Włodarczyk, Z. Interpretation of the nonextensivity parameter q in some applications of tsallis statistics and Levy distributions. Phys. Rev. Lett., 2000, 84(13), 2770-2773.
[http://dx.doi.org/10.1103/PhysRevLett.84.2770] [PMID: 11018939]
[91]
Wilk, G. Włodarczyk, Z. Application of nonextensive statistics to particle and nuclear physics. Physica A, 2002, 305(1-2), 227-233.
[http://dx.doi.org/10.1016/S0378-4371(01)00666-5]
[92]
Salinas, S.R.A. Introduction to statistical physics, 1st ed; Springer-Verlag: India, 2001.
[http://dx.doi.org/10.1007/978-1-4757-3508-6]
[93]
Hill, T.L. Thermodynamics of small systems - parts I & II; Dover: United States of America, 2013.
[94]
a) Tsallis, C. Entropy, Encyclopedia, 2022, 2(1), 264.;
b) TEMUCO Available from: http://tsallis.cat.cbpf.br/TEMUCO.pdf
[95]
Evangelista, L.R.; Lenzi, E.K. Fractional diffusion equations and anomalous diffusion; Cambridge University Press: United Kingdom, 2018.
[http://dx.doi.org/10.1017/9781316534649]
[96]
Klafter, J.; Sokolov, I.M. Anomalous diffusion spreads its wings. Phys. World, 2005, 18(8), 29-32.
[http://dx.doi.org/10.1088/2058-7058/18/8/33]
[97]
Plastino, A.R.; Lima, J.A.S. Equipartition and virial theorems within general thermostatistical formalisms. Phys. Lett. A, 1999, 260(1-2), 46-54.
[http://dx.doi.org/10.1016/S0375-9601(99)00495-8]
[98]
Bohr, H.; Brunak, S. A travelling salesman approach to protein conformation. Complex Syst., 1989, 3, 9-28.
[99]
Chandru, V.; Datta Sharma, A.; Anil Kumar, V.S. The algorithmics of folding proteins on lattices. Discrete Appl. Math., 2003, 127(1), 145-161.
[http://dx.doi.org/10.1016/S0166-218X(02)00381-5]
[100]
Ivankov, D.N.; Finkelstein, A.V. Solution of levinthal’s paradox and a physical theory of protein folding times. Biomolecules, 2020, 10(2), 250.
[http://dx.doi.org/10.3390/biom10020250] [PMID: 32041303]
[101]
Vignat, C.; Plastino, A. Central limit theorem and deformed exponentials. J. Phys. A Math. Theor., 2007, 40(45), F969-F978.
[http://dx.doi.org/10.1088/1751-8113/40/45/F02]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy