Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Emerging Role of Sodium-glucose Cotransporter 2 Inhibitors in Heart Failure

Author(s): Mauro Gitto, Alessandro Villaschi, Massimo Federici, Gianluigi Condorelli and Giulio G. Stefanini*

Volume 29, Issue 7, 2023

Published on: 13 March, 2023

Page: [481 - 493] Pages: 13

DOI: 10.2174/1381612829666230217143324

Price: $65

Abstract

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a relatively novel drug class that most cardiologists are becoming familiar with. By contrasting glucose reabsorption in the proximal convoluted tubule of the nephron, SGLT2 inhibition results in glycosuria with improved glycemic control. Although originally introduced as anti-diabetic medications, the cardiovascular effects of SGLT2i have progressively emerged, leading them to become one of the four pillars for the treatment of heart failure with reduced ejection fraction (HFrEF) according to the 2021 guidelines from the European Society of Cardiology. Also, two recent randomized trials have demonstrated SGLT2i as the first compounds with proven prognostic impact in heart failure with preserved ejection fraction (HFpEF), setting a milestone in the treatment for this condition. While the exact pathogenic mechanisms mediating the substantial reduction in cardiovascular death and heart failure (HF) hospitalizations are still controversial, there is growing clinical evidence on the efficacy and safety of SGLT2i in various subsets of patients with HF. As known, heart failure is a complex and heterogeneous clinical syndrome with a magnitude of phenotypes and a variety of underlying hemodynamic and physiological aspects which cannot be fully incorporated into the traditional left ventricular ejection fraction based classification adopted in clinical trials. The aim of this review is to provide an overview of the cardiovascular benefits and indications of SGLT2i across different HF patterns and to highlight current gaps in knowledge that should be addressed by future research.

Next »
[1]
Roger VL. Epidemiology of Heart Failure. Circ Res 2021; 128(10): 1421-34.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.318172] [PMID: 33983838]
[2]
Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev 2017; 3(1): 7-11.
[http://dx.doi.org/10.15420/cfr.2016:25:2] [PMID: 28785469]
[3]
McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42(36): 3599-726.
[http://dx.doi.org/10.1093/eurheartj/ehab368] [PMID: 34447992]
[4]
Thorvaldsen T, Benson L, Dahlström U, Edner M, Lund LH. Use of evidence-based therapy and survival in heart failure in Sweden 2003-2012. Eur J Heart Fail 2016; 18(5): 503-11.
[http://dx.doi.org/10.1002/ejhf.496] [PMID: 26869252]
[5]
Pandey A, Shah SJ, Butler J, et al. Exercise intolerance in older adults with heart failure with preserved ejection fraction. J Am Coll Cardiol 2021; 78(11): 1166-87.
[http://dx.doi.org/10.1016/j.jacc.2021.07.014] [PMID: 34503685]
[6]
Schiattarella GG, Rodolico D, Hill JA. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc Res 2021; 117(2): 423-34.
[http://dx.doi.org/10.1093/cvr/cvaa217] [PMID: 32666082]
[7]
Hasan FM, Alsahli M, Gerich JE. SGLT2 inhibitors in the treatment of type 2 diabetes. Diabetes Res Clin Pract 2014; 104(3): 297-322.
[http://dx.doi.org/10.1016/j.diabres.2014.02.014] [PMID: 24735709]
[8]
Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: A meta-analysis of randomized trials. JAMA 2007; 298(10): 1180-8.
[http://dx.doi.org/10.1001/jama.298.10.1180] [PMID: 17848652]
[9]
Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356(24): 2457-71.
[http://dx.doi.org/10.1056/NEJMoa072761] [PMID: 17517853]
[10]
Gitto M, Vrachatis DA, Condorelli G, et al. Potential therapeutic benefits of sodium-glucose cotransporter 2 inhibitors in the context of ischemic heart failure: A state-of-the-art review. Cardiovasc Hematol Agents Med Chem 2022; 20(2): 90-102.
[http://dx.doi.org/10.2174/1871525719666210809121016] [PMID: 34370645]
[11]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[12]
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380(4): 347-57.
[http://dx.doi.org/10.1056/NEJMoa1812389] [PMID: 30415602]
[13]
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7): 644-57.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[14]
Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med 2020; 383(15): 1425-35.
[http://dx.doi.org/10.1056/NEJMoa2004967] [PMID: 32966714]
[15]
Kato ET, Silverman MG, Mosenzon O, et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 2019; 139(22): 2528-36.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.040130] [PMID: 30882238]
[16]
Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019; 393(10166): 31-9.
[http://dx.doi.org/10.1016/S0140-6736(18)32590-X] [PMID: 30424892]
[17]
Fei Y, Tsoi MF, Cheung BMY. Cardiovascular outcomes in trials of new antidiabetic drug classes: A network meta-analysis. Cardiovasc Diabetol 2019; 18(1): 112.
[http://dx.doi.org/10.1186/s12933-019-0916-z] [PMID: 31462224]
[18]
Kluger AY, Tecson KM, Lee AY, et al. Class effects of SGLT2 inhibitors on cardiorenal outcomes. Cardiovasc Diabetol 2019; 18(1): 99.
[http://dx.doi.org/10.1186/s12933-019-0903-4] [PMID: 31382965]
[19]
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381(21): 1995-2008.
[http://dx.doi.org/10.1056/NEJMoa1911303] [PMID: 31535829]
[20]
Packer M, Anker SD, Butler J, et al. Cardiovascular andrenal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383(15): 1413-24.
[http://dx.doi.org/10.1056/NEJMoa2022190] [PMID: 32865377]
[21]
Packer M, Butler J, Zannad F, et al. Empagliflozin and major renal outcomes in heart failure. N Engl J Med 2021; 385(16): 1531-3.
[http://dx.doi.org/10.1056/NEJMc2112411] [PMID: 34449179]
[22]
Damman K, Valente MAE, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: An updated meta-analysis. Eur Heart J 2014; 35(7): 455-69.
[http://dx.doi.org/10.1093/eurheartj/eht386] [PMID: 24164864]
[23]
Li N, Lv D, Zhu X, et al. Effects of SGLT2 inhibitors on renal outcomes in patients with chronic kidney disease: A meta-analysis. Front Med 2021; 8: 728089.
[http://dx.doi.org/10.3389/fmed.2021.728089] [PMID: 34790672]
[24]
Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-reduced and DAPA-HF trials. Lancet 2020; 396(10254): 819-29.
[http://dx.doi.org/10.1016/S0140-6736(20)31824-9] [PMID: 32877652]
[25]
Becher PM, Schrage B, Ferrannini G, et al. Use of sodium-glucose co-transporter 2 inhibitors in patients with heart failure and type 2 diabetes mellitus: Data from the Swedish Heart Failure Registry. Eur J Heart Fail 2021; 23(6): 1012-22.
[http://dx.doi.org/10.1002/ejhf.2131] [PMID: 33599357]
[26]
Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure. J Am Coll Cardiol 2022; 79(17): e263-421.
[http://dx.doi.org/10.1016/j.jacc.2021.12.012] [PMID: 35379503]
[27]
McDonagh TA, Metra M, Adamo M, et al. Corrigendum to: 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2021; 42(48): 4901.
[http://dx.doi.org/10.1093/eurheartj/ehab670] [PMID: 34649282]
[28]
Greene SJ, Butler J, Fonarow GC. Simultaneous or rapid sequence initiation of quadruple medical therapy for heart failure-optimizing therapy with the need for speed. JAMA Cardiol 2021; 6(7): 743-4.
[http://dx.doi.org/10.1001/jamacardio.2021.0496] [PMID: 33787823]
[29]
Packer M, McMurray JJV. Rapid evidence-based sequencing of foundational drugs for heart failure and a reduced ejection fraction. Eur J Heart Fail 2021; 23(6): 882-94.
[http://dx.doi.org/10.1002/ejhf.2149] [PMID: 33704874]
[30]
Solomon SD, McMurray JJV, Anand IS, et al. Angiotensin–Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N Engl J Med 2019; 381(17): 1609-20.
[http://dx.doi.org/10.1056/NEJMoa1908655] [PMID: 31475794]
[31]
Pitt B, Pfeffer MA, Assmann SF, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 2014; 370(15): 1383-92.
[http://dx.doi.org/10.1056/NEJMoa1313731] [PMID: 24716680]
[32]
Massie BM, Carson PE, McMurray JJ, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 2008; 359(23): 2456-67.
[http://dx.doi.org/10.1056/NEJMoa0805450] [PMID: 19001508]
[33]
Cleland JGF, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J 2006; 27(19): 2338-45.
[http://dx.doi.org/10.1093/eurheartj/ehl250] [PMID: 16963472]
[34]
Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: The CHARM-Preserved Trial. Lancet 2003; 362(9386): 777-81.
[http://dx.doi.org/10.1016/S0140-6736(03)14285-7] [PMID: 13678871]
[35]
Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med 2021; 384(2): 117-28.
[http://dx.doi.org/10.1056/NEJMoa2030183] [PMID: 33200892]
[36]
Wright EM, Loo DDF, Hirayama BA, Turk E. Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology (Bethesda) 2004; 19(6): 370-6.
[http://dx.doi.org/10.1152/physiol.00026.2004] [PMID: 15546855]
[37]
Butler J, Usman MS, Khan MS, et al. Efficacy and safety of SGLT2 inhibitors in heart failure: Systematic review and meta-analysis. ESC Heart Fail 2020; 7(6): 3298-309.
[http://dx.doi.org/10.1002/ehf2.13169] [PMID: 33586910]
[38]
Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med 2021; 384(2): 129-39.
[http://dx.doi.org/10.1056/NEJMoa2030186] [PMID: 33200891]
[39]
Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021; 385(16): 1451-61.
[http://dx.doi.org/10.1056/NEJMoa2107038] [PMID: 34449189]
[40]
Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: Executive summary: A report of the American College of Cardiology/American heart association joint committee on clinical practice guidelines. Circulation 2022; 145(18): e876-94.
[http://dx.doi.org/10.1161/CIR.0000000000001062] [PMID: 35363500]
[41]
Butler J, Packer M, Filippatos G, et al. Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. Eur Heart J 2022; 43(5): 416-24.
[http://dx.doi.org/10.1093/eurheartj/ehab798] [PMID: 34878502]
[42]
Inker LA, Heerspink HJL, Tighiouart H, et al. GFR slope as a surrogate end point for kidney disease progression in clinical trials: A meta-analysis of treatment effects of randomized controlled trials. J Am Soc Nephrol 2019; 30(9): 1735-45.
[http://dx.doi.org/10.1681/ASN.2019010007] [PMID: 31292197]
[43]
Orlandi PF, Xie D, Yang W, et al. Slope of kidney function and its association with longitudinal mortality and cardiovascular disease among individuals with CKD. J Am Soc Nephrol 2020; 31(12): 2912-23.
[http://dx.doi.org/10.1681/ASN.2020040476] [PMID: 33023926]
[44]
Packer M, Zannad F, Butler J, et al. Influence of endpoint definitions on the effect of empagliflozin on major renal outcomes in the EMPEROR-preserved trial. Eur J Heart Fail 2021; 23(10): 1798-9.
[http://dx.doi.org/10.1002/ejhf.2334] [PMID: 34459076]
[45]
Solomon SD, McMurray JJV, Claggett B, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med 2022; 387(12): 1089-98.
[http://dx.doi.org/10.1056/NEJMoa2206286] [PMID: 36027570]
[46]
Jhund PS, Kondo T, Butt JH, et al. Dapagliflozin across the range of ejection fraction in patients with heart failure: A patient-level, pooled meta-analysis of DAPA-HF and DELIVER. Nat Med 2022; 28(9): 1956-64.
[http://dx.doi.org/10.1038/s41591-022-01971-4] [PMID: 36030328]
[47]
Vaduganathan M, Docherty KF, Claggett BL, et al. SGLT-2 inhibitors in patients with heart failure: A comprehensive meta-analysis of five randomised controlled trials. Lancet 2022; 400(10354): 757-67.
[http://dx.doi.org/10.1016/S0140-6736(22)01429-5] [PMID: 36041474]
[48]
Damman K, Beusekamp JC, Boorsma EM, et al. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur J Heart Fail 2020; 22(4): 713-22.
[http://dx.doi.org/10.1002/ejhf.1713] [PMID: 31912605]
[49]
Baglioni P. Cardiovascular outcomes with sotagliflozin. N Engl J Med 2021; 384(15): 1470-3.
[http://dx.doi.org/10.1056/NEJMc2102961] [PMID: 33852786]
[50]
Voors AA, Angermann CE, Teerlink JR, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: A multinational randomized trial. Nat Med 2022; 28(3): 568-74.
[http://dx.doi.org/10.1038/s41591-021-01659-1] [PMID: 35228754]
[51]
Salah HM, Al’Aref SJ, Khan MS, et al. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors initiation in patients with acute heart failure, with and without type 2 diabetes: A systematic review and meta-analysis. Cardiovasc Diabetol 2022; 21(1): 20.
[http://dx.doi.org/10.1186/s12933-022-01455-2] [PMID: 35123480]
[52]
Wu JHY, Foote C, Blomster J, et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol 2016; 4(5): 411-9.
[http://dx.doi.org/10.1016/S2213-8587(16)00052-8] [PMID: 27009625]
[53]
Udell JA, Jones WS, Petrie MC, et al. Sodium glucose cotransporter-2 inhibition for acute myocardial infarction. J Am Coll Cardiol 2022; 79(20): 2058-68.
[http://dx.doi.org/10.1016/j.jacc.2022.03.353] [PMID: 35589167]
[54]
von Lewinski D, Kolesnik E, Tripolt NJ, et al. Empagliflozin in acute myocardial infarction: The EMMY trial. Eur Heart J 2022; 43(41): 4421-32.
[http://dx.doi.org/10.1093/eurheartj/ehac494] [PMID: 36036746]
[55]
Tripolt NJ, Kolesnik E, Pferschy PN, et al. Impact of EMpagliflozin on cardiac function and biomarkers of heart failure in patients with acute MYocardial infarction - the EMMY trial. Am Heart J 2020; 221: 39-47.
[http://dx.doi.org/10.1016/j.ahj.2019.12.004] [PMID: 31901799]
[56]
Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 2011; 4(1): 98-108.
[http://dx.doi.org/10.1016/j.jcmg.2010.10.008] [PMID: 21232712]
[57]
Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA, et al. Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction. J Am Coll Cardiol 2021; 77(3): 243-55.
[http://dx.doi.org/10.1016/j.jacc.2020.11.008] [PMID: 33197559]
[58]
Lee MMY, Brooksbank KJM, Wetherall K, et al. Effect of empagliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction (SUGAR-DM-HF). Circulation 2021; 143(6): 516-25.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.052186] [PMID: 33186500]
[59]
Omar M, Jensen J, Ali M, et al. Associations of empagliflozin with left ventricular volumes, mass, and function in patients with heart failure and reduced ejection fraction. JAMA Cardiol 2021; 6(7): 836-40.
[http://dx.doi.org/10.1001/jamacardio.2020.6827] [PMID: 33404637]
[60]
Singh JSS, Mordi IR, Vickneson K, et al. Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure: The REFORM trial. Diabetes Care 2020; 43(6): 1356-9.
[http://dx.doi.org/10.2337/dc19-2187] [PMID: 32245746]
[61]
Dhingra NK, Mistry N, Puar P, et al. SGLT2 inhibitors and cardiac remodelling: A systematic review and meta-analysis of randomized cardiac magnetic resonance imaging trials. ESC Heart Fail 2021; 8(6): 4693-700.
[http://dx.doi.org/10.1002/ehf2.13645] [PMID: 34623032]
[62]
Gamaza-Chulián S, Díaz-Retamino E, González-Testón F, et al. Effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors on left ventricular remodelling and longitudinal strain: A prospective observational study. BMC Cardiovasc Disord 2021; 21(1): 456.
[http://dx.doi.org/10.1186/s12872-021-02250-9] [PMID: 34548011]
[63]
Tanaka H, Soga F, Tatsumi K, et al. Positive effect of dapagliflozin on left ventricular longitudinal function for type 2 diabetic mellitus patients with chronic heart failure. Cardiovasc Diabetol 2020; 19(1): 6.
[http://dx.doi.org/10.1186/s12933-019-0985-z] [PMID: 31910853]
[64]
Ernande L, Bergerot C, Rietzschel ER, et al. Diastolic dysfunction in patients with type 2 diabetes mellitus: Is it really the first marker of diabetic cardiomyopathy? J Am Soc Echocardiogr 2011; 24(11): 1268-1275.e1.
[http://dx.doi.org/10.1016/j.echo.2011.07.017] [PMID: 21907542]
[65]
Ernande L, Bergerot C, Girerd N, et al. Longitudinal myocardial strain alteration is associated with left ventricular remodeling in asymptomatic patients with type 2 diabetes mellitus. J Am Soc Echocardiogr 2014; 27(5): 479-88.
[http://dx.doi.org/10.1016/j.echo.2014.01.001] [PMID: 24508363]
[66]
Liu JH, Chen Y, Yuen M, et al. Incremental prognostic value of global longitudinal strain in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2016; 15(1): 22.
[http://dx.doi.org/10.1186/s12933-016-0333-5] [PMID: 26842466]
[67]
Nassif ME, Qintar M, Windsor SL, et al. Empagliflozin effects on pulmonary artery pressure in patients with heart failure. Circulation 2021; 143(17): 1673-86.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.052503] [PMID: 33550815]
[68]
Sarak B, Verma S, David Mazer C, et al. Impact of empagliflozin on right ventricular parameters and function among patients with type 2 diabetes. Cardiovasc Diabetol 2021; 20(1): 200.
[http://dx.doi.org/10.1186/s12933-021-01390-8] [PMID: 34607574]
[69]
Chowdhury B, Luu AZ, Luu VZ, et al. The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. Biochem Biophys Res Commun 2020; 524(1): 50-6.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.015] [PMID: 31980166]
[70]
Kotinas AS, Gitto M, Terzi R, et al. Effects of SGLT2 inhibitors on left and right ventricular function in a real-world diabetic population. European Heart J Suppl 2021; 23: suab139.018.
[http://dx.doi.org/10.1093/eurheartj/suab139.018]
[71]
Lee MMY, McMurray JJV, Lorenzo-Almorós A, et al. Diabetic cardiomyopathy. Heart 2019; 105(4): 337-45.
[http://dx.doi.org/10.1136/heartjnl-2016-310342] [PMID: 30337334]
[72]
Habibi J, Aroor AR, Sowers JR, et al. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc Diabetol 2017; 16(1): 9.
[http://dx.doi.org/10.1186/s12933-016-0489-z] [PMID: 28086951]
[73]
Pabel S, Wagner S, Bollenberg H, et al. Empagliflozin directly improves diastolic function in human heart failure. Eur J Heart Fail 2018; 20(12): 1690-700.
[http://dx.doi.org/10.1002/ejhf.1328] [PMID: 30328645]
[74]
Matsutani D, Sakamoto M, Kayama Y, Takeda N, Horiuchi R, Utsunomiya K. Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes. Cardiovasc Diabetol 2018; 17(1): 73.
[http://dx.doi.org/10.1186/s12933-018-0717-9] [PMID: 29788955]
[75]
Shim CY, Seo J, Cho I, et al. Randomized, controlled trial to evaluate the effect of dapagliflozin on left ventricular diastolic function in patients with type 2 diabetes mellitus. Circulation 2021; 143(5): 510-2.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.051992] [PMID: 33186508]
[76]
Maragkoudakis S, Marketou M, Katsi V, et al. The early effect of dapagliflozin on strain and tissue Doppler parameters of diastolic function in diabetic patients with heart failure with reduced ejection fraction. Arch Med Sci Atheroscler Dis 2021; 6(1): 176-81.
[http://dx.doi.org/10.5114/amsad.2021.109685] [PMID: 34703947]
[77]
Soga F, Tanaka H, Tatsumi K, et al. Impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure. Cardiovasc Diabetol 2018; 17(1): 132.
[http://dx.doi.org/10.1186/s12933-018-0775-z] [PMID: 30296931]
[78]
Rai A, Connelly KA, Verma S, et al. Empagliflozin does not affect left ventricular diastolic function in patients with type 2 diabetes mellitus and coronary artery disease: Insight from the EMPA-HEART CardioLink-6 randomized clinical trial. Acta Diabetol 2022; 59(4): 575-8.
[http://dx.doi.org/10.1007/s00592-021-01823-6] [PMID: 35061101]
[79]
Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS. Transthyretin amyloid cardiomyopathy. J Am Coll Cardiol 2019; 73(22): 2872-91.
[http://dx.doi.org/10.1016/j.jacc.2019.04.003] [PMID: 31171094]
[80]
Bhuiyan T, Helmke S, Patel AR, et al. Pressure-volume relationships in patients with transthyretin (ATTR) cardiac amyloidosis secondary to V122I mutations and wild-type transthyretin: Transthyretin cardiac amyloid study (TRACS). Circ Heart Fail 2011; 4(2): 121-8.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.109.910455] [PMID: 21191093]
[81]
Zampieri M, Argirò A, Allinovi M, Perfetto F, Cappelli F. SGLT2i in patients with transthyretin cardiac amyloidosis, a well- tolerated option for heart failure treatment? Results from a small, real-world, patients series. Intern Emerg Med 2022; 17(4): 1243-5.
[http://dx.doi.org/10.1007/s11739-022-02944-8] [PMID: 35137306]
[82]
Chang HM, Moudgil R, Scarabelli T, Okwuosa TM, Yeh ETH. Cardiovascular complications of cancer therapy.. J Am Coll Cardiol 2017; 70(20): 2536-51.
[http://dx.doi.org/10.1016/j.jacc.2017.09.1096] [PMID: 29145954]
[83]
Chang HM, Okwuosa TM, Scarabelli T, Moudgil R, Yeh ETH. Cardiovascular complications of cancer therapy. J Am Coll Cardiol 2017; 70(20): 2552-65.
[http://dx.doi.org/10.1016/j.jacc.2017.09.1095] [PMID: 29145955]
[84]
Felker GM, Thompson RE, Hare JM, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 2000; 342(15): 1077-84.
[http://dx.doi.org/10.1056/NEJM200004133421502] [PMID: 10760308]
[85]
Quagliariello V, De Laurentiis M, Rea D, et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol 2021; 20(1): 150.
[http://dx.doi.org/10.1186/s12933-021-01346-y] [PMID: 34301253]
[86]
Sabatino J, De Rosa S, Tammè L, et al. Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc Diabetol 2020; 19(1): 66.
[http://dx.doi.org/10.1186/s12933-020-01040-5] [PMID: 32414364]
[87]
Gongora CA, Drobni ZD, Silva TQAC, et al. Sodium-glucose co- transporter-2 inhibitors and cardiac outcomes among patients treated with anthracyclines. JACC Heart Fail 2022; 10(8): 559-67.
[http://dx.doi.org/10.1016/j.jchf.2022.03.006]
[88]
Januzzi JL Jr, Butler J, Zannad F, et al. Prognostic implications of N-terminal pro–B-type natriuretic peptide and high-sensitivity cardiac troponin T in EMPEROR-preserved. JACC Heart Fail 2022; 10(7): 512-24.
[http://dx.doi.org/10.1016/j.jchf.2022.05.004] [PMID: 35670067]
[89]
Jensen J, Omar M, Kistorp C, et al. Twelve weeks of treatment with empagliflozin in patients with heart failure and reduced ejection fraction: A double-blinded, randomized, and placebo-controlled trial. Am Heart J 2020; 228: 47-56.
[http://dx.doi.org/10.1016/j.ahj.2020.07.011] [PMID: 32798787]
[90]
Nassif ME, Windsor SL, Tang F, et al. Dapagliflozin effects on biomarkers, symptoms, and functional status in patients with heart failure with reduced ejection fraction. Circulation 2019; 140(18): 1463-76.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.042929] [PMID: 31524498]
[91]
Gentile F, Sciarrone P, Zamora E, et al. Body mass index and outcomes in ischaemic versus non-ischaemic heart failure across the spectrum of ejection fraction. Eur J Prev Cardiol 2021; 28(9): 948-55.
[http://dx.doi.org/10.1177/2047487320927610] [PMID: 34402870]
[92]
Vergaro G, Gentile F, Meems LMG, et al. NT-proBNP for risk prediction in heart failure. JACC Heart Fail 2021; 9(9): 653-63.
[http://dx.doi.org/10.1016/j.jchf.2021.05.014] [PMID: 34246607]
[93]
Inzucchi SE, Zinman B, Fitchett D, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 2018; 41(2): 356-63.
[http://dx.doi.org/10.2337/dc17-1096] [PMID: 29203583]
[94]
Fitchett D, Inzucchi SE, Zinman B, et al. Mediators of the improvement in heart failure outcomes with empagliflozin in the EMPA-REG OUTCOME trial. ESC Heart Fail 2021; 8(6): 4517-27.
[http://dx.doi.org/10.1002/ehf2.13615] [PMID: 34605192]
[95]
Gitto M, Kotinas AS, Terzi R, et al. Biochemical efficacy of sodium-glucose cotransporter 2 inhibitors by cardiovascular risk profile and volume status in a real-world diabetic population. J Cardiovasc Pharmacol 2022; 80(1): 140-7.
[http://dx.doi.org/10.1097/FJC.0000000000001280] [PMID: 35436244]
[96]
Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 2013; 15(9): 853-62.
[http://dx.doi.org/10.1111/dom.12127] [PMID: 23668478]
[97]
Ferrannini E, Baldi S, Frascerra S, et al. Renal handling of ketones in response to sodium-glucose cotransporter 2 inhibition in patients with type 2 diabetes. Diabetes Care 2017; 40(6): 771-6.
[http://dx.doi.org/10.2337/dc16-2724] [PMID: 28325783]
[98]
Docherty KF, Jhund PS, Inzucchi SE, et al. Effects of dapagliflozin in DAPA-HF according to background heart failure therapy. Eur Heart J 2020; 41(25): 2379-92.
[http://dx.doi.org/10.1093/eurheartj/ehaa183] [PMID: 32221582]
[99]
Packer M, Butler J, Zannad F, et al. Effect of empagliflozin on worsening heart failure events in patients with heart failure and preserved ejection fraction: emperor-preserved trial. Circulation 2021; 144(16): 1284-94.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.056824] [PMID: 34459213]
[100]
Packer M, Anker SD, Butler J, et al. Effect of empagliflozin on the clinical stability of patients with heart failure and a reduced ejection fraction. Circulation 2021; 143(4): 326-36.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.051783] [PMID: 33081531]
[101]
Packer M, Anker SD, Butler J, et al. Empagliflozin in patients with heart failure, reduced ejection fraction, and volume overload. J Am Coll Cardiol 2021; 77(11): 1381-92.
[http://dx.doi.org/10.1016/j.jacc.2021.01.033] [PMID: 33736819]
[102]
Abdelmasih R, Abdelmaseih R, Thakker R, et al. Update on the cardiovascular benefits of sodium-glucose co-transporter-2 inhibitors: Mechanism of action, available agents and comprehensive review of literature. Cardiol Res 2021; 12(4): 210-8.
[http://dx.doi.org/10.14740/cr1268] [PMID: 34349861]
[103]
Masuda T, Muto S, Fukuda K, et al. Osmotic diuresis by SGLT2 inhibition stimulates vasopressin-induced water reabsorption to maintain body fluid volume. Physiol Rep 2020; 8(2): e14360.
[http://dx.doi.org/10.14814/phy2.14360] [PMID: 31994353]
[104]
Mordi NA, Mordi IR, Singh JS, McCrimmon RJ, Struthers AD, Lang CC. Renal and cardiovascular effects of sglt2 inhibition in combination with loop diuretics in patients with type 2 Diabetes and chronic heart failure. Circulation 2020; 142(18): 1713-24.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.048739] [PMID: 32865004]
[105]
Boorsma EM, Beusekamp JC, Maaten JM, et al. Effects of empagliflozin on renal sodium and glucose handling in patients with acute heart failure. Eur J Heart Fail 2021; 23(1): 68-78.
[http://dx.doi.org/10.1002/ejhf.2066] [PMID: 33251643]
[106]
ter Maaten JM, Valente MAE, Damman K, Hillege HL, Navis G, Voors AA. Diuretic response in acute heart failure-pathophysiology, evaluation, and therapy. Nat Rev Cardiol 2015; 12(3): 184-92.
[http://dx.doi.org/10.1038/nrcardio.2014.215] [PMID: 25560378]
[107]
Opingari E, Verma S, Connelly KA, et al. The impact of empagliflozin on kidney injury molecule-1: A subanalysis of the effects of empagliflozin on cardiac structure, function, and circulating biomarkers in patients with type 2 diabetes cardiolink-6 trial. Nephrol Dial Transplant 2020; 35(5): 895-7.
[http://dx.doi.org/10.1093/ndt/gfz294] [PMID: 32159783]
[108]
Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab 2018; 20(3): 479-87.
[http://dx.doi.org/10.1111/dom.13126] [PMID: 29024278]
[109]
Ohara K, Masuda T, Murakami T, et al. Effects of the sodium-glucose cotransporter 2 inhibitor dapagliflozin on fluid distribution: A comparison study with furosemide and tolvaptan. Nephrology 2019; 24(9): nep.13552.
[http://dx.doi.org/10.1111/nep.13552] [PMID: 30578654]
[110]
Wan N, Rahman A, Hitomi H, Nishiyama A. The effects of sodium-glucose cotransporter 2 inhibitors on sympathetic nervous activity. Front Endocrinol 2018; 9: 421.
[http://dx.doi.org/10.3389/fendo.2018.00421] [PMID: 30093883]
[111]
Tang J, Ye L, Yan Q, Zhang X, Wang L. Effects of sodium-glucose cotransporter 2 inhibitors on water and sodium metabolism. Front Pharmacol 2022; 13: 800490.
[http://dx.doi.org/10.3389/fphar.2022.800490] [PMID: 35281930]
[112]
Cowie MR, Fisher M. SGLT2 inhibitors: Mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 2020; 17(12): 761-72.
[http://dx.doi.org/10.1038/s41569-020-0406-8] [PMID: 32665641]
[113]
Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors. J Am Coll Cardiol 2020; 75(4): 422-34.
[http://dx.doi.org/10.1016/j.jacc.2019.11.031] [PMID: 32000955]
[114]
Hundertmark MJ, Agbaje OF, Coleman R, et al. Design and rationale of the EMPA-VISION trial: Investigating the metabolic effects of empagliflozin in patients with heart failure. ESC Heart Fail 2021; 8(4): 2580-90.
[http://dx.doi.org/10.1002/ehf2.13406] [PMID: 33960149]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy