Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Mini-Review Article

Herbal Approach for Diabetic Cure and Futuristic Dimension

Author(s): Jangjeet Karan Singh, Snigdha Chakraborty, Manju Nagpal* and Geeta Aggarwal

Volume 15, Issue 3, 2023

Published on: 15 March, 2023

Page: [207 - 221] Pages: 15

DOI: 10.2174/2589977515666230217114449

Price: $65

conference banner
Abstract

Engulfing almost 537 million people, the most commonly occurring metabolic disorder, diabetes mellitus, is emerging as an epidemic worldwide. Diabetes mellitus is identified as a heterogeneous pathological condition that is marked by extreme hyperglycemic (glucose) levels caused by reduced insulin sensitivity. Synthetic antidiabetic medications are widely commercialized but have slowly expressed several inevitable side effects and limitations in treated diabetic subjects. Researchers have been exploring herbal medicine due to its esteemed therapeutic effects. WHO have enlisted almost 21,000 herbal components that have established therapeutic benefit. Several herbs, most of them widely available, have been studied to extract their active phytoconstituents that have effective diabetes management potential with the least risk factor for side effects and acute toxicity. Though acceptable standardization, awareness, and clinical trials are yet to be established before mainstreaming herbal formulation, preclinical studies have confirmed the higher safety and efficacy of several extracted phytoconstituents and formulation in comparative analysis with synthetic products. The authors have also discussed their opinions with regard to the vast usability of herbal components along with the multi-target functionality of several phytoconstituents, as well as the challenges faced for standardizing, formulating, and marketing herbal medicines. Other than this, several cases of clinical trials showing effectivity of herbal antidiabetic aid are mentioned. In this review, an attempt has been made to summarize the potential antidiabetic herbs, marketed herbal formulations, and patented formulations that have established therapeutic prospects to downregulate diabetic conditions.

Graphical Abstract

[1]
Altan V. The pharmacology of diabetic complications. Curr Med Chem 2003; 10(15): 1317-27.
[http://dx.doi.org/10.2174/0929867033457287] [PMID: 12871132]
[2]
Feldman M, Schiller LR. Disorders of gastrointestinal motility associated with diabetes mellitus. Ann Intern Med 1983; 98(3): 378-84.
[http://dx.doi.org/10.7326/0003-4819-98-3-378] [PMID: 6402969]
[3]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045Results from the International Diabetes Federation Diabetes Atlas 9th edition Diabetes Res Clin Pract. 2019; 157: p. 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[4]
Strojek K. Features of macrovascular complications in type 2 diabetic patients. Acta Diabetol 2003; 40(2): s334-7.
[http://dx.doi.org/10.1007/s00592-003-0115-x] [PMID: 14704864]
[5]
Peixoto Araujo NM, Arruda HS, de Paulo Farias D, Molina G, Pereira GA, Pastore GM. Plants from the genus Eugenia as promising therapeutic agents for the management of diabetes mellitus: A review. Food Res Int 2021; 142: 110182.
[http://dx.doi.org/10.1016/j.foodres.2021.110182] [PMID: 33773658]
[6]
Unger J, Parkin CG. Type 2 diabetes: An expanded view of pathophysiology and therapy. Postgrad Med 2010; 122(3): 145-57.
[http://dx.doi.org/10.3810/pgm.2010.05.2152] [PMID: 20463424]
[7]
Platel K, Srinivasan K. Plant foods in the management of diabetes mellitus: Vegetables as potential hypoglycaemic agents Food/Nahrung 1997; 41(2): 68-74.
[http://dx.doi.org/10.1002/food.19970410203] [PMID: 9188186]
[8]
Kumar V, Jain P, Rathore K, Ahmed Z. Biological evaluation of Pupalia lappacea for antidiabetic, antiadipogenic, and hypolipidemic activity both in vitro and in vivo. Scientifica 2016; 2016: 1062430.
[http://dx.doi.org/10.1155/2016/1062430] [PMID: 26942038]
[9]
Jain S, Bhatia G, Barik R, Kumar P, Jain A, Dixit VK. Antidiabetic activity of Paspalum scrobiculatum Linn. in alloxan induced diabetic rats. J Ethnopharmacol 2010; 127(2): 325-8.
[http://dx.doi.org/10.1016/j.jep.2009.10.038] [PMID: 19900528]
[10]
International Diabetes Federation IDF diabetes atlas 2017. Available form: https://idf.org/
[11]
Tanaka M, Misawa E, Ito Y, et al. Identification of five phytosterols from Aloe vera gel as anti-diabetic compounds. Biol Pharm Bull 2006; 29(7): 1418-22.
[http://dx.doi.org/10.1248/bpb.29.1418] [PMID: 16819181]
[12]
Bejar E. Adulteration of aloe vera (Aloe vera) leaf ingredients Botanical Adulterants Prevention Bulletin. Austin, TX: ABC-AHP-NCNPR Botanical Adulterants Prevention Program 2019.
[13]
Yagi A, Hegazy S, Kabbash A, Wahab EAE. Possible hypoglycemic effect of Aloe vera L. high molecular weight fractions on type 2 diabetic patients. Saudi Pharm J 2009; 17(3): 209-15.
[http://dx.doi.org/10.1016/j.jsps.2009.08.007] [PMID: 23964163]
[14]
Malvi R, Jain S, Khatri S, Patel A, Mishra S. A review on antidiabetic medicinal plants and marketed herbal formulations. Int J Pharm Biol Arch 2011; 2: 1344-55.
[15]
Laribi B, Kouki K, M’Hamdi M, Bettaieb T. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia 2015; 103: 9-26.
[http://dx.doi.org/10.1016/j.fitote.2015.03.012] [PMID: 25776008]
[16]
Nadeem M, Muhammad Anjum F, Issa Khan M, Tehseen S, El-Ghorab A, Iqbal Sultan J. Nutritional and medicinal aspects of coriander (Coriandrum sativum L.). Br Food J 2013; 115(5): 743-55.
[http://dx.doi.org/10.1108/00070701311331526]
[17]
Singh R, Kaur N, Kishore L, Kumar Gupta G. Management of diabetic complications: A chemical constituents based approach. J Ethnopharmacol 2013; 150(1): 51-70.
[http://dx.doi.org/10.1016/j.jep.2013.08.051] [PMID: 24041460]
[18]
Eidi M, Eidi A, Saeidi A, et al. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother Res 2009; 23(3): 404-6.
[http://dx.doi.org/10.1002/ptr.2642] [PMID: 19003941]
[19]
Kajal A, Singh R. Coriandrum sativum seeds extract mitigate progression of diabetic nephropathy in experimental rats via AGEs inhibition. PLoS One 2019; 14(3): e0213147.
[http://dx.doi.org/10.1371/journal.pone.0213147] [PMID: 30845182]
[20]
Mishra JN, Verma NK. A brief study on Catharanthus roseus: A review. Intern J Res Pharmacy Pharmaceut Sci 2017; 2(2): 20-3.
[21]
Singh SN, Vats P, Suri S, et al. Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J Ethnopharmacol 2001; 76(3): 269-77.
[http://dx.doi.org/10.1016/S0378-8741(01)00254-9] [PMID: 11448549]
[22]
Muñoz V, Sauvain M, Bourdy G, et al. The search for natural bioactive compounds through a multidisciplinary approach in Bolivia. Part II. Antimalarial activity of some plants used by Mosetene indians. J Ethnopharmacol 2000; 69(2): 139-55.
[http://dx.doi.org/10.1016/S0378-8741(99)00096-3] [PMID: 10687870]
[23]
Mello VJ, Gomes MTR, Lemos FO, et al. The gastric ulcer protective and healing role of cysteine proteinases from Carica candamarcensis. Phytomedicine 2008; 15(4): 237-44.
[http://dx.doi.org/10.1016/j.phymed.2007.06.004] [PMID: 17689943]
[24]
I Airaodion A Ogbuagu EO, Ekenjoku JA, Ogbuagu U, Okoroukwu VN. Antidiabetic effect of ethanolic extract of Carica papaya leaves in alloxan-induced diabetic rats. American Journal of Biomedical Science & Research 2019; 5(3): 227-34.
[http://dx.doi.org/10.34297/AJBSR.2019.05.000917]
[25]
Pinnamaneni R. Nutritional and medicinal value of papaya (Carica papaya Linn.). World J Pharm Pharm Sci 2017; 6(8): 2559-78.
[http://dx.doi.org/10.20959/wjpps20178-9947]
[26]
Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 2017; 57(13): 2889-95.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[27]
Karłowicz-Bodalska K, Han S, Freier J, Smoleński M, Bodalska A. Curcuma longa as medicinal herb in the treatment of diabetic complications. Acta Pol Pharm 2017; 74(2): 605-10.
[PMID: 29624265]
[28]
Ayati Z, Ramezani M, Amiri MS, et al. Ethnobotany, phytochemistry and traditional uses of Curcuma spp. and pharmacological profile of two important species (C. longa and C. zedoaria): A review. Curr Pharm Des 2019; 25(8): 871-935.
[http://dx.doi.org/10.2174/1381612825666190402163940] [PMID: 30947655]
[29]
Grynkiewicz G, Ślifirski P. Curcumin and curcuminoids in quest for medicinal status. Acta Biochim Pol 2012; 59(2): 201-12.
[http://dx.doi.org/10.18388/abp.2012_2139] [PMID: 22590694]
[30]
Zhang D, Fu M, Gao SH, Liu JL. Curcumin and diabetes: a systematic review. Evid Based Complement Alternat Med 2013; 2013: 1-16.
[http://dx.doi.org/10.1155/2013/636053] [PMID: 24348712]
[31]
Mahesh T, Balasubashini MS, Menon VP. Effect of photo-irradiated curcumin treatment against oxidative stress in streptozotocin-induced diabetic rats. J Med Food 2005; 8(2): 251-5.
[http://dx.doi.org/10.1089/jmf.2005.8.251] [PMID: 16117620]
[32]
Seo KI, Choi MS, Jung UJ, et al. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol Nutr Food Res 2008; 52(9): 995-1004.
[http://dx.doi.org/10.1002/mnfr.200700184] [PMID: 18398869]
[33]
Thirumalai T, Therasa SV, Elumalai EK, David E. Hypoglycemic effect of Brassica juncea (seeds) on streptozotocin induced diabetic male albino rat. Asian Pac J Trop Biomed 2011; 1(4): 323-5.
[http://dx.doi.org/10.1016/S2221-1691(11)60052-X] [PMID: 23569784]
[34]
Kumar V, Thakur AK, Barothia ND, Chatterjee SS. Therapeutic potentials of Brassica juncea: an overview. Cell Med 2011; 1(1): 2-1.
[35]
Ediriweera MK, Tennekoon KH, Samarakoon SR. A review on ethnopharmacological applications, pharmacological activities, and bioac-tive compounds of Mangifera indica (Mango). Evid Based Complement Alternat Med 2017; 2017: 1-24.
[http://dx.doi.org/10.1155/2017/6949835] [PMID: 29456572]
[36]
Rehman K, Chohan TA, Waheed I, Gilani Z, Akash MSH. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α‐amylase: Evidence from an in vivo and in silico studies. J Cell Biochem 2019; 120(1): 425-38.
[http://dx.doi.org/10.1002/jcb.27398] [PMID: 30191607]
[37]
Kato E, Kushibiki N, Inagaki Y, Kurokawa M, Kawabata J. Astilbe thunbergii reduces postprandial hyperglycemia in a type 2 diabetes rat model via pancreatic alpha-amylase inhibition by highly condensed procyanidins. Biosci Biotechnol Biochem 2017; 81(9): 1699-705.
[http://dx.doi.org/10.1080/09168451.2017.1353403] [PMID: 28743229]
[38]
Schinner S, Scherbaum WA, Bornstein SR, Barthel A. Molecular mechanisms of insulin resistance. Diabet Med 2005; 22(6): 674-82.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01566.x] [PMID: 15910615]
[39]
Hanhineva K, Törrönen R, Bondia-Pons I, et al. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010; 11(4): 1365-402.
[http://dx.doi.org/10.3390/ijms11041365] [PMID: 20480025]
[40]
Ngo DH, Ngo DN, Vo TTN, Vo TS. Mechanism of action of Mangifera indica leaves for anti-diabetic activity. Sci Pharm 2019; 87(2): 13.
[http://dx.doi.org/10.3390/scipharm87020013]
[41]
Soni N, Singh VK. Efficacy and advancement of Terminalia arjuna in Indian herbal drug research: A review. Trends Appl Sci Res 2019; 14(4)
[42]
Eftekhari Z. Garlic: A brief overview of its interaction with chemical drugs. Plant Biotechnol Persa 2020; 2(2): 31-2.
[http://dx.doi.org/10.52547/pbp.2.2.31]
[43]
Gebreyohannes G, Gebreyohannes M. Medicinal values of garlic: A review. Int J Med Med Sci 2013; 5(9): 401-8.
[44]
Jangam GB, Badole SL. Garlic (Allium sativum): Role in metabolic disorderPolyphenols in human health and disease. Academic Press 2014; pp. 611-4.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00046-3]
[45]
Farag M, Ali S, Hodaya R, et al. Phytochemical profiles and antimicrobial activities of Allium cepa red cv. and A. sativum subjected to different drying methods: a comparative MS-based metabolomics. Molecules 2017; 22(5): 761.
[http://dx.doi.org/10.3390/molecules22050761] [PMID: 28481316]
[46]
Gazuwa SY, Makanjuola ER, Jaryum KH, Kutshik JR, Mafulul SG. The phytochemical composition of allium cepa/Allium sativum and the effects of their aqueous extracts (cooked and raw forms) on the lipid profile and other hepatic biochemical parameters in female albino wistar rats. Asian J Exp Biol Sci 2013; 4(3): 406-10.
[47]
Bisen S. Nutritional and therapeutic potential of garlic and onion (Allium sp.). Curr Nutr Food Sci 2016; 12(3): 190-9.
[http://dx.doi.org/10.2174/1573401312666160608121954]
[48]
Lekshmi N, Packia V, Viswanathan M, Manivannan G, Shobi M. GC-MS Characterization of volatile odorous compounds in Allium cepa. Nanobio Pharm Technol 2014; pp. 489-94.
[http://dx.doi.org/10.13140/2.1.3278.7523]
[49]
Sabiu S, Madende M, Ajao AAN, Aladodo RA, Nurain IO, Ahmad JB. The genus allium (amaryllidaceae: Alloideae): Features, phytoconstituents, and mechanisms of antidiabetic potential of Allium cepa and Allium sativum. Bioactive food as dietary interventions for diabetes. Digital Science & Research Solutions, Inc. 2019; pp. 137-54.
[http://dx.doi.org/10.1016/B978-0-12-813822-9.00009-6]
[50]
Wasantwisut E, Viriyapanich T. Ivy gourd (Coccinia grandis Voigt, Coccinia cordifolia, Coccinia indica) in human nutrition and traditional applications. World Rev Nutr Diet 2003; 91: 60-6.
[http://dx.doi.org/10.1159/000069929] [PMID: 12747088]
[51]
Deokate UA, Khadabadi SS. Pharmacology and phytochemistry of Coccinia indica. J Pharmacogn Phytother 2011; 3(11): 155-9.
[52]
Zhang C, Fan L, Fan S, et al. Cinnamomum cassia Presl: A review of its traditional uses, phytochemistry, pharmacology and toxicology. Molecules 2019; 24(19): 3473.
[http://dx.doi.org/10.3390/molecules24193473] [PMID: 31557828]
[53]
Ranasinghe P, Gunatilake M, Gunapala N, et al. Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model. Pharmacognosy Res 2012; 4(2): 73-9.
[http://dx.doi.org/10.4103/0974-8490.94719] [PMID: 22518078]
[54]
Kaur G, Invally M, Khan MK, Jadhav P. A nutraceutical combination of Cinnamomum cassia & Nigella sativa for Type 1 diabetes mellitus. J Ayurveda Integr Med 2018; 9(1): 27-37.
[http://dx.doi.org/10.1016/j.jaim.2017.02.005] [PMID: 28988684]
[55]
Lakshmi BS, Sujatha S, Anand S, et al. Cinnamic acid, from the bark of Cinnamomum cassia, regulates glucose transport via activation of GLUT4 on L6 myotubes in a phosphatidylinositol 3-kinase-independent manner. J Diabetes 2009; 1(2): 99-106.
[http://dx.doi.org/10.1111/j.1753-0407.2009.00022.x] [PMID: 20929506]
[56]
Bhattacharya A, Chakraverty R. The pharmacological properties of Annona squamosa Linn: A Review. Int J Pharm Eng 2016; 4(2): 692-9.
[57]
Kaleem M, Asif M, Ahmed QU, Bano B. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore Med J 2006; 47(8): 670-5.
[PMID: 16865205]
[58]
Hajlaoui H, Arraouadi S, Noumi E, et al. Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum carvi L. and Coriandrum sativum L. essential oils alone and in combination. Molecules 2021; 26(12): 3625.
[http://dx.doi.org/10.3390/molecules26123625] [PMID: 34199316]
[59]
Agrahari P, Singh DK. A review on the pharmacological aspects of Carum carvi. J Biol Earth Sci 2014; 4(1): M1-M13.
[60]
Ghosh R, Sharatchandra KH, Rita S, Thokchom IS. Hypoglycemic activity of Ficus hispida (bark) in normal and diabetic albino rats. Indian J Pharmacol 2004; 36(4): 222.
[61]
Urooj A, Ahmed F. Ficus racemosa and Morus indica: Emerging alternative antihyperglycemic agents. Open Conf Proc J 2013; 4(1): 59-65.
[http://dx.doi.org/10.2174/2210289201304010059]
[62]
Saha S, Yadav RK, Nandy BC, Maity S, Sarkar S. Phytochemistry, pharmacology, toxicology, and clinical trial of Ficus racemosa. Pharmacogn Rev 2015; 9(17): 73-80.
[http://dx.doi.org/10.4103/0973-7847.156356] [PMID: 26009696]
[63]
Kumar C, Kumar R, Nehar S. Phytochemical properties, total antioxidant status of acetone and methanol extract of Terminalia arjuna Roxb. Bark and its hypoglycemic effect on Type-II diabetic albino rats. J Pharmacogn Phytochem 2013; 2(1): 199-208.
[64]
Kambouche N, Merah B, Derdour A, et al. Hypoglycemic and antihyperglycemic effects of Anabasis articulata (Forssk) Moq (Chenopo-diaceae), an Algerian medicinal plant. Afr J Biotechnol 2009; 8(20)
[65]
Kaur H. Boerhaavia diffusa: Bioactive compounds and pharmacological activities. Biomed Pharmacol J 2019; 12(4): 1675-82.
[http://dx.doi.org/10.13005/bpj/1797]
[66]
Gaamoussi F, Israili ZH, Lyoussi B. Hypoglycemic and hypolipidemic effects of an aqueous extract of Chamaerops humilis leaves in obese, hyperglycemic and hyperlipidemic Meriones shawi rats. Pak J Pharm Sci 2010; 23(2): 212-9.
[PMID: 20363702]
[67]
Bhushan MS, Rao CHV, Ojha SK, Vijayakumar M, Verma A. An analytical review of plants for anti diabetic activity with their phytoconstituent & mechanism of action. Int J Pharm Sci Res 2010; 1(1): 29-46.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.1(1).29-46]
[68]
Kriintong N, Katisart T. In vitro antioxidant and antidiabetic activities of leaf and flower extracts from Bombax ceiba. Pharmacognosy Res 2020; 12(2)
[http://dx.doi.org/10.4103/pr.pr_116_19]
[69]
Yoshikawa M, Wang T, Sugimoto S, et al. Functional saponins in tea flower (flower buds of Camellia sinensis): Gastroprotective and hypoglycemic effects of floratheasaponins and qualitative and quantitative analysis using HPLC. Yakugaku Zasshi 2008; 128(1): 141-51.
[http://dx.doi.org/10.1248/yakushi.128.141] [PMID: 18176066]
[70]
Hegazy GA, Alnoury AM, Gad HG. The role of Acacia arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Med J 2013; 34(7): 727-33.
[PMID: 23860893]
[71]
Alzohairy MA. Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid Based Complement Alternat Med 2016; 2016: 7382506.
[http://dx.doi.org/10.1155/2016/7382506] [PMID: 27034694]
[72]
Sharma B, Viswanath G, Salunke R, Roy P. Effects of flavonoid-rich extract from seeds of Eugenia jambolana (L.) on carbohydrate and lipid metabolism in diabetic mice. Food Chem 2008; 110(3): 697-705.
[http://dx.doi.org/10.1016/j.foodchem.2008.02.068]
[73]
Ezike AC, Akah PA, Okoli CC, Okpala CB. Experimental evidence for the antidiabetic activity of Cajanus cajan leaves in rats. J Basic Clin Pharm 2010; 1(2): 81-4.
[PMID: 24825970]
[74]
Liu Z, Gong J, Huang W, Lu F, Dong H. The effect of Momordica charantia in the treatment of diabetes mellitus: A review. Evid Based Complement Alternat Med 2021; 2021: 1-14.
[http://dx.doi.org/10.1155/2021/3796265] [PMID: 33510802]
[75]
Baquer NZ, Kumar P, Taha A, Kale RK, Cowsik SM, McLean P. Metabolic and molecular action of Trigonella foenum-graecum (fenugreek) and trace metals in experimental diabetic tissues. J Biosci 2011; 36(2): 383-96.
[http://dx.doi.org/10.1007/s12038-011-9042-0] [PMID: 21654091]
[76]
Galavi A, Hosseinzadeh H, Razavi BM. The effects of Allium cepa L. (onion) and its active constituents on metabolic syndrome: A review. Iran J Basic Med Sci 2021; 24(1): 3-16.
[PMID: 33643564]
[77]
Sarkar T, Salauddin M, Chakraborty R. In-depth pharmacological and nutritional properties of bael (Aegle marmelos): A critical review. Journal of Agriculture and Food Research 2020; 2: 100081.
[http://dx.doi.org/10.1016/j.jafr.2020.100081]
[78]
Pagano E, Souto EB, Durazzo A, et al. Ginger (Zingiber officinale Roscoe) as a nutraceutical: Focus on the metabolic, analgesic, and anti-inflammatory effects. Phytother Res 2021; 35(5): 2403-17.
[http://dx.doi.org/10.1002/ptr.6964] [PMID: 33278054]
[79]
Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front Pharmacol 2018; 9: 423.
[http://dx.doi.org/10.3389/fphar.2018.00423] [PMID: 29765322]
[80]
Bhowmik A, Mosihuzzaman M, Kabir Y, Rokeya B. Antihyperglycemic Activity of Swertia chirata on nSTZ-T2DM Rats: A Chronic Study. J Pharm Res Int 2018; 22(5): 1-11.
[http://dx.doi.org/10.9734/JPRI/2018/41878]
[81]
Murthy PS, Moorthy R, Prabhu KM, Puri D. Anti-diabetic and cholesterol lowering preparation from fenugreek seeds U.S. Patent 7,815,9462010,
[82]
Dey D, Mandal SK, Mukherjee M, et al. Herbal extract and compound lupinoside and its analogues as anti-diabetic type ii drugs from plant Pueraria tuberosa U.S. Patent 7,276,2582007,
[83]
Wais M, Nazish I, Samad A, et al. Herbal drugs for diabetic treatment: An updated review of patents. Recent Patents Anti-Infect Drug Disc 2012; 7(1): 53-9.
[http://dx.doi.org/10.2174/157489112799829701] [PMID: 22353000]
[84]
Bhaskaran S, Mohan V. Indus Biotech Pvt Ltd, 2006. Synergistic composition for the treatment of diabetes mellitus. U.S. Patent 7,141,2542006.,
[85]
Campbell-Tofte J. Anti-diabetic extract isolated from Rauvolfia vomitoria and Citrus aurantium, and methods of using same U.S. Patent 7,579,0252009,
[86]
Ribnicky D, Raskin I. Berry preparations for treatment of diabetes and metabolic syndrome U.S. Patent Application 12/263,2972009.,
[87]
Raju GG, Raju GR, Subbaraju GV, Venkateswarlu S. Pharmaceutically active extracts of vitex leucoxylon, a process of extracting the same and a method of treating diabetes and inflammatory diseases therewith U.S. Patent 7,780,9972010,
[88]
Leko V. Herbal composition and medicament against diabetes mellitus type II manufactured thereof U.S. Patent 6,576,2702003,
[89]
Han XQ, Liu M, Liu M. Herb extract-based cosmeceutical cream for controlling the blood sugar level of diabetes and methods for making it U.S. Patent Application 10/651,1942005.,
[90]
Zaid H, Mahdi AA, Tamrakar AK, Saad B, Razzaque MS, Dasgupta A. Natural active ingredients for diabetes and metabolism disorders treatment. Evid Based Complement Alternat Med 2016; 2016: 2965214.
[http://dx.doi.org/10.1155/2016/2965214] [PMID: 27891158]
[91]
Jain P, Rao SP, Singh V, Pandey R, Shukla SS. Acute and sub-acute toxicity studies of an ancient ayurvedic formulation: Agnimukha-churna. Columbia J Pharmaceut Sci 2014; 1: 18-22.
[92]
Choudhury H, Pandey M, Hua CK, et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J Tradit Complement Med 2018; 8(3): 361-76.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.012] [PMID: 29992107]
[93]
Ryu S. Book review: mHealth: New horizons for health through mobile technologies: based on the findings of the second global survey on eHealth (global observatory for eHealth series, volume 3). Healthc Inform Res 2012; 18(3): 231-3.
[http://dx.doi.org/10.4258/hir.2012.18.3.231]
[94]
Verma H, Prasad SB, Yashwant SH. Herbal drug delivery system: A modern era prospective. Int J Current Pharma Rev Res 2013; 4: 88-101.
[http://dx.doi.org/10.13140/2.1.5178.7207]
[95]
Vaidya ADB, Devasagayam TPA. Current status of herbal drugs in India: An overview. J Clin Biochem Nutr 2007; 41(1): 1-11.
[http://dx.doi.org/10.3164/jcbn.2007001] [PMID: 18392106]
[96]
Bauer R. Quality criteria and standardization of phytopharmaceuticals: Can acceptable drug standards be achieved? Drug Inform J 1998; 32(1): 101-10.
[http://dx.doi.org/10.1177/009286159803200]
[97]
Chawla R, Thakur P, Chowdhry A, et al. Evidence based herbal drug standardization approach in coping with challenges of holistic management of diabetes: A dreadful lifestyle disorder of 21st century. J Diabetes Metab Disord 2013; 12(1): 35.
[http://dx.doi.org/10.1186/2251-6581-12-35] [PMID: 23822656]
[98]
Jarald E, Joshi SB, Jain D. Diabetes and herbal medicines. Iran J Pharmacol Therapeut 2008; 7: 97-106.
[99]
Abo-Youssef AMH, Messiha BAS. Beneficial effects of Aloe vera in treatment of diabetes: Comparative in vivo and in vitro studies. Bull Fac Pharm Cairo Univ 2013; 51(1): 7-11.
[http://dx.doi.org/10.1016/j.bfopcu.2012.03.002]
[100]
Kim SH, Cheon HJ, Yun N, et al. Protective effect of a mixture of Aloe vera and Silybum marianum against carbon tetrachloride-induced acute hepatotoxicity and liver fibrosis. J Pharmacol Sci 2009; 109(1): 119-27.
[http://dx.doi.org/10.1254/jphs.08189FP] [PMID: 19151545]
[101]
Norikura T, Kennedy DO, Nyarko AK, Kojima A, Matsui-Yuasa I. Protective effect of aloe extract against the cytotoxicity of 1,4-naphthoquinone in isolated rat hepatocytes involves modulations in cellular thiol levels. Pharmacol Toxicol 2002; 90(5): 278-84.
[http://dx.doi.org/10.1034/j.1600-0773.2002.900508.x] [PMID: 12076309]
[102]
Takayanagi R, Inoguchi T, Ohnaka K. Clinical and experimental evidence for oxidative stress as an exacerbating factor of diabetes mellitus. J Clin Biochem Nutr 2010; 48(1): 72-7.
[http://dx.doi.org/10.3164/jcbn.11-014FR] [PMID: 21297916]
[103]
Raghavan B, Kumari SK. Effect of Terminalia arjuna stem bark on antioxidant status in liver and kidney of alloxan diabetic rats. Indian J Physiol Pharmacol 2006; 50(2): 133-42.
[PMID: 17051732]
[104]
Biswas M, Kar B, Bhattacharya S, Kumar RBS, Ghosh AK, Haldar PK. Antihyperglycemic activity and antioxidant role of Terminalia arjuna leaf in streptozotocin-induced diabetic rats. Pharm Biol 2011; 49(4): 335-40.
[http://dx.doi.org/10.3109/13880209.2010.516755] [PMID: 21281245]
[105]
Chikhi I, Allali H, El Amine Dib M, Medjdoub H, Tabti B. Antidiabetic activity of aqueous leaf extract of Atriplex halimus L. (Chenopodiaceae) in streptozotocin–induced diabetic rats. Asian Pac J Trop Dis 2014; 4(3): 181-4.
[http://dx.doi.org/10.1016/S2222-1808(14)60501-6]
[106]
Asseli B, Djeridane A, Mahfoudi R, Yousfi M. High anti-inflammatory and antidiabetic activities of Hammada elegans (Bge.)Botsch (Chenopodiaceae) extracts: An in vivo assessment. J Diabetes Metab Disord 2021; 20(1): 427-38.
[http://dx.doi.org/10.1007/s40200-021-00762-x] [PMID: 34178849]
[107]
Metawea RR, Shaheen KA. Study of the potential impact of Atriplex halimus L. (Chenopodiaceae) on experimental animals infected with hyperglycemia. J Home Econ 2021; 31(2): 1-13.
[http://dx.doi.org/10.21608/mkas.2021.197513]
[108]
Gupta S, Sidhu MC, Ahluwalia AS. Plant-based remedies for the management of diabetes. Curr Biot 2017; 8: 34-40.
[http://dx.doi.org/10.19071/cb.2017.v8.3169]
[109]
Huang SL, Yu RT, Gong J, et al. Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice. Diabetologia 2012; 55(5): 1469-81.
[http://dx.doi.org/10.1007/s00125-011-2366-3] [PMID: 22095235]
[110]
Tang X, Zhuang J, Chen J, et al. Arctigenin efficiently enhanced sedentary mice treadmill endurance. PLoS One 2011; 6(8): e24224.
[http://dx.doi.org/10.1371/journal.pone.0024224] [PMID: 21887385]
[111]
Joshi T, Singh AK, Haratipour P, et al. Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications. J Cell Physiol 2019; 234(10): 17212-31.
[http://dx.doi.org/10.1002/jcp.28528] [PMID: 30916407]
[112]
Zhang Y, Tan R, Zhang X, Yu Y, Yu C. Calycosin ameliorates diabetes-induced renal inflammation via the NF-κB pathway in vitro and in vivo. Med Sci Monit 2019; 25: 1671-8.
[http://dx.doi.org/10.12659/MSM.915242] [PMID: 30830898]
[113]
Li Y, Huang THW, Yamahara J. Salacia root, a unique Ayurvedic medicine, meets multiple targets in diabetes and obesity. Life Sci 2008; 82(21-22): 1045-9.
[http://dx.doi.org/10.1016/j.lfs.2008.03.005] [PMID: 18433791]
[114]
Chang CLT, Lin Y, Bartolome AP, Chen YC, Chiu SC, Yang WC. Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds. Evid Based Complement Alternat Med 2013; 2013: 1-33.
[http://dx.doi.org/10.1155/2013/378657] [PMID: 23662132]
[115]
Babu S, Jayaraman S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed Pharmacother 2020; 131: 110702.
[http://dx.doi.org/10.1016/j.biopha.2020.110702] [PMID: 32882583]
[116]
Matteucci E, Giampietro O. Proposal open for discussion: Defining agreed diagnostic procedures in experimental diabetes research. J Ethnopharmacol 2008; 115(2): 163-72.
[http://dx.doi.org/10.1016/j.jep.2007.08.040] [PMID: 17961942]
[117]
Bailey CJ, Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care 1989; 12(8): 553-64.
[http://dx.doi.org/10.2337/diacare.12.8.553] [PMID: 2673695]
[118]
Huseini HF, Darvishzadeh F, Heshmat R, Jafariazar Z, Raza M, Larijani B. The clinical investigation of citrullus colocynthis (L.) schrad fruit in treatment of Type II diabetic patients: A randomized, double blind, placebo-controlled clinical trial. Phytother Res 2009; 23(8): 1186-9.
[http://dx.doi.org/10.1002/ptr.2754] [PMID: 19170143]
[119]
Huseini HF, Larijani B, Heshmat R, et al. The efficacy of Silybum marianum (L.) Gaertn. (silymarin) in the treatment of type II diabetes: A randomized, double-blind, placebo-controlled, clinical trial. Phytother Res 2006; 20(12): 1036-9.
[http://dx.doi.org/10.1002/ptr.1988] [PMID: 17072885]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy