Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Advances and Prospects in Antimicrobial Research using Nanomedicines

Author(s): Surendra S. Agrawal*, Saraswathy Nagendran and Avdhoot Pimpale

Volume 18, Issue 3, 2023

Published on: 06 March, 2023

Page: [194 - 204] Pages: 11

DOI: 10.2174/1574885518666230214104252

Price: $65

Abstract

Background: Nanotechnology is moving toward future goals in the field of medicines, cosmetics and hospitality due to the size reduction of material in the range of 1-100nm, enhancing the stability and bioavailability of the material.

Objective: This review includes the progress in the field of nanotechnology, its advantages, understanding and applications in antimicrobial therapy.

Methods: The manuscripts were collected in the field of antimicrobial research with the help of nanotechnology platforms from different sources like PubMed, ScienceDirect and Google. A total of 236 manuscripts were collected and analyzed, out of which 93 were relevant and considered for the present manuscript.

Results: There are diverse forms of metallic nanomaterials that show antimicrobial properties, such as gold, silver, copper, zinc, titanium and many such metal oxides. Various carriers are used to deliver the drug at targeted sites via encapsulating the nanomaterial in polymers, liposomes or in the lipoidal structure. The inhibition of microorganism growth may be attributed to different mechanisms like destroying the synthesis of a cell wall, nucleic acid, injury to the bacteria cell wall and inhibiting the metabolic pathways in bacteria. This enhanced the antimicrobial activity and reduced the toxicity that could be significant due to a reduction in the dose proportionality.

Conclusion: The recent advances in drug delivery with the help of liposomes, solid lipid nanoparticles, dendrimers, and various nanoparticles led to effective prevention, treatment and diagnosis of various microbial infections and this could dramatically change the way antimicrobial therapy explored for reducing drug resistance.

Graphical Abstract

[1]
Coates A, Hu Y, Bax R, Page C. The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 2002; 1(11): 895-910.
[http://dx.doi.org/10.1038/nrd940] [PMID: 12415249]
[2]
Walker CB. Selected antimicrobial agents: Mechanisms of action, side effects and drug interactions. Periodontol 2000 1996; 10(1): 12-28.
[http://dx.doi.org/10.1111/j.1600-0757.1996.tb00066.x]
[3]
Hajipour MJ, Fromm KM, Akbar Ashkarran A, et al. Antibacterial properties of nanoparticles. Trends Biotechnol 2012; 30(10): 499-511.
[http://dx.doi.org/10.1016/j.tibtech.2012.06.004] [PMID: 22884769]
[4]
Kandi V, Kandi S. Antimicrobial properties of nanomolecules: Potential candidates as antibiotics in the era of multi-drug resistance. Epidemiol Health 2015; 37: e2015020.
[http://dx.doi.org/10.4178/epih/e2015020] [PMID: 25968114]
[5]
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: Therapeutic applications and developments. Clin Pharmacol Ther 2008; 83(5): 761-9.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[6]
Zhang L, Pornpattananangkul D, Hu CM, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010; 17(6): 585-94.
[http://dx.doi.org/10.2174/092986710790416290] [PMID: 20015030]
[7]
Rane AV, Kanny K, Abitha VK, Thomas S. Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Synthesis of Inorganic Nanomaterials. Woodhead Publishing 2018; pp. 121-39.
[http://dx.doi.org/10.1016/B978-0-08-101975-7.00005-1]
[8]
Azhdarzadeh M, Lotfipour F, Zakeri-Milani P, Mohammadi G, Valizadeh H. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram-positive bacteria. Adv Pharm Bull 2012; 2(1): 17-24.
[PMID: 24312766]
[9]
Mohammadi G, Valizadeh H, Barzegar-Jalali M, et al. Development of azithromycin–PLGA nanoparticles: Physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B Biointerfaces 2010; 80(1): 34-9.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.027] [PMID: 20558048]
[10]
Zhang Y, Nayak T, Hong H, Cai W. Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 2013; 13(10): 1633-45.
[http://dx.doi.org/10.2174/1566524013666131111130058] [PMID: 24206130]
[11]
Sivasankar M, Kumar BP. Role of nanoparticles in drug delivery system. Int J Res Pharm Biomed Sci 2010; 1(2): 41-66.
[12]
Hauck TS, Giri S, Gao Y, Chan WCW. Nanotechnology diagnostics for infectious diseases prevalent in developing countries. Adv Drug Deliv Rev 2010; 62(4-5): 438-48.
[http://dx.doi.org/10.1016/j.addr.2009.11.015] [PMID: 19931580]
[13]
Maleki Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K. Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 2015; 5(1): 19-23.
[PMID: 25789215]
[14]
Patel S, Singh D, Srivastava S, et al. Nanoparticles as a platform for antimicrobial drug delivery. Adv Pharmacol Pharm 2017; 5(3): 31-43.
[http://dx.doi.org/10.13189/app.2017.050301]
[15]
Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 2003; 3(9): 1261-3.
[http://dx.doi.org/10.1021/nl034396z]
[16]
Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: Formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 2006; 48(3): 171-6.
[PMID: 18610673]
[17]
Lellouche J, Friedman A, Gedanken A, Banin E. Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomedicine 2012; 7: 5611-24.
[PMID: 23152681]
[18]
Li Y, Leung P, Yao L, Song QW, Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 2006; 62(1): 58-63.
[http://dx.doi.org/10.1016/j.jhin.2005.04.015] [PMID: 16099072]
[19]
Gong P, Li H, He X, et al. Preparation and antibacterial activity of Fe3O4 @Ag nanoparticles. Nanotechnology 2007; 18(28): 285604.
[http://dx.doi.org/10.1088/0957-4484/18/28/285604]
[20]
Singh M, Singh S, Prasad S, Gambhir IS. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Biostruct 2008; 3(3): 115-22.
[21]
Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc Natl Acad Sci 2010; 107(51): 22038-43.
[http://dx.doi.org/10.1073/pnas.1010341107] [PMID: 21131569]
[22]
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275(1): 177-82.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[23]
Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 2008; 42(12): 3066-74.
[http://dx.doi.org/10.1016/j.watres.2008.02.021] [PMID: 18359055]
[24]
Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect 2005; 60(1): 1-7.
[http://dx.doi.org/10.1016/j.jhin.2004.11.014] [PMID: 15823649]
[25]
Wright JB, Lam K, Burrell RE. Wound management in an era of increasing bacterial antibiotic resistance: A role for topical silver treatment. Am J Infect Control 1998; 26(6): 572-7.
[http://dx.doi.org/10.1053/ic.1998.v26.a93527] [PMID: 9836841]
[26]
Maiti S, Krishnan D, Barman G, Ghosh SK, Laha JK. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J Anal Sci Technol 2014; 5(1): 40.
[http://dx.doi.org/10.1186/s40543-014-0040-3]
[27]
Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem 2009; 20(8): 1497-502.
[http://dx.doi.org/10.1021/bc900215b] [PMID: 21141805]
[28]
Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 2008; 101(2): 239-53.
[http://dx.doi.org/10.1093/toxsci/kfm240] [PMID: 17872897]
[29]
Bala T, Armstrong G, Laffir F, Thornton R. Titania–silver and alumina–silver composite nanoparticles: Novel, versatile synthesis, reaction mechanism and potential antimicrobial application. J Colloid Interface Sci 2011; 356(2): 395-403.
[http://dx.doi.org/10.1016/j.jcis.2011.01.044] [PMID: 21315368]
[30]
Mukherjee A, Mohammed Sadiq I, Prathna TC, Chandrasekaran N. Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications. Science against microbial pathogens: Communicating current research and technological advances 2011; 1: 245-51.
[31]
Mody V, Siwale R, Singh A, Mody H. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[32]
Lima E, Guerra R, Lara V, Guzmán A. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J 2013; 7(1): 11.
[http://dx.doi.org/10.1186/1752-153X-7-11] [PMID: 23331621]
[33]
Rai A, Prabhune A, Perry CC. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 2010; 20(32): 6789-98.
[http://dx.doi.org/10.1039/c0jm00817f]
[34]
Kuo WS, Chang CN, Chang YT, Yeh CS. Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem Commun 2009; (32): 4853-5.
[http://dx.doi.org/10.1039/b907274h] [PMID: 19652803]
[35]
Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett 2015; 7(3): 219-42.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[36]
Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 2009; 107(4): 1193-201.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04303.x] [PMID: 19486396]
[37]
Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci 2009; 74(1): M46-52.
[http://dx.doi.org/10.1111/j.1750-3841.2008.01013.x] [PMID: 19200107]
[38]
Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: Methods and literature. Int J Nanomedicine 2012; 7: 2767-81.
[PMID: 22745541]
[39]
Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 2007; 90(21): 213902.
[http://dx.doi.org/10.1063/1.2742324] [PMID: 18160973]
[40]
Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 2008; 9(3): 035004.
[http://dx.doi.org/10.1088/1468-6996/9/3/035004] [PMID: 27878001]
[41]
Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 2013; 65(13-14): 1803-15.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[42]
Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence 2011; 2(5): 395-401.
[http://dx.doi.org/10.4161/viru.2.5.17035] [PMID: 21921677]
[43]
Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA. Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 2012; 71: 114-6.
[http://dx.doi.org/10.1016/j.matlet.2011.12.055]
[44]
Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 2013; 8: 4467-79.
[PMID: 24293998]
[45]
Naika HR, Lingaraju K, Manjunath K, et al. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci 2015; 9(1): 7-12.
[http://dx.doi.org/10.1016/j.jtusci.2014.04.006]
[46]
Meruvu H, Vangalapati M, Chippada SC, Bammidi SR. Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. J Rasayan Chem 2011; 4(1): 217-22.
[47]
Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 2008; 42(13): 4927-33.
[http://dx.doi.org/10.1021/es800408u] [PMID: 18678028]
[48]
Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 2009; 5(4): 452-6.
[http://dx.doi.org/10.1016/j.nano.2009.01.012] [PMID: 19523420]
[49]
Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 2008; 72(1): 43-51.
[http://dx.doi.org/10.1016/j.carbpol.2007.07.025]
[50]
Nam KY. in vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. J Adv Prosthodont 2011; 3(1): 20-4.
[http://dx.doi.org/10.4047/jap.2011.3.1.20] [PMID: 21503189]
[51]
Vicentini DS, Smania A Jr, Laranjeira MCM. Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater Sci Eng C 2010; 30(4): 503-8.
[http://dx.doi.org/10.1016/j.msec.2009.01.026]
[52]
Meraat R, Ziabari AA, Issazadeh K, Shadan N, Jalali KM. Synthesis and characterization of the antibacterial activity of zinc oxide nanoparticles against Salmonella typhi. Acta Metall Sin 2016; 29(7): 601-8.
[http://dx.doi.org/10.1007/s40195-016-0439-5]
[53]
Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 2009; 33(6): 587-90.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.12.004] [PMID: 19195845]
[54]
Demurtas M, Perry CC. Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity. Gold Bull 2014; 47(1-2): 103-7.
[http://dx.doi.org/10.1007/s13404-013-0129-2]
[55]
He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 2011; 166(3): 207-15.
[http://dx.doi.org/10.1016/j.micres.2010.03.003] [PMID: 20630731]
[56]
Sundrarajan M, Bama K, Bhavani M, et al. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J Photochem Photobiol B 2017; 171: 117-24.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.003] [PMID: 28501689]
[57]
Gad A, Kydd J, Piel B, Rai P. Targeting cancer using polymeric nanoparticle mediated combination chemotherapy. Int J Nanomed Nanosurg 2016; 2(3)
[http://dx.doi.org/10.16966/2470-3206.116] [PMID: 28042613]
[58]
Samrot AV, Burman U, Philip SA. N S, Chandrasekaran K. Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Inform Med Unlocked 2018; 10: 159-82.
[http://dx.doi.org/10.1016/j.imu.2017.12.010]
[59]
Bhawana, Basniwal RK, Buttar HS, Jain VK, Jain N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem 2011; 59(5): 2056-61.
[http://dx.doi.org/10.1021/jf104402t] [PMID: 21322563]
[60]
Abeylath SC, Turos E, Dickey S, Lim DV. Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis. Bioorg Med Chem 2008; 16(5): 2412-8.
[http://dx.doi.org/10.1016/j.bmc.2007.11.052] [PMID: 18063370]
[61]
Wang Q, Perez JM, Webster TJ. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles. Int J Nanomedicine 2013; 8: 3395-9.
[PMID: 24039421]
[62]
Espuelas MS, Legrand P, Campanero MA, et al. Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. J Antimicrob Chemother 2003; 52(3): 419-27.
[http://dx.doi.org/10.1093/jac/dkg351] [PMID: 12888593]
[63]
Zahoor A, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents 2005; 26(4): 298-303.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.07.012] [PMID: 16154726]
[64]
Berton M, Turelli P, Trono D, Stein C, Allémann E, Gurny R. Inhibition of HIV-1 in cell culture by oligonucleotide-loaded nanoparticles. Pharm Res 2001; 18(8): 1096-101.
[http://dx.doi.org/10.1023/A:1010962507273] [PMID: 11587479]
[65]
Mosqueira VCF, Loiseau PM, Bories C, Legrand P, Devissaguet JP, Barratt G. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob Agents Chemother 2004; 48(4): 1222-8.
[http://dx.doi.org/10.1128/AAC.48.4.1222-1228.2004] [PMID: 15047523]
[66]
Gaspar R, Préat V, Opperdoes FR, Roland M. Macrophage activation by polymeric nanoparticles of polyalkylcyanoacrylates: activity against intracellular Leishmania donovani associated with hydrogen peroxide production. Pharm Res 1992; 9(6): 782-7.
[http://dx.doi.org/10.1023/A:1015807706530] [PMID: 1409361]
[67]
Fattal E, Youssef M, Couvreur P, Andremont A. Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrob Agents Chemother 1989; 33(9): 1540-3.
[http://dx.doi.org/10.1128/AAC.33.9.1540] [PMID: 2684009]
[68]
Namasivayam SKR. Nanoformulation of antibacterial antibiotics cefpirome with biocompatible polymeric nanoparticles and evaluation for the improved antibacterial activity and nontarget toxicity studies. Asian J Pharm 2017; 11(02): S269-81.
[69]
Kausar A. Green polymeric nanocomposite. Am J Nanosci Nanotechnol Res 2019; 7(1): 23-31.
[70]
Lian T, Ho RJY. Trends and developments in liposome drug delivery systems. J Pharm Sci 2001; 90(6): 667-80.
[http://dx.doi.org/10.1002/jps.1023] [PMID: 11357170]
[71]
Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014; 103(1): 29-52.
[http://dx.doi.org/10.1002/jps.23773] [PMID: 24338748]
[72]
Fattal E, Rojas J, Youssef M, Couvreur P, Andremont A. Liposome-entrapped ampicillin in the treatment of experimental murine listeriosis and salmonellosis. Antimicrob Agents Chemother 1991; 35(4): 770-2.
[http://dx.doi.org/10.1128/AAC.35.4.770] [PMID: 2069386]
[73]
Couvreur P, Fattal E, Andremont A. Liposomes and nanoparticles in the treatment of intracellular bacterial infections. Pharm Res 1991; 8(9): 1079-86.
[http://dx.doi.org/10.1023/A:1015885814417] [PMID: 1788152]
[74]
Kaur CD, Nahar M, Jain NK. Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target 2008; 16(10): 798-805.
[http://dx.doi.org/10.1080/10611860802475688] [PMID: 19005941]
[75]
Yamakami K, Tsumori H, Shimizu Y, Sakurai Y, Nagatoshi K, Sonomoto K. Cationic lipid content in liposome-encapsulated nisin improves sustainable bactericidal activity against Streptococcus mutans. Open Dent J 2016; 10(1): 360-6.
[http://dx.doi.org/10.2174/1874210616021001360] [PMID: 27583045]
[76]
Ong HX, Traini D, Cipolla D, et al. Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm Res 2012; 29(12): 3335-46.
[http://dx.doi.org/10.1007/s11095-012-0827-0] [PMID: 22833052]
[77]
Meers P, Neville M, Malinin V, et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother 2008; 61(4): 859-68.
[http://dx.doi.org/10.1093/jac/dkn059] [PMID: 18305202]
[78]
Sammour OA, Hassan HM. Enhancement of the antibacterial activity of ampicillin by liposome encapsulation. Drug Deliv 1996; 3(4): 273-8.
[http://dx.doi.org/10.3109/10717549609029460]
[79]
McAllister SM, Alpar HO, Brown MRW. Antimicrobial properties of liposomal polymyxin B. J Antimicrob Chemother 1999; 43(2): 203-10.
[http://dx.doi.org/10.1093/jac/43.2.203] [PMID: 11252325]
[80]
Yousry C, Fahmy RH, Essam T, El-laithy HM, Elkheshen SA. Nanoparticles as tool for enhanced ophthalmic delivery of vancomycin: a multidistrict-based microbiological study, solid lipid nanoparticles formulation and evaluation. Drug Dev Ind Pharm 2016; 42(11): 1752-62.
[http://dx.doi.org/10.3109/03639045.2016.1171335] [PMID: 27093938]
[81]
Kalhapure RS, Mocktar C, Sikwal DR, et al. Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles. Colloids Surf B Biointerfaces 2014; 117: 303-11.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.045] [PMID: 24667076]
[82]
Severino P, Silveira EF, Loureiro K, et al. Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of physicochemical properties and in vitro efficacy. Eur J Pharm Sci 2017; 106: 177-84.
[http://dx.doi.org/10.1016/j.ejps.2017.05.063] [PMID: 28576561]
[83]
Pandey R, Khuller GK. Antitubercular inhaled therapy: Opportunities, progress and challenges. J Antimicrob Chemother 2005; 55(4): 430-5.
[http://dx.doi.org/10.1093/jac/dki027] [PMID: 15761077]
[84]
Prombutara P, Kulwatthanasal Y, Supaka N, Sramala I, Chareonpornwattana S. Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control 2012; 24(1-2): 184-90.
[http://dx.doi.org/10.1016/j.foodcont.2011.09.025]
[85]
Xie S, Yang F, Tao Y, et al. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella. Sci Rep 2017; 7(1): 41104.
[http://dx.doi.org/10.1038/srep41104] [PMID: 28112240]
[86]
Ghaffari S, Varshosaz J, Saadat A, Atyabi F. Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. Int J Nanomedicine 2010; 6: 35-43.
[PMID: 21289980]
[87]
Wang XF, Zhang SL, Zhu LY, et al. Enhancement of antibacterial activity of tilmicosin against Staphylococcus aureus by solid lipid nanoparticles in vitro and in vivo. Vet J 2012; 191(1): 115-20.
[http://dx.doi.org/10.1016/j.tvjl.2010.11.019] [PMID: 21900026]
[88]
Xie S, Zhu L, Dong Z, Wang Y, Wang X, Zhou W. Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles. Int J Nanomedicine 2011; 6: 547-55.
[PMID: 21468357]
[89]
Chen CZ, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials 2002; 23(16): 3359-68.
[http://dx.doi.org/10.1016/S0142-9612(02)00036-4] [PMID: 12099278]
[90]
Sun S, Hou YN, Wei W, et al. Perturbation of clopyralid on bio-denitrification and nitrite accumulation: Long-term performance and biological mechanism. Environmental Science and Ecotechnology 2022; 9: 100144.
[http://dx.doi.org/10.1016/j.ese.2021.100144] [PMID: 36157855]
[91]
Ma JF, Hou YN, Guo J, et al. Rational design of biogenic PdxAuy nanoparticles with enhanced catalytic performance for electrocatalysis and azo dyes degradation. Environ Res 2022; 204(Pt B): 112086.
[http://dx.doi.org/10.1016/j.envres.2021.112086] [PMID: 34562479]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy