Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Thioredoxin Interacting Protein Inhibitors in Diabetes Mellitus: A Critical Review

Author(s): Ayushi Kar, Balamurugan Paramasivam, Darshini Jayakumar, Akey Krishna Swaroop and Selvaraj Jubie*

Volume 15, Issue 3, 2023

Published on: 13 March, 2023

Page: [228 - 240] Pages: 13

DOI: 10.2174/2589977515666230214101808

Price: $65

conference banner
Abstract

Diabetes Mellitus (DM) is one of the highest contributors to global mortality, exceeding numbers of even the three major infectious diseases in the world, namely Tuberculosis, HIV AIDS, and Malaria. DM is characterised by increased serum levels of glucose caused by a loss of beta cells of the pancreatic islets, responsible for the secretion of insulin. Upon accumulation of data via a wide array of literature surveys, it has been found that Thioredoxin Interacting Protein (TXNIP) presents itself as a vital factor in controlling the production and loss of beta islet cells. TXNIP inhibits the action of the Thioredoxin (TRX) protein found in the beta cells thereby rendering it ineffective in maintaining the cellular redox balance causing oxidative stress and subsequent consequences ultimately leading to aggravation of the disease. TRX exists in the form of two isoforms - TRX1, which is located in the cytosol and at times translocates to the nucleus, and TRX2, which is located in the nucleus. TRX is responsible for the maintenance of the normal cellular redox balance by reducing the oxidised proteins formed by the Reactive Oxygen Species (ROS) with the help of NADPH dependent TRX Reductase enzyme. This proves to be essential in the pathogenesis of Diabetes Mellitus as the beta cells of the pancreatic islets lack a sufficient amount of antioxidant systems. Thus, inhibition of TXNIP has become essential in the survival of beta cells, not only enhancing insulin secretion and sensitivity but also alleviating the diseases associated with Diabetes. Hence, TXNIP is discovered to be a unique therapeutic target in the management of DM.

Graphical Abstract

[2]
Kumar A, Goel MK, Jain RB, Khanna P, Chaudhary V. India towards diabetes control: Key issues. Australas Med J 2013; 6(10): 524-31.
[http://dx.doi.org/10.4066/AMJ.2013.1791] [PMID: 24223071]
[3]
Verma K, Singh BK, Agrawal N. Non-invasive technique of diabetes detection using iris images. Int J Comput Vis Robot 2019; 9(4): 351-67.
[http://dx.doi.org/10.1504/IJCVR.2019.101537]
[4]
Kaveeshwar S, Cornwall J. The current state of diabetes mellitus in India. Australas Med J 2014; 7(1): 45-8.
[http://dx.doi.org/10.4066/AMJ.2014.1979] [PMID: 24567766]
[5]
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27(5): 1047-53.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[6]
Wondafrash DZ, Nire’a AT, Tafere GG, Desta DM, Berhe DA, Zewdie KA. Thioredoxin-interacting protein as a novel potential therapeutic target in diabetes mellitus and its underlying complications. Diabetes Metab Syndr Obes 2020; 13: 43-51.
[http://dx.doi.org/10.2147/DMSO.S232221] [PMID: 32021350]
[7]
Yoshihara E, Masaki S, Matsuo Y, Chen Z, Tian H, Yodoi J. Thioredoxin/Txnip: Redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol 2014; 4: 514.
[http://dx.doi.org/10.3389/fimmu.2013.00514] [PMID: 24409188]
[8]
Rao Y, Chen J, Guo Y, Ji T, Xie P. Rivaroxaban ameliorates angiotensin II-induced cardiac remodeling by attenuating TXNIP/Trx2 interaction in KKAy mice. Thromb Res 2020; 193: 45-52.
[http://dx.doi.org/10.1016/j.thromres.2020.05.030] [PMID: 32521334]
[9]
Qayyum N, Haseeb M, Kim MS, Choi S. Role of thioredoxin-interacting protein in diseases and its therapeutic outlook. Int J Mol Sci 2021; 22(5): 2754.
[http://dx.doi.org/10.3390/ijms22052754] [PMID: 33803178]
[10]
Chen KS, DeLuca HF. Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta Gene Struct Expr 1994; 1219(1): 26-32.
[http://dx.doi.org/10.1016/0167-4781(94)90242-9] [PMID: 8086474]
[11]
Zhou J, Chng WJ. Roles of thioredoxin binding protein (TXNIP) in oxidative stress, apoptosis and cancer. Mitochondrion 2013; 13(3): 163-9.
[http://dx.doi.org/10.1016/j.mito.2012.06.004] [PMID: 22750447]
[12]
Alhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in metabolic regulation: Physiological role and therapeutic outlook. Curr Drug Targets 2017; 18(9): 1095-103.
[PMID: 28137209]
[13]
Shalev A. Minireview: Thioredoxin-interacting protein: Regulation and function in the pancreatic β-cell. Mol Endocrinol 2014; 28(8): 1211-20.
[http://dx.doi.org/10.1210/me.2014-1095] [PMID: 24911120]
[14]
Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med 2013; 19(9): 1141-6.
[http://dx.doi.org/10.1038/nm.3287] [PMID: 23975026]
[15]
Thielen L, Shalev A. Diabetes pathogenic mechanisms and potential new therapies based upon a novel target called TXNIP. Curr Opin Endocrinol Diabetes Obes 2018; 25(2): 75-80.
[http://dx.doi.org/10.1097/MED.0000000000000391] [PMID: 29356688]
[16]
Zhong L, Liu Q, Liu Q, et al. W2476 represses TXNIP transcription via dephosphorylation of FOXO1 at Ser319. Chem Biol Drug Des 2021; 97(5): 1089-99.
[http://dx.doi.org/10.1111/cbdd.13828] [PMID: 33560565]
[17]
Kibbe C, Chen J, Xu G, Jing G, Shalev A. FOXO1 competes with carbohydrate response element-binding protein (ChREBP) and inhibits thioredoxin-interacting protein (TXNIP) transcription in pancreatic beta cells. J Biol Chem 2013; 288(32): 23194-202.
[http://dx.doi.org/10.1074/jbc.M113.473082] [PMID: 23803610]
[18]
Ke R, Wang Y, Hong S, Xiao L. Endoplasmic reticulum stress related factor IRE1α regulates TXNIP/NLRP3-mediated pyroptosis in diabetic nephropathy. Exp Cell Res 2020; 396(2): 112293.
[http://dx.doi.org/10.1016/j.yexcr.2020.112293] [PMID: 32950473]
[19]
Ram C, Jha AK, Ghosh A, et al. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches. Eur J Pharmacol 2020; 885: 173503.
[http://dx.doi.org/10.1016/j.ejphar.2020.173503] [PMID: 32858047]
[20]
Qiu Y, Tang L. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol Res 2016; 114: 251-64.
[http://dx.doi.org/10.1016/j.phrs.2016.11.004] [PMID: 27826011]
[21]
Kobayashi T, Uehara S, Ikeda T, Itadani H, Kotani H. Vitamin D3 up-regulated protein-1 regulates collagen expression in mesangial cells. Kidney Int 2003; 64(5): 1632-42.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00263.x] [PMID: 14531794]
[22]
Han Y, Xu X, Tang C, et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol 2018; 16: 32-46.
[http://dx.doi.org/10.1016/j.redox.2018.02.013] [PMID: 29475133]
[23]
Song S, Qiu D, Wang Y, et al. TXNIP deficiency mitigates podocyte apoptosis via restraining the activation of mTOR or p38 MAPK signaling in diabetic nephropathy. Exp Cell Res 2020; 388(2): 111862.
[http://dx.doi.org/10.1016/j.yexcr.2020.111862] [PMID: 31982382]
[24]
Shah A, Xia L, Masson EAY, et al. Thioredoxin-interacting protein deficiency protects against diabetic nephropathy. J Am Soc Nephrol 2015; 26(12): 2963-77.
[http://dx.doi.org/10.1681/ASN.2014050528] [PMID: 25855771]
[25]
Singh LP. Thioredoxin Interacting Protein (TXNIP) and pathogenesis of diabetic retinopathy. J Clin Exp Ophthalmol 2013; 4(4)
[PMID: 24353900] [http://dx.doi.org/10.4172/2155-9570.1000287] [PMID: 24353900]
[26]
Perrone L, Devi TS, Hosoya K-I, Terasaki T, Singh LP. Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy. Cell Death Dis 2010; 1(8): e65-5.
[http://dx.doi.org/10.1038/cddis.2010.42] [PMID: 21364670]
[27]
Devi TS, Lee I, Hüttemann M, Kumar A, Nantwi KD, Singh LP. TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Exp Diabetes Res 2012; 2012: 438238.
[http://dx.doi.org/10.1155/2012/438238]
[28]
Miao J, Zhou X, Ji T, Chen G. NF-κB p65-dependent transcriptional regulation of histone deacetylase 2 contributes to the chronic constriction injury-induced neuropathic pain via the microRNA-183/TXNIP/NLRP3 axis. J Neuroinflammation 2020; 17(1): 225.
[http://dx.doi.org/10.1186/s12974-020-01901-6] [PMID: 32723328]
[29]
Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010; 11(2): 136-40.
[http://dx.doi.org/10.1038/ni.1831] [PMID: 20023662]
[30]
Pan Z, Shan Q, Gu P, et al. miRNA-23a/CXCR4 regulates neuropathic pain via directly targeting TXNIP/NLRP3 inflammasome axis. J Neuroinflammation 2018; 15(1): 29.
[http://dx.doi.org/10.1186/s12974-018-1073-0] [PMID: 29386025]
[31]
Ishrat T, Mohamed IN, Pillai B, et al. Thioredoxin-interacting protein: a novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol Neurobiol 2015; 51(2): 766-78.
[http://dx.doi.org/10.1007/s12035-014-8766-x] [PMID: 24939693]
[32]
Wang BF, Yoshioka J. The emerging role of thioredoxin-interacting protein in myocardial ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 2017; 22(3): 219-29.
[http://dx.doi.org/10.1177/1074248416675731] [PMID: 27807222]
[33]
Zhou T, Wang S, Lu K, Yin C. Long non-coding RNA SNHG7 alleviates oxygen and glucose deprivation/reoxygenation-induced neuronal injury by modulating miR-9/SIRT1 Axis in PC12 cells: potential role in ischemic stroke. Neuropsychiatr Dis Treat 2020; 16: 2837-48.
[http://dx.doi.org/10.2147/NDT.S273421] [PMID: 33262598]
[34]
Baker AF, Koh MY, Williams RR, et al. Identification of thioredoxin-interacting protein 1 as a hypoxia-inducible factor 1α-induced gene in pancreatic cancer. Pancreas 2008; 36(2): 178-86.
[http://dx.doi.org/10.1097/MPA.0b013e31815929fe] [PMID: 18376310]
[35]
Fan J, Lv H, Li J, et al. Roles of Nrf2/HO‐1 and HIF‐1α/VEGF in lung tissue injury and repair following cerebral ischemia/reperfusion injury. J Cell Physiol 2019; 234(6): 7695-707.
[http://dx.doi.org/10.1002/jcp.27767] [PMID: 30565676]
[36]
Zhao Q, Che X, Zhang H, et al. Thioredoxin-interacting protein links endoplasmic reticulum stress to inflammatory brain injury and apoptosis after subarachnoid haemorrhage. J Neuroinflammation 2017; 14(1): 104.
[http://dx.doi.org/10.1186/s12974-017-0878-6] [PMID: 28490373]
[37]
Liang Y, Che X, Zhao Q, et al. Thioredoxin-interacting protein mediates mitochondrion-dependent apoptosis in early brain injury after subarachnoid hemorrhage. Mol Cell Biochem 2019; 450(1-2): 149-58.
[http://dx.doi.org/10.1007/s11010-018-3381-1] [PMID: 29905889]
[38]
Kaya B, Erdi F, Kılınc I, et al. Alterations of the thioredoxin system during subarachnoid hemorrhage-induced cerebral vasospasm. Acta Neurochir (Wien) 2015; 157(5): 793-800.
[http://dx.doi.org/10.1007/s00701-015-2390-z] [PMID: 25782582]
[39]
Nasoohi S, Parveen K, Ishrat T. Metabolic syndrome, brain insulin resistance, and Alzheimer’s disease: Thioredoxin Interacting Protein (TXNIP) and inflammasome as core amplifiers. J Alzheimers Dis 2018; 66(3): 857-85.
[http://dx.doi.org/10.3233/JAD-180735] [PMID: 30372683]
[40]
Tsubaki H, Tooyama I, Walker DG. Thioredoxin-interacting protein (TXNIP) with focus on brain and neurodegenerative diseases. Int J Mol Sci 2020; 21(24): 9357.
[http://dx.doi.org/10.3390/ijms21249357] [PMID: 33302545]
[41]
Wang Y, Wang Y, Bharti V, et al. Upregulation of thioredoxin-interacting protein in brain of amyloid-β protein precursor/presenilin 1 transgenic mice and amyloid-β treated neuronal cells. J Alzheimers Dis 2019; 72(1): 139-50.
[http://dx.doi.org/10.3233/JAD-190223] [PMID: 31561358]
[42]
Pan Q, Guo K, Xue M, Tu Q. Estrogen protects neuroblastoma cell from amyloid-β 42 (Aβ42)-induced apoptosis via TXNIP/TRX axis and AMPK signaling. Neurochem Int 2020; 135: 104685.
[http://dx.doi.org/10.1016/j.neuint.2020.104685] [PMID: 31931042]
[43]
Zhou J, Yu Q, Chng WJ. TXNIP (VDUP-1, TBP-2): A major redox regulator commonly suppressed in cancer by epigenetic mechanisms. Int J Biochem Cell Biol 2011; 43(12): 1668-73.
[http://dx.doi.org/10.1016/j.biocel.2011.09.005] [PMID: 21964212]
[44]
Butler LM, Zhou X, Xu WS, et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci USA 2002; 99(18): 11700-5.
[http://dx.doi.org/10.1073/pnas.182372299] [PMID: 12189205]
[45]
Zhou J, Bi C, Cheong LL, et al. The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood 2011; 118(10): 2830-9.
[http://dx.doi.org/10.1182/blood-2010-07-294827] [PMID: 21734239]
[46]
Junn E, Han SH, Im JY, et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 2000; 164(12): 6287-95.
[http://dx.doi.org/10.4049/jimmunol.164.12.6287] [PMID: 10843682]
[47]
Jin H-O, Seo S-K, Kim Y-S, et al. TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1. Oncogene 2011; 30(35): 3792-801.
[http://dx.doi.org/10.1038/onc.2011.102] [PMID: 21460850]
[48]
Jeon JH, Lee KN, Hwang CY, Kwon KS, You KH, Choi I. Tumor suppressor VDUP1 increases p27(kip1) stability by inhibiting JAB1. Cancer Res 2005; 65(11): 4485-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2271] [PMID: 15930262]
[49]
Morrison JA, Pike LA, Sams SB, et al. Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer. Mol Cancer 2014; 13(1): 62.
[http://dx.doi.org/10.1186/1476-4598-13-62] [PMID: 24645981]
[50]
Domingues A, Jolibois J, Marquet de Rougé P, Nivet-Antoine V. The emerging role of TXNIP in ischemic and cardiovascular diseases; A novel marker and therapeutic target. Int J Mol Sci 2021; 22(4): 1693.
[http://dx.doi.org/10.3390/ijms22041693] [PMID: 33567593]
[51]
Alvim RO, Santos PCJL, Ferreira NE, Mill JG, Krieger JE, Pereira AC. Thioredoxin interacting protein (TXNIP) rs7212 polymorphism is associated with arterial stiffness in the Brazilian general population. J Hum Hypertens 2012; 26(5): 340-2.
[http://dx.doi.org/10.1038/jhh.2011.102] [PMID: 22113441]
[52]
Ramus SM, Cilensek I, Petrovic MG, Soucek M, Kruzliak P, Petrovic D. Single nucleotide polymorphisms in the Trx2/TXNIP and TrxR2 genes of the mitochondrial thioredoxin antioxidant system and the risk of diabetic retinopathy in patients with Type 2 diabetes mellitus. J Diabetes Complications 2016; 30(2): 192-8.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.11.021] [PMID: 26763822]
[53]
Wang XB, Han Yd, Zhang S. Associations of polymorphisms in TXNIP and gene–environment interactions with the risk of coronary artery disease in a Chinese Han population. J Cell Mol Med 2016; 20(12): 2362-73.
[54]
Zhao Y, Li X, Tang S. Retrospective analysis of the relationship between elevated plasma levels of TXNIP and carotid intima-media thickness in subjects with impaired glucose tolerance and early Type 2 diabetes mellitus. Diabetes Res Clin Pract 2015; 109(2): 372-7.
[http://dx.doi.org/10.1016/j.diabres.2015.05.028] [PMID: 26026780]
[55]
Domingues A, Boisson-Vidal C, Marquet de Rouge P, et al. Targeting endothelial thioredoxin-interacting protein (TXNIP) protects from metabolic disorder-related impairment of vascular function and post-ischemic revascularisation. Angiogenesis 2020; 23(2): 249-64.
[http://dx.doi.org/10.1007/s10456-019-09704-x] [PMID: 31900750]
[56]
Chai TF, Hong SY, He H, et al. A potential mechanism of metformin-mediated regulation of glucose homeostasis: Inhibition of Thioredoxin-interacting protein (Txnip) gene expression. Cell Signal 2012; 24(8): 1700-5.
[http://dx.doi.org/10.1016/j.cellsig.2012.04.017] [PMID: 22561086]
[57]
Marsin A-S, Bertrand L, Rider MH, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 2000; 10(20): 1247-55.
[http://dx.doi.org/10.1016/S0960-9822(00)00742-9] [PMID: 11069105]
[58]
Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K. Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 2002; 277(6): 3829-35.
[http://dx.doi.org/10.1074/jbc.M107895200] [PMID: 11724780]
[59]
Qi W, Chen X, Holian J, Tan CYR, Kelly DJ, Pollock CA. Transcription factors Krüppel-like factor 6 and peroxisome proliferator-activated receptor-γ mediate high glucose-induced thioredoxin-interacting protein. Am J Pathol 2009; 175(5): 1858-67.
[http://dx.doi.org/10.2353/ajpath.2009.090263] [PMID: 19808645]
[60]
Xu G, Chen J, Jing G, Shalev A. Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes 2012; 61(4): 848-56.
[http://dx.doi.org/10.2337/db11-0955] [PMID: 22442301]
[61]
Wang W, Wang C, Ding XQ, et al. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. Br J Pharmacol 2013; 169(6): 1352-71.
[http://dx.doi.org/10.1111/bph.12226] [PMID: 23647015]
[62]
Ding XQ, Wu WY, Jiao RQ, et al. Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition. Pharmacol Res 2018; 137: 64-75.
[http://dx.doi.org/10.1016/j.phrs.2018.09.021] [PMID: 30248460]
[63]
Morita S, Villalta SA, Feldman HC, et al. Targeting ABL-IRE1α signaling spares ER-stressed pancreatic β cells to reverse autoimmune diabetes. Cell Metab 2017; 25(4): 883-897.e8.
[http://dx.doi.org/10.1016/j.cmet.2017.03.018] [PMID: 28380378]
[64]
Thielen LA, Chen J, Jing G, et al. Identification of an anti-diabetic, orally available small molecule that regulates TXNIP expression and glucagon action. Cell Metab 2020; 32(3): 353-365.e8.
[http://dx.doi.org/10.1016/j.cmet.2020.07.002] [PMID: 32726606]
[65]
Wu J, Xu X, Li Y, et al. Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells. Eur J Pharmacol 2014; 745: 59-68.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.046] [PMID: 25446924]
[66]
Li P, Chen D, Huang Y. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo. Int J Mol Med 2018; 42(1): 237-47.
[http://dx.doi.org/10.3892/ijmm.2018.3585] [PMID: 29568876]
[67]
Wang S, Zhao X, Yang S, Chen B, Shi J. Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway. Chem Biol Interact 2017; 278: 48-53.
[http://dx.doi.org/10.1016/j.cbi.2017.10.012] [PMID: 29031534]
[68]
Kudo K, Hagiwara S, Hasegawa A, Kusaka J, Koga H, Noguchi T. Cepharanthine exerts anti-inflammatory effects via NF-κB inhibition in a LPS-induced rat model of systemic inflammation. J Surg Res 2011; 171(1): 199-204.
[http://dx.doi.org/10.1016/j.jss.2010.01.007] [PMID: 20334881]
[69]
Samra YA, Said HS, Elsherbiny NM, Liou GI, El-Shishtawy MM, Eissa LA. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: role of NF-κB and NLRP3 inflammasome. Life Sci 2016; 157: 187-99.
[http://dx.doi.org/10.1016/j.lfs.2016.06.002] [PMID: 27266851]
[70]
Lian D, Yuan H, Yin X, et al. Puerarin inhibits hyperglycemia-induced inter-endothelial junction through suppressing endothelial Nlrp3 inflammasome activation via ROS-dependent oxidative pathway. Phytomedicine 2019; 55: 310-9.
[http://dx.doi.org/10.1016/j.phymed.2018.10.013] [PMID: 30385134]
[71]
Patumraj S. Molecular mechanisms of curcumin on diabetes-induced endothelial dysfunctions: Txnip, ICAM-1, and NOX2 expressions. BioMed Res Int 2014; 2014: 161346.
[72]
Chen W, Wang J, Luo Y, et al. Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue. J Ginseng Res 2016; 40(4): 351-8.
[http://dx.doi.org/10.1016/j.jgr.2015.11.002] [PMID: 27746687]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy