Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Aptamers-based Strategies for the Treatment of Microbial Infections

Author(s): Annalisa Di Rienzo*, Lisa Marinelli, Antonio Di Stefano, Giuseppina Vicaretti and Ivana Cacciatore

Volume 21, Issue 5, 2024

Published on: 02 March, 2023

Page: [858 - 865] Pages: 8

DOI: 10.2174/1570180820666230214093038

Price: $65

Abstract

Background: Nowadays, infectious diseases caused by bacteria are one of the major risks for the human population worldwide. Antimicrobial resistance determined the necessity to develop both, new drugs and therapeutic approaches as alternatives to antibiotics and novel methods to detect bacteria. Aptamers have revealed their potential in combating antimicrobial infections. Aptamers are small singlestranded DNA or RNA oligonucleotides obtained through an in vitro process able to bind several targets with high affinity and specificity.

Objective: The aim of this review is to provide an overview of the state of the art of aptamer-based antimicrobial therapeutic strategies, new methods of detection of bacteria, and their potential use as delivery systems.

Conclusion: Recent applications on research about aptamers suggest their important potential in discovering novel pharmacological tools for the treatment of microbial infections.

Graphical Abstract

[1]
Aminov, R.I. A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol., 2010, 1, 134.
[http://dx.doi.org/10.3389/fmicb.2010.00134]
[2]
Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health, 2017, 10(4), 369-378.
[http://dx.doi.org/10.1016/j.jiph.2016.08.007]
[3]
McEwen, S.A.; Collignon, P.J.; Aarestrup, F.M.; Schwarz, S.; Shen, J.; Cavaco, L. Antimicrobial resistance: a one health perspective. Microbiol. Spectrum, 2018, 6, 9.
[http://dx.doi.org/10.1128/9781555819804.ch25]
[4]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N.; Aboderin, A.O.; Al-Abri, S.S.; Awang Jalil, N.; Benzonana, N.; Bhattacharya, S.; Brink, A.J.; Burkert, F.R.; Cars, O.; Cornaglia, G.; Dyar, O.J.; Friedrich, A.W.; Gales, A.C.; Gandra, S.; Giske, C.G.; Goff, D.A.; Goossens, H.; Gottlieb, T.; Guzman Blanco, M.; Hryniewicz, W.; Kattula, D.; Jinks, T.; Kanj, S.S.; Kerr, L.; Kieny, M-P.; Kim, Y.S.; Kozlov, R.S.; Labarca, J.; Laxminarayan, R.; Leder, K.; Leibovici, L.; Levy-Hara, G.; Littman, J.; Malhotra-Kumar, S.; Manchanda, V.; Moja, L.; Ndoye, B.; Pan, A.; Paterson, D.L.; Paul, M.; Qiu, H.; Ramon-Pardo, P.; Rodríguez-Baño, J.; Sanguinetti, M.; Sengupta, S.; Sharland, M.; Si-Mehand, M.; Silver, L.L.; Song, W.; Steinbakk, M.; Thomsen, J.; Thwaites, G.E.; van der Meer, J.W.M.; Van Kinh, N.; Vega, S.; Villegas, M.V.; Wechsler-Fördös, A.; Wertheim, H.F.L.; Wesangula, E.; Woodford, N.; Yilmaz, F.O.; Zorzet, A. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3]
[5]
Mingoia, M.; Conte, C.; Di Rienzo, A.; Dimmito, M.P.; Marinucci, L.; Magi, G.; Turkez, H.; Cufaro, M.C.; Del Boccio, P.; Di Stefano, A.; Cacciatore, I. Synthesis and biological evaluation of novel cinnamic acid-based antimicrobials. Pharmaceuticals (Basel), 2022, 15(2), 228.
[http://dx.doi.org/10.3390/ph15020228]
[6]
Baldassarre, L.; Fornasari, E.; Cornacchia, C.; Cirioni, O.; Silvestri, C.; Castelli, P.; Giocometti, A.; Cacciatore, I. Discovery of novel RIP derivatives by alanine scanning for the treatment of S. aureus infections. MedChemComm, 2013, 4(7), 1114-1117.
[http://dx.doi.org/10.1039/c3md00122a]
[7]
Marinelli, L.; Fornasari, E.; Eusepi, P.; Ciulla, M.; Genovese, S.; Epifano, F.; Fiorito, S.; Turkez, H.; Örtücü, S.; Mingoia, M.; Simoni, S.; Pugnaloni, A.; Di Stefano, A.; Cacciatore, I. Carvacrol prodrugs as novel antimicrobial agents. Eur. J. Med. Chem., 2019, 178, 515-529.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.093]
[8]
Prajitha, N.; Athira, S.S.; Mohanan, P.V. Bio-interactions and risks of engineered nanoparticles. Environ. Res., 2019, 172, 98-108.
[http://dx.doi.org/10.1016/j.envres.2019.02.003]
[9]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. OKeeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149), 1230444.
[http://dx.doi.org/10.1126/science.1230444]
[10]
Kusumawati, A.; Mustopa, A.Z.; Wibawan, I.W.T.; Setiyono, A.; Sudarwanto, M.B. A sequential toggle cell-SELEX DNA aptamer for targeting Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli bacteria. J. Genet. Eng. Biotechnol., 2022, 20(1), 95.
[11]
Chen, X.F.; Zhao, X.; Yang, Z. Aptamer-based antibacterial and antiviral therapy against infectious diseases. J. Med. Chem., 2021, 64(24), 17601-17626.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01567]
[12]
Jayasena, S.D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem., 1999, 45(9), 1628-1650.
[http://dx.doi.org/10.1093/clinchem/45.9.1628]
[13]
Tok, J.B.H.; Cho, J.; Rando, R.R. RNA aptamers that specifically bind to a 16S ribosomal RNA decoding region construct. Nucleic Acids Res., 2000, 28(15), 2902-2910.
[http://dx.doi.org/10.1093/nar/28.15.2902]
[14]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199]
[15]
Tuerk, C.; Gold, L. Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121]
[16]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0]
[17]
Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng., 2007, 24(4), 381-403.
[http://dx.doi.org/10.1016/j.bioeng.2007.06.001]
[18]
Hamula, C.; Guthrie, J.; Zhang, H.; Li, X.; Le, X. Selection and analytical applications of aptamers. Trends Analyt. Chem., 2006, 25(7), 681-691.
[http://dx.doi.org/10.1016/j.trac.2006.05.007]
[19]
Keefe, A.D.; Cload, S.T. SELEX with modified nucleotides. Curr. Opin. Chem. Biol., 2008, 12(4), 448-456.
[http://dx.doi.org/10.1016/j.cbpa.2008.06.028]
[20]
Hoffmann, S.; Hoos, J.; Klussmann, S.; Vonhoff, S. RNA aptamers and spiegelmers: synthesis, purification, and post-synthetic PEG conjugation. Curr. Protoc. Nucleic Acid Chem., 2011, 46(1), 1-30.
[http://dx.doi.org/10.1002/0471142700.nc0446s46]
[21]
Sampson, T. Aptamers and SELEX: the technology. World Pat. Inf., 2003, 25(2), 123-129.
[http://dx.doi.org/10.1016/S0172-2190(03)00035-8]
[22]
Eulberg, D.; Klussmann, S. Spiegelmers: Biostable aptamers. ChemBioChem, 2003, 4(10), 979-983.
[http://dx.doi.org/10.1002/cbic.200300663]
[23]
Gupta, A.; Fontana, J.; Crowe, C.; Bolstorff, B.; Stout, A.; Duyne, S.V.; Hoekstra, M.P.; Whichard, J.M.; Barrett, T.J.; Angulo, F.J. Emergence of multidrug-resistant Salmonella enterica serotype newport infections resistant to expanded-spectrum cephalosporins in the United States. J. Infect. Dis., 2003, 188(11), 1707-1716.
[http://dx.doi.org/10.1086/379668]
[24]
Pan, Q.; Zhang, X.L.; Wu, H.Y.; He, P.W.; Wang, F.; Zhang, M.S.; Hu, J.M.; Xia, B.; Wu, J. Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi. Antimicrob. Agents Chemother., 2005, 49(10), 4052-4060.
[http://dx.doi.org/10.1128/AAC.49.10.4052-4060.2005]
[25]
Afrasiabi, S.; Pourhajibagher, M.; Raoofian, R.; Tabarzad, M.; Bahador, A. Therapeutic applications of nucleic acid aptamers in microbial infections. J. Biomed. Sci., 2020, 27(1), 6.
[http://dx.doi.org/10.1186/s12929-019-0611-0]
[26]
Chen, F.; Zhou, J.; Luo, F.; Mohammed, A.B.; Zhang, X.L. Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun., 2007, 357(3), 743-748.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.007]
[27]
Chen, F.; Zhou, J.; Huang, Y.H.; Huang, F.Y.; Liu, Q.; Fang, Z.; Yang, S.; Xiong, M.; Lin, Y.Y.; Tan, G.H. Function of ssDNA aptamer and aptamer pool against Mycobacterium tuberculosis in a mouse model. Mol. Med. Rep., 2013, 7(2), 669-673.
[http://dx.doi.org/10.3892/mmr.2012.1229]
[28]
Zetola, N.; Francis, J.S.; Nuermberger, E.L.; Bishai, W.R. Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect. Dis., 2005, 5(5), 275-286.
[http://dx.doi.org/10.1016/S1473-3099(05)70112-2]
[29]
Bhakdi, S.; Tranum-Jensen, J. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev., 1991, 55(4), 733-751.
[http://dx.doi.org/10.1128/mr.55.4.733-751.1991]
[30]
Vivekananda, J.; Salgado, C.; Millenbaugh, N.J. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin. Biochem. Biophys. Res. Commun., 2014, 444(3), 433-438.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.076]
[31]
Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev., 2000, 13(1), 16-34.
[http://dx.doi.org/10.1128/CMR.13.1.16]
[32]
Thay, B.; Wai, S.N.; Oscarsson, J. Staphylococcus aureus α-toxin-dependent induction of host cell death by membrane-derived vesicles. PLoS One, 2013, 8(1), e54661.
[http://dx.doi.org/10.1371/journal.pone.0054661]
[33]
Sedighian, H.; Halabian, R.; Amani, J.; Heiat, M.; Amin, M.; Fooladi, A.A.I. Staggered Target SELEX, a novel approach to isolate non-cross-reactive aptamer for detection of SEA by apta-qPCR. J. Biotechnol., 2018, 286, 45-55.
[http://dx.doi.org/10.1016/j.jbiotec.2018.09.006]
[34]
Wang, K.; Gan, L.; Jiang, L.; Zhang, X.; Yang, X.; Chen, M.; Lan, X. Neutralization of staphylococcal enterotoxin B by an aptamer antagonist. Antimicrob. Agents Chemother., 2015, 59(4), 2072-2077.
[http://dx.doi.org/10.1128/AAC.04414-14]
[35]
Soundy, J.; Day, D. Selection of DNA aptamers specific for live Pseudomonas aeruginosa. PLoS One, 2017, 12(9), e0185385.
[http://dx.doi.org/10.1371/journal.pone.0185385]
[36]
Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol., 2004, 2(2), 123-140.
[http://dx.doi.org/10.1038/nrmicro818]
[37]
Marton, S.; Cleto, F.; Krieger, M.A.; Cardoso, J. Isolation of an aptamer that binds specifically to E. coli. PLoS One, 2016, 11(4), e0153637.
[http://dx.doi.org/10.1371/journal.pone.0153637]
[38]
O’Sullivan, C.K. Aptasensors – the future of biosensing? Anal. Bioanal. Chem., 2002, 372(1), 44-48.
[http://dx.doi.org/10.1007/s00216-001-1189-3]
[39]
Li, D.; Liu, L.; Huang, Q.; Tong, T.; Zhou, Y.; Li, Z.; Bai, Q.; Liang, H.; Chen, L. Recent advances on aptamer-based biosensors for detection of pathogenic bacteria. World J. Microbiol. Biotechnol., 2021, 37(3), 45.
[http://dx.doi.org/10.1007/s11274-021-03002-9]
[40]
Majdinasab, M.; Hayat, A.; Marty, J.L. Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. Trends Analyt. Chem., 2018, 107, 60-77.
[http://dx.doi.org/10.1016/j.trac.2018.07.016]
[41]
Feng, C.; Dai, S.; Wang, L. Optical aptasensors for quantitative detection of small biomolecules: A review. Biosens. Bioelectron., 2014, 59, 64-74.
[http://dx.doi.org/10.1016/j.bios.2014.03.014]
[42]
Lee, J.O.; So, H.M.; Jeon, E.K.; Chang, H.; Won, K.; Kim, Y.H. Aptamers as molecular recognition elements for electrical nanobiosensors. Anal. Bioanal. Chem., 2008, 390(4), 1023-1032.
[http://dx.doi.org/10.1007/s00216-007-1643-y]
[43]
Wu, S.; Duan, N.; Qiu, Y.; Li, J.; Wang, Z. Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics. Int. J. Food Microbiol., 2017, 261, 42-48.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.09.002]
[44]
Sargazi, S.ER, S Mobashar, A.; Gelen, S. S.; Rahdar, A.; Ebrahimi, N.; Hosseinikhah, S.M.; Bilal, M.; Kyzas, G. Z. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem. Biol. Interact., 2022, 361.
[45]
Chen, J.; Li, H.; Xie, H.; Xu, D. A novel method combining aptamer-Ag10NPs based microfluidic biochip with bright field imaging for detection of KPC-2-expressing bacteria. Anal. Chim. Acta, 2020, 1132, 20-27.
[http://dx.doi.org/10.1016/j.aca.2020.07.061]
[46]
Zhan, L.; Li, C.M.; Fu, Z.F.; Zou, H.Y.; Huang, C.Z. Dual-aptamer-based enzyme linked plasmonic assay for pathogenic bacteria detection. Colloids Surf. B Biointerfaces, 2022, 214, 112471.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112471]
[47]
Al Mamun, M.; Wahab, Y.A.; Hossain, M.A.M.; Hashem, A.; Johan, M.R. Electrochemical biosensors with Aptamer recognition layer for the diagnosis of pathogenic bacteria: Barriers to commercialization and remediation. Trends Analyt. Chem., 2021, 145, 116458.
[http://dx.doi.org/10.1016/j.trac.2021.116458]
[48]
Trunzo, N.E.; Hong, K.L. Recent progress in the identification of aptamers against bacterial origins and their diagnostic applications. Int. J. Mol. Sci., 2020, 21(14), 5074.
[http://dx.doi.org/10.3390/ijms21145074]
[49]
Jin, B.; Wang, S.; Lin, M.; Jin, Y.; Zhang, S.; Cui, X.; Gong, Y.; Li, A.; Xu, F.; Lu, T.J. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens. Bioelectron., 2017, 90, 525-533.
[http://dx.doi.org/10.1016/j.bios.2016.10.029]
[50]
Dodeigne, C.; Thunus, L.; Lejeune, R. Chemiluminescence as diagnostic tool. A review. Talanta, 2000, 51(3), 415-439.
[http://dx.doi.org/10.1016/S0039-9140(99)00294-5]
[51]
Jauset-Rubio, M.; El-Shahawi, M.S.; Bashammakh, A.S.; Alyoubi, A.O. Advances in aptamers-based lateral flow assays. Trends Analyt. Chem., 2017, 97, 385-398.
[http://dx.doi.org/10.1016/j.trac.2017.10.010]
[52]
Xu, X.; Li, H.; Hasan, D.; Ruoff, R.S.; Wang, A.X.; Fan, D.L. Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv. Funct. Mater., 2013, 23(35), 4332-4338.
[http://dx.doi.org/10.1002/adfm.201203822]
[53]
Liu, Y.; Zhou, H.; Hu, Z.; Yu, G.; Yang, D.; Zhao, J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens. Bioelectron., 2017, 94, 131-140.
[http://dx.doi.org/10.1016/j.bios.2017.02.032]
[54]
Majdinasab, M.; Yaqub, M.; Rahim, A.; Catanante, G.; Hayat, A.; Marty, J. An overview on recent progress in electrochemical biosensors for antimicrobial drug residues in animal-derived food. Sensors (Basel), 2017, 17(9), 1947.
[http://dx.doi.org/10.3390/s17091947]
[55]
Zhang, W.; Cui, C.; Chen, H.; Liu, H.; Bin, S.; Wang, D.; Wang, Y. Advances in electrochemical aptamer biosensors for the detection of food-borne pathogenic bacteria. ChemistrySelect, 2022, 7(29)
[http://dx.doi.org/10.1002/slct.202202190]
[56]
Hughes, G.A. Nanostructure-Mediated Drug Delivery. Nanomedicine, 205(1), 47-72.
[57]
Gopinath, S.C.B.; Lakshmipriya, T.; Chen, Y.; Arshad, M.K.M.; Kerishnan, J.P.; Ruslinda, A.R.; Al-Douri, Y.; Voon, C.H.; Hashim, U. Cell-targeting aptamers act as intracellular delivery vehicles. Appl. Microbiol. Biotechnol., 2016, 100(16), 6955-6969.
[http://dx.doi.org/10.1007/s00253-016-7686-2]
[58]
Jiang, F.; Liu, B.; Lu, J.; Li, F.; Li, D.; Liang, C.; Dang, L.; Liu, J.; He, B.; Badshah, S.; Lu, C.; He, X.; Guo, B.; Zhang, X.B.; Tan, W.; Lu, A.; Zhang, G. Progress and challenges in developing aptamer-functionalized targeted drug delivery systems. Int. J. Mol. Sci., 2015, 16(10), 23784-23822.
[http://dx.doi.org/10.3390/ijms161023784]
[59]
Yeom, J.H.; Lee, B.; Kim, D.; Lee, J.; Kim, S.; Bae, J.; Park, Y.; Lee, K. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials, 2016, 104, 43-51.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.009]
[60]
Mao, B.; Cheng, L.; Wang, S.; Zhou, J.; Deng, L. Combat biofilm by bacteriostatic aptamer‐functionalized graphene oxide. Biotechnol. Appl. Biochem., 2018, 65(3), 355-361.
[http://dx.doi.org/10.1002/bab.1631]
[61]
A Ocsoy, M. Yusufbeyoglu, S.; Ildiz, N.; Ulgen, A.; Ocsoy, I. M.; Yusufbeyoglu, S; Ildiz, N.; Ulgen, A.; Ocsoy, I. DNA aptamer-conjugated magnetic graphene oxide for pathogenic bacteria aggregation: Selective and enhanced photothermal therapy for effective and rapid killing. ACS Omega, 2021, 6(31), 20637-20643.
[http://dx.doi.org/10.1021/acsomega.1c02832]
[62]
Guo, K.T.; Ziemer, G.; Paul, A.; Wendel, H. CELL-SELEX: novel perspectives of aptamer-based therapeutics. Int. J. Mol. Sci., 2008, 9(4), 668-678.
[http://dx.doi.org/10.3390/ijms9040668]

© 2025 Bentham Science Publishers | Privacy Policy