Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Effect of the Application of Exosome on Gastric Cancer

Author(s): Jing Peng, Yiwen Wu, Sijun Deng, Pu Cao, Wei Yang, Tingyi Gong, Xiaoyong Lei and Xiaoyan Yang*

Volume 26, Issue 13, 2023

Published on: 22 March, 2023

Page: [2267 - 2279] Pages: 13

DOI: 10.2174/1386207326666230213141627

Price: $65

Abstract

Gastric cancer is one of the most common and highest mortality rate cancers in the world. Exosomes are vesicles secreted by cells carrying different types of molecules, such as protein and RNA. Numerous studies have confirmed that exosomes are involved in various stages of the occurrence and development of gastric cancer and play an important role. With the gradual development, exosomes have been widely employed in the diagnosis and treatment of gastric cancer. In this review, we have provided a basic overview of exosome, and discussed the role of exosome in the occurrence, proliferation, invasion, metastasis, and drug resistance in gastric cancer. In addition, we have emphasized the bright development prospect of exosome in the diagnosis and treatment of gastric cancer. The data on the discovery, diagnosis, treatment, and prognosis of gastric cancer are not particularly optimistic, but the discovery of exosome, applied in diagnosis and treatment, provides a new and effective way to improve the survival rate of patients with gastric cancer.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[3]
Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin. Med. J. (Engl.), 2021, 134(7), 783-791.
[http://dx.doi.org/10.1097/CM9.0000000000001474] [PMID: 33734139]
[4]
Li, H.; Guo, J.; Cheng, G.; Wei, Y.; Liu, S.; Qi, Y.; Wang, G.; Xiao, R.; Qi, W.; Qiu, W. Identification and validation of snpcontaining genes with prognostic value in gastric cancer via integrated bioinformatics analysis. Front. Oncol., 2021, 11, 564296.
[http://dx.doi.org/10.3389/fonc.2021.564296] [PMID: 33987081]
[5]
Wang, C.; Zhang, J.; Cai, M.; Zhu, Z.; Gu, W.; Yu, Y.; Zhang, X. DBGC: A database of human gastric cancer. PLoS One, 2015, 10(11), e0142591.
[http://dx.doi.org/10.1371/journal.pone.0142591] [PMID: 26566288]
[6]
Cordonnier, M.; Chanteloup, G.; Isambert, N.; Seigneuric, R.; Fumoleau, P.; Garrido, C.; Gobbo, J. Exosomes in cancer theranostic: Diamonds in the rough. Cell Adhes. Migr., 2017, 11(2), 151-163.
[http://dx.doi.org/10.1080/19336918.2016.1250999] [PMID: 28166442]
[7]
Bang, C.; Thum, T. Exosomes: New players in cell–cell communication. Int. J. Biochem. Cell Biol., 2012, 44(11), 2060-2064.
[http://dx.doi.org/10.1016/j.biocel.2012.08.007] [PMID: 22903023]
[8]
Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Qasim, M.; Kim, J.H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells, 2019, 8(4), 307.
[http://dx.doi.org/10.3390/cells8040307] [PMID: 30987213]
[9]
Turturici, G.; Tinnirello, R.; Sconzo, G.; Geraci, F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am. J. Physiol. Cell Physiol., 2014, 306(7), C621-C633.
[http://dx.doi.org/10.1152/ajpcell.00228.2013] [PMID: 24452373]
[10]
Kohlhapp, F.J.; Mitra, A.K.; Lengyel, E.; Peter, M.E. MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene, 2015, 34(48), 5857-5868.
[http://dx.doi.org/10.1038/onc.2015.89] [PMID: 25867073]
[11]
Filipazzi, P.; Bürdek, M.; Villa, A.; Rivoltini, L.; Huber, V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin. Cancer Biol., 2012, 22(4), 342-349.
[http://dx.doi.org/10.1016/j.semcancer.2012.02.005] [PMID: 22369922]
[12]
Fu, M.; Gu, J.; Jiang, P.; Qian, H.; Xu, W.; Zhang, X. Exosomes in gastric cancer: roles, mechanisms, and applications. Mol. Cancer, 2019, 18(1), 41.
[http://dx.doi.org/10.1186/s12943-019-1001-7] [PMID: 30876419]
[13]
Kahroba, H.; Hejazi, M.S.; Samadi, N. Exosomes: from carcinogenesis and metastasis to diagnosis and treatment of gastric cancer. Cell. Mol. Life Sci., 2019, 76(9), 1747-1758.
[http://dx.doi.org/10.1007/s00018-019-03035-2] [PMID: 30734835]
[14]
Wang, X.; Zhou, Y.; Ding, K. Roles of exosomes in cancer chemotherapy resistance, progression, metastasis and immunity, and their clinical applications. Int. J. Oncol., 2021, 59(1), 44.
[http://dx.doi.org/10.3892/ijo.2021.5224] [PMID: 34013358]
[15]
Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem., 1987, 262(19), 9412-9420.
[http://dx.doi.org/10.1016/S0021-9258(18)48095-7] [PMID: 3597417]
[16]
Michiel Pegtel, D.; Gould, S.J. Exosomes. Annu. Rev. Biochem., 2019, 88(1), 487-514.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111902] [PMID: 31220978]
[17]
Jeppesen, D.K.; Fenix, A.M.; Franklin, J.L.; Higginbotham, J.N.; Zhang, Q.; Zimmerman, L.J.; Liebler, D.C.; Ping, J.; Liu, Q.; Evans, R.; Fissell, W.H.; Patton, J.G.; Rome, L.H.; Burnette, D.T.; Coffey, R.J. Reassessment of exosome composition. Cell, 2019, 177(2), 428-445.e18.
[http://dx.doi.org/10.1016/j.cell.2019.02.029] [PMID: 30951670]
[18]
Huotari, J.; Helenius, A. Endosome maturation. EMBO J., 2011, 30(17), 3481-3500.
[http://dx.doi.org/10.1038/emboj.2011.286] [PMID: 21878991]
[19]
Skotland, T.; Hessvik, N.P.; Sandvig, K.; Llorente, A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J. Lipid Res., 2019, 60(1), 9-18.
[http://dx.doi.org/10.1194/jlr.R084343] [PMID: 30076207]
[20]
Scott, C.C.; Vacca, F.; Gruenberg, J. Endosome maturation, transport and functions. Semin. Cell Dev. Biol., 2014, 31, 2-10.
[http://dx.doi.org/10.1016/j.semcdb.2014.03.034] [PMID: 24709024]
[21]
Gruenberg, J. Life in the lumen: The multivesicular endosome. Traffic, 2020, 21(1), 76-93.
[http://dx.doi.org/10.1111/tra.12715] [PMID: 31854087]
[22]
Larios, J.; Mercier, V.; Roux, A.; Gruenberg, J. ALIX- and ESCRT-III–dependent sorting of tetraspanins to exosomes. J. Cell Biol., 2020, 219(3), 219.
[http://dx.doi.org/10.1083/jcb.201904113] [PMID: 32049272]
[23]
Langemeyer, L.; Fröhlich, F.; Ungermann, C. Rab GTPase Function in Endosome and Lysosome Biogenesis. Trends Cell Biol., 2018, 28(11), 957-970.
[http://dx.doi.org/10.1016/j.tcb.2018.06.007] [PMID: 30025982]
[24]
Zhao, L.; Yu, J.; Wang, J.; Li, H.; Che, J.; Cao, B. Isolation and Identification of miRNAs in exosomes derived from serum of colon cancer patients. J. Cancer, 2017, 8(7), 1145-1152.
[http://dx.doi.org/10.7150/jca.18026] [PMID: 28607588]
[25]
Horibe, S.; Tanahashi, T.; Kawauchi, S.; Murakami, Y.; Rikitake, Y. Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer, 2018, 18(1), 47.
[http://dx.doi.org/10.1186/s12885-017-3958-1] [PMID: 29306323]
[26]
Konoshenko, M.Y.; Lekchnov, E.A.; Vlassov, A.V.; Laktionov, P.P. Isolation of extracellular vesicles: General methodologies and latest trends. BioMed Res. Int., 2018, 2018, 1-27.
[http://dx.doi.org/10.1155/2018/8545347] [PMID: 29662902]
[27]
Yang, X.; Sun, C.; Wang, L.; Guo, X. New insight into isolation, identification techniques and medical applications of exosomes. J. Control. Release, 2019308, 119-129.
[28]
Höög, J.L.; Lötvall, J. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J. Extracell. Vesicles, 2015, 4(1), 28680.
[http://dx.doi.org/10.3402/jev.v4.28680] [PMID: 26563734]
[29]
Théry, C.; Duban, L.; Segura, E.; Véron, P.; Lantz, O.; Amigorena, S. Indirect activation of naïve CD4+ T cells by dendritic cell–derived exosomes. Nat. Immunol., 2002, 3(12), 1156-1162.
[http://dx.doi.org/10.1038/ni854] [PMID: 12426563]
[30]
Distler, J.H.W.; Pisetsky, D.S.; Huber, L.C.; Kalden, J.R.; Gay, S.; Distler, O. Microparticles as regulators of inflammation: Novel players of cellular crosstalk in the rheumatic diseases. Arthritis Rheum., 2005, 52(11), 3337-3348.
[http://dx.doi.org/10.1002/art.21350] [PMID: 16255015]
[31]
Tang, X.H.; Guo, T.; Gao, X.Y.; Wu, X.L.; Xing, X.F.; Ji, J.F.; Li, Z.Y. Exosome-derived noncoding RNAs in gastric cancer: functions and clinical applications. Mol. Cancer, 2021, 20(1), 99.
[http://dx.doi.org/10.1186/s12943-021-01396-6] [PMID: 34330299]
[32]
Li, T.; Tao, Z.; Zhu, Y.; Liu, X.; Wang, L.; Du, Y.; Cao, J.; Wang, B.; Zhang, J.; Hu, X. Exosomal annexin A6 induces gemcitabine resistance by inhibiting ubiquitination and degradation of EGFR in triple-negative breast cancer. Cell Death Dis., 2021, 12(7), 684.
[http://dx.doi.org/10.1038/s41419-021-03963-7] [PMID: 34238922]
[33]
Arneth, B. Tumor Microenvironment. Medicina (Kaunas), 2019, 56(1), 15.
[http://dx.doi.org/10.3390/medicina56010015] [PMID: 31906017]
[34]
Zhang, H.; Deng, T.; Liu, R.; Bai, M.; Zhou, L.; Wang, X.; Li, S.; Wang, X.; Yang, H.; Li, J.; Ning, T.; Huang, D.; Li, H.; Zhang, L.; Ying, G.; Ba, Y. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat. Commun., 2017, 8(1), 15016.
[http://dx.doi.org/10.1038/ncomms15016] [PMID: 28393839]
[35]
Gao, Z.; Song, C.; Li, G.; Lin, H.; Lian, X.; Zhang, N.; Cao, B. Pyrotinib treatment on HER2-positive gastric cancer cells promotes the released exosomes to enhance endothelial cell progression, which can be counteracted by apatinib. OncoTargets Ther., 2019, 12, 2777-2787.
[http://dx.doi.org/10.2147/OTT.S194768] [PMID: 31114227]
[36]
Shen, Y.; Xue, C.; Li, X.; Ba, L.; Gu, J.; Sun, Z.; Han, Q.; Zhao, R.C. Effects of gastric cancer cell-derived exosomes on the immune regulation of mesenchymal stem cells by the nf-kb signaling pathway. Stem Cells Dev., 2019, 28(7), 464-476.
[http://dx.doi.org/10.1089/scd.2018.0125] [PMID: 30717632]
[37]
Ba, L.; Xue, C.; Li, X.; Zhang, M.; Yang, Y.; Han, Q.; Sun, Z.; Zhao, R.C. Gastric cancer cell-derived exosomes can regulate the biological functions of mesenchymal stem cells by inducing the expression of circular RNA circ_0004303. Stem Cells Dev., 2021, 30(16), 830-842.
[http://dx.doi.org/10.1089/scd.2021.0059] [PMID: 34098776]
[38]
Wang, J.; Guan, X.; Zhang, Y.; Ge, S.; Zhang, L.; Li, H.; Wang, X.; Liu, R.; Ning, T.; Deng, T.; Zhang, H.; Jiang, X.; Ba, Y.; Huang, D. Exosomal miR-27a derived from gastric cancer cells regulates the transformation of fibroblasts into cancer-associated fibroblasts. Cell. Physiol. Biochem., 2018, 49, 869-883.
[39]
Yang, H.; Zhang, H.; Ge, S.; Ning, T.; Bai, M.; Li, J.; Li, S.; Sun, W.; Deng, T.; Zhang, L.; Ying, G.; Ba, Y. Exosome-derived mir-130a activates angiogenesis in gastric cancer by targeting C-MYB in vascular endothelial cells. Mol. Ther., 2018, 26, 2466-2475.
[40]
Zhou, Z.; Zhang, H.; Deng, T.; Ning, T.; Liu, R.; Liu, D.; Bai, M.; Ying, G.; Ba, Y. RETRACTED: Exosomes carrying microRNA-155 target forkhead box O3 of endothelial cells and promote angiogenesis in gastric cancer. Mol. Ther. Oncolytics, 2019, 15, 223-233.
[http://dx.doi.org/10.1016/j.omto.2019.10.006] [PMID: 31828217]
[41]
Du, J.; Liang, Y.; Li, J.; Zhao, J.M.; Lin, X.Y.; Lin, X. Gastric cancer cell-derived exosomal microRNA-23a promotes angiogenesis by targeting PTEN. Front. Oncol., 2020, 10, 326.
[http://dx.doi.org/10.3389/fonc.2020.00326] [PMID: 32232005]
[42]
Liu, X.Q.L.; Yajie, F.; Shaohua, W.; Xinrui, L.; Lihua, Z.; Min, L.; Hua, T. Downregulation of PPP2R5E expression by miR-23a suppresses apoptosis to facilitate the growth of gastric cancer cell. FEBS Lett., 2014, 588, 3160-3169.
[http://dx.doi.org/10.1016/j.febslet.2014.05.068] [PMID: 24997345]
[43]
Li, Y.; Chen, H.; She, P.; Chen, T.; Chen, L.; Yuan, J.; Jiang, B. microRNA-23a promotes cell growth and metastasis in gastric cancer via targeting SPRY2-mediated ERK signaling. Oncol. Lett., 2018, 15(6), 8433-8441.
[http://dx.doi.org/10.3892/ol.2018.8374] [PMID: 29805579]
[44]
Li, S.; Li, J.; Zhang, H.; Zhang, Y.; Wang, X.; Yang, H.; Zhou, Z.; Hao, X.; Ying, G.; Ba, Y. Gastric cancer derived exosomes mediate the delivery of circRNA to promote angiogenesis by targeting miR-29a/VEGF axis in endothelial cells. Biochem. Biophys. Res. Commun., 2021, 560, 37-44.
[http://dx.doi.org/10.1016/j.bbrc.2021.04.099] [PMID: 33965787]
[45]
Xue, X.; Huang, J.; Yu, K.; Chen, X.; He, Y.; Qi, D.; Wu, Y. YB-1 transferred by gastric cancer exosomes promotes angiogenesis via enhancing the expression of angiogenic factors in vascular endothelial cells. BMC Cancer, 2020, 20(1), 996.
[http://dx.doi.org/10.1186/s12885-020-07509-6] [PMID: 33054752]
[46]
Wei, S.; Peng, L.; Yang, J.; Sang, H.; Jin, D.; Li, X.; Chen, M.; Zhang, W.; Dang, Y.; Zhang, G. Exosomal transfer of miR-15b-3p enhances tumorigenesis and malignant transformation through the DYNLT1/Caspase-3/Caspase-9 signaling pathway in gastric cancer. J. Exp. Clin. Cancer Res., 2020, 39(1), 32.
[http://dx.doi.org/10.1186/s13046-019-1511-6] [PMID: 32039741]
[47]
Huang, J.; Shen, M.; Yan, M.; Cui, Y.; Gao, Z.; Meng, X. Exosome-mediated transfer of miR-1290 promotes cell proliferation and invasion in gastric cancer via NKD1. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 51(9), 900-907.
[http://dx.doi.org/10.1093/abbs/gmz077] [PMID: 31435644]
[48]
Lu, Y.; Hou, K.; Li, M.; Wu, X.; Yuan, S. Exosome-delivered LncHEIH promotes gastric cancer progression by upregulating ezh2 and stimulating methylation of the gsdme promoter. Front. Cell Dev. Biol., 2020, 8, 571297.
[http://dx.doi.org/10.3389/fcell.2020.571297] [PMID: 33163491]
[49]
Li, Q.; Li, B.; Li, Q.; Wei, S.; He, Z.; Huang, X.; Wang, L.; Xia, Y.; Xu, Z.; Li, Z.; Wang, W.; Yang, L.; Zhang, D.; Xu, Z. Exosomal miR-21-5p derived from gastric cancer promotes peritoneal metastasis via mesothelial-to-mesenchymal transition. Cell Death Dis., 2018, 9(9), 854.
[http://dx.doi.org/10.1038/s41419-018-0928-8] [PMID: 30154401]
[50]
Xia, X.; Wang, S.; Ni, B.; Xing, S.; Cao, H.; Zhang, Z.; Yu, F.; Zhao, E.; Zhao, G. Hypoxic gastric cancer-derived exosomes promote progression and metastasis via MiR-301a-3p/PHD3/HIF-1α positive feedback loop. Oncogene, 2020, 39(39), 6231-6244.
[http://dx.doi.org/10.1038/s41388-020-01425-6] [PMID: 32826951]
[51]
Shi, H.; Huang, S.; Qin, M.; Xue, X.; Guo, X.; Jiang, L.; Hong, H.; Fang, J.; Gao, L. Exosomal circ_0088300 derived from cancer-associated fibroblasts acts as a miR-1305 sponge and promotes gastric carcinoma cell tumorigenesis. Front. Cell Dev. Biol., 2021, 9, 676319.
[http://dx.doi.org/10.3389/fcell.2021.676319] [PMID: 34124064]
[52]
Zhang, H.; Deng, T.; Liu, R.; Ning, T.; Yang, H.; Liu, D.; Zhang, Q.; Lin, D.; Ge, S.; Bai, M.; Wang, X.; Zhang, L.; Li, H.; Yang, Y.; Ji, Z.; Wang, H.; Ying, G.; Ba, Y. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol. Cancer, 2020, 19(1), 43.
[http://dx.doi.org/10.1186/s12943-020-01168-8] [PMID: 32106859]
[53]
Yao, W.; Guo, P.; Mu, Q.; Wang, Y. Exosome-derived circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via mir-30a-5p/yap1 axis in gastric cancer cells. Cancer Biother. Radiopharm., 2021, 36(4), 347-359.
[http://dx.doi.org/10.1089/cbr.2020.3578] [PMID: 32799541]
[54]
Lin, H.; Zhang, L.; Zhang, C.; Liu, P. Exosomal MiR-500a-3p promotes cisplatin resistance and stemness via negatively regulating FBXW7 in gastric cancer. J. Cell. Mol. Med., 2020, 24(16), 8930-8941.
[http://dx.doi.org/10.1111/jcmm.15524] [PMID: 32588541]
[55]
Sun, M.Y.; Xu, B.; Wu, Q.X.; Chen, W.L.; Cai, S.; Zhang, H.; Tang, Q.F. Cisplatin-resistant gastric cancer cells promote the chemoresistance of cisplatin-sensitive cells via the exosomal RPS3-mediated PI3K-Akt-cofilin-1 signaling axis. Front. Cell Dev. Biol., 2021, 9, 618899.
[http://dx.doi.org/10.3389/fcell.2021.618899] [PMID: 33644057]
[56]
Guo, J.; Zhong, X.; Tan, Q.; Yang, S.; Liao, J.; Zhuge, J.; Hong, Z.; Deng, Q.; Zuo, Q. miR-301a-3p induced by endoplasmic reticulum stress mediates the occurrence and transmission of trastuzumab resistance in HER2-positive gastric cancer. Cell Death Dis., 2021, 12(7), 696.
[http://dx.doi.org/10.1038/s41419-021-03991-3] [PMID: 34257270]
[57]
Wang, M.; Qiu, R.; Yu, S.; Xu, X.; Li, G.; Gu, R.; Tan, C.; Zhu, W.; Shen, B. Paclitaxel-resistant gastric cancer MGC-803 cells promote epithelial-to-mesenchymal transition and chemoresistance in paclitaxel-sensitive cells via exosomal delivery of miR-155-5p. Int. J. Oncol., 2019, 54(1), 326-338.
[PMID: 30365045]
[58]
Che, Y.; Geng, B.; Xu, Y.; Miao, X.; Chen, L.; Mu, X.; Pan, J.; Zhang, C.; Zhao, T.; Wang, C.; Li, X.; Wen, H.; Liu, Z.; You, Q. Helicobacter pylori -induced exosomal MET educates tumour-associated macrophages to promote gastric cancer progression. J. Cell. Mol. Med., 2018, 22(11), 5708-5719.
[http://dx.doi.org/10.1111/jcmm.13847] [PMID: 30160350]
[59]
Atrisco-Morales, J.; Ramírez, M.; Castañón-Sánchez, C.A.; Román-Román, A.; Román-Fernández, I.V.; Martínez-Carrillo, D.N.; García-Arellano, S.; Muñoz-Valle, J.F.; Rodríguez-Ruiz, H.A.; Fernández-Tilapa, G. In Peripheral blood mononuclear cells Helicobacter pylori induces the secretion of soluble and exosomal cytokines related to carcinogenesis. Int. J. Mol. Sci., 2022, 23(15), 8801.
[http://dx.doi.org/10.3390/ijms23158801] [PMID: 35955936]
[60]
Guo, Y.; Xu, C.; Gong, R.; Hu, T.; Zhang, X.; Xie, X.; Chi, J.; Li, H.; Xia, X.; Liu, X. Exosomal CagA from Helicobacter pylori aggravates intestinal epithelium barrier dysfunction in chronic colitis by facilitating Claudin-2 expression. Gut Pathog., 2022, 14(1), 13.
[http://dx.doi.org/10.1186/s13099-022-00486-0] [PMID: 35331316]
[61]
Shimoda, A.; Ueda, K.; Nishiumi, S.; Murata-Kamiya, N.; Mukai, S.; Sawada, S.; Azuma, T.; Hatakeyama, M.; Akiyoshi, K. Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Sci. Rep., 2016, 6(1), 18346.
[http://dx.doi.org/10.1038/srep18346] [PMID: 26739388]
[62]
Tavakoli, F.; Khatami, S.S.; Momeni, F.; Azadbakht, J.; Ghasemi, F. Gastric cancer diagnosis: From imaging techniques to biochemical biomarkers. Curr. Mol. Med., 2021, 21(5), 355-375.
[http://dx.doi.org/10.2174/1566524020666200905115100]
[63]
Yun, J.; Han, S.B.; Kim, H.J.; Go, S.; Lee, W.S.; Bae, W.K.; Cho, S.H.; Song, E.K.; Lee, O.J.; Kim, H.K.; Yang, Y.; Kwon, J.; Chae, H.B.; Lee, K.H.; Han, H.S. Exosomal miR-181b-5p downregulation in ascites serves as a potential diagnostic biomarker for gastric cancer-associated malignant ascites. J. Gastric Cancer, 2019, 19(3), 301-314.
[http://dx.doi.org/10.5230/jgc.2019.19.e27] [PMID: 31598373]
[64]
Ji, R.; Zhang, X.; Gu, H.; Ma, J.; Wen, X.; Zhou, J.; Qian, H.; Xu, W.; Qian, J.; Lin, J. miR-374a-5p: A new target for diagnosis and drug resistance therapy in gastric cancer. Mol. Ther. Nucleic Acids, 2019, 18, 320-331.
[http://dx.doi.org/10.1016/j.omtn.2019.07.025] [PMID: 31614322]
[65]
Shi, Y.; Wang, Z.; Zhu, X.; Chen, L.; Ma, Y.; Wang, J.; Yang, X.; Liu, Z. Exosomal miR-1246 in serum as a potential biomarker for early diagnosis of gastric cancer. Int. J. Clin. Oncol., 2020, 25(1), 89-99.
[http://dx.doi.org/10.1007/s10147-019-01532-9] [PMID: 31506750]
[66]
Zheng, G.D.; Xu, Z.Y.; Hu, C.; Lv, H.; Xie, H.X.; Huang, T.; Zhang, Y.Q.; Chen, G.P.; Fu, Y.F.; Cheng, X.D. Exosomal miR-590-5p in serum as a biomarker for the diagnosis and prognosis of gastric cancer. Front. Mol. Biosci., 2021, 8, 636566.
[http://dx.doi.org/10.3389/fmolb.2021.636566] [PMID: 33681295]
[67]
Gao, S.; Zhang, Z.; Wang, X.; Ma, Y.; Li, C.; Liu, H.; Jing, C.; Li, L.; Guo, X. hsa-miR-875-5p inhibits tumorigenesis and suppresses TGF-β signalling by targeting USF2 in gastric cancer. J. Transl. Med., 2022, 20(1), 115.
[http://dx.doi.org/10.1186/s12967-022-03253-6] [PMID: 35255935]
[68]
Tang, S.; Cheng, J.; Yao, Y.; Lou, C.; Wang, L.; Huang, X.; Zhang, Y. Combination of four serum exosomal MiRNAs as novel diagnostic biomarkers for early-stage gastric cancer. Front. Genet., 2020, 11, 237.
[http://dx.doi.org/10.3389/fgene.2020.00237] [PMID: 32256526]
[69]
Wen, X.; Han, W.; Liu, C. Long non-coding RNA TTTY15 silencing inhibits gastric cancer progression by sponging microRNA-98-5p to down-regulate cyclin D2 expression. Bioengineered, 2022, 13(3), 7380-7391.
[http://dx.doi.org/10.1080/21655979.2022.2047398] [PMID: 35266852]
[70]
Cai, C.; Zhang, H.; Zhu, Y.; Zheng, P.; Xu, Y.; Sun, J.; Zhang, M.; Lan, T.; Gu, B.; Li, S.; Ma, P. Serum exosomal long noncoding RNA pcsk2-2:1 As a potential novel diagnostic biomarker for gastric cancer. OncoTargets Ther., 2019, 12, 10035-10041.
[http://dx.doi.org/10.2147/OTT.S229033] [PMID: 31819499]
[71]
Li, S.; Zhang, M.; Zhang, H.; Hu, K.; Cai, C.; Wang, J.; Shi, L.; Ma, P.; Xu, Y.; Zheng, P. Exosomal long noncoding RNA lnc-GNAQ-6:1 may serve as a diagnostic marker for gastric cancer. Clin. Chim. Acta., 2020, 501, 252-257.
[72]
Zheng, P.; Zhang, H.; Gao, H.; Sun, J.; Li, J.; Zhang, X.; Gao, L.; Ma, P.; Li, S. Plasma exosomal long noncoding RNA lnc-SLC2A12-10:1 as a novel diagnostic biomarker for gastric cancer. OncoTargets Ther., 2020, 13, 4009-4018.
[http://dx.doi.org/10.2147/OTT.S253600] [PMID: 32494155]
[73]
Guo, X.; Lv, X.; Ru, Y.; Zhou, F.; Wang, N.; Xi, H.; Zhang, K.; Li, J.; Chang, R.; Xie, T.; Wang, X.; Li, B.; Chen, Y.; Yang, Y.; Chen, L.; Chen, L. Circulating exosomal gastric cancer–associated long noncoding RNA1 as a biomarker for early detection and monitoring progression of gastric cancer. JAMA Surg., 2020, 155(7), 572-579.
[http://dx.doi.org/10.1001/jamasurg.2020.1133] [PMID: 32520332]
[74]
Zhang, Y.; Chen, L.; Ye, X.; Wu, Z.; Zhang, Z.; Sun, B.; Fu, H.; Fu, C.; Liang, X.; Jiang, H. Expression and mechanism of exosome-mediated A FOXM1 related long noncoding RNA in gastric cancer. J. Nanobiotechnology, 2021, 19(1), 133.
[http://dx.doi.org/10.1186/s12951-021-00873-w] [PMID: 33971889]
[75]
Tang, W.; Fu, K.; Sun, H.; Rong, D.; Wang, H.; Cao, H. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol. Cancer, 2018, 17(1), 137.
[http://dx.doi.org/10.1186/s12943-018-0888-8] [PMID: 30236115]
[76]
Jiang, F.; Hu, X.; Cao, H.; Shen, X. Hsa_circ_0000081 promotes the function of gastric cancer through sponging hsa-miR-423-5p to influence 3-phosphoinositide-dependent kinase 1 expression. Bioengineered, 2022, 13(4), 8277-8290.
[http://dx.doi.org/10.1080/21655979.2022.2053796] [PMID: 35302432]
[77]
Xie, M.; Yu, T.; Jing, X.; Ma, L.; Fan, Y.; Yang, F.; Ma, P.; Jiang, H.; Wu, X.; Shu, Y.; Xu, T. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol. Cancer, 2020, 19(1), 112.
[http://dx.doi.org/10.1186/s12943-020-01208-3] [PMID: 32600329]
[78]
Tao, X.; Shao, Y.; Lu, R.; Ye, Q.; Xiao, B.; Ye, G.; Guo, J. Clinical significance of hsa_circ_0000419 in gastric cancer screening and prognosis estimation. Pathol. Res. Pract., 2020, 216(1), 152763.
[http://dx.doi.org/10.1016/j.prp.2019.152763] [PMID: 31810586]
[79]
Wang, Y.; Li, Z.; Xu, S.; Guo, J. Novel potential tumor biomarkers: Circular RNAs and exosomal circular RNAs in gastrointestinal malignancies. J. Clin. Lab. Anal., 2020, 34(7), e23359.
[http://dx.doi.org/10.1002/jcla.23359] [PMID: 32419229]
[80]
Huang, A.; Zhang, M.; Li, T.; Qin, X. Serum proteomic analysis by tandem mass tags (tmt) based quantitative proteomics in gastric cancer patients. Clin. Lab., 2018, 64(07+08/2018), 855-866.
[http://dx.doi.org/10.7754/Clin.Lab.2018.171129] [PMID: 29739064]
[81]
Li, O.; Zhao, C.; Zhang, J.; Li, F.; Yang, Z.; Liu, S.; Cai, C.; Jia, Z.; Gong, W.; Shu, Y.; Dong, P. J. C. d. d. UBAP2L promotes gastric cancer metastasis by activating NF-κB through PI3K/AKT pathway. 2022, 8, 123.
[82]
Yoon, J.; Ham, I.; Kim, O.; Ashktorab, H.; Smoot, D.; Nam, S.; Lee, J.; Hur, H.; Park, W. Gastrokine 1 protein is a potential theragnostic target for gastric cancer. Gastric cancer, 2018, 21, 956-967.
[83]
Liu, L.; Pang, H.; He, Q.; Pan, B.; Sun, X.; Shan, J.; Wu, L.; Wu, K.; Yao, X.; Guo, Y. A novel strategy to identify candidate diagnostic and prognostic biomarkers for gastric cancer. Cancer Cell Int., 2021, 21(1), 335.
[http://dx.doi.org/10.1186/s12935-021-02007-6] [PMID: 34215253]
[84]
Miki, Y.; Yashiro, M.; Okuno, T.; Kuroda, K.; Togano, S.; Hirakawa, K.; Ohira, M. Clinico-pathological significance of exosome marker CD63 expression on cancer cells and stromal cells in gastric cancer. PLoS One, 2018, 13(9), e0202956.
[http://dx.doi.org/10.1371/journal.pone.0202956] [PMID: 30222750]
[85]
Fan, Y.; Che, X.; Qu, J.; Hou, K.; Wen, T.; Li, Z.; Li, C.; Wang, S.; Xu, L.; Liu, Y.; Qu, X. Exosomal PD-L1 Retains Immunosuppressive Activity and is Associated with Gastric Cancer Prognosis. Ann. Surg. Oncol., 2019, 26(11), 3745-3755.
[http://dx.doi.org/10.1245/s10434-019-07431-7] [PMID: 31087180]
[86]
Peng, H.; Ji, W.; Zhao, R.; Yang, J.; Lu, Z.; Li, Y.; Zhang, X. Exosome: a significant nano-scale drug delivery carrier. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(34), 7591-7608.
[http://dx.doi.org/10.1039/D0TB01499K] [PMID: 32697267]
[87]
Barile, L.; Vassalli, G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol. Ther., 2017, 174, 63-78.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.020] [PMID: 28202367]
[88]
Zhan, Q.; Yi, K.; Qi, H.; Li, S.; Li, X.; Wang, Q.; Wang, Y.; Liu, C.; Qiu, M.; Yuan, X.; Zhao, J.; Hou, X.; Kang, C. Engineering blood exosomes for tumor-targeting efficient gene/chemo combination therapy. Theranostics, 2020, 10(17), 7889-7905.
[http://dx.doi.org/10.7150/thno.45028] [PMID: 32685027]
[89]
Haney, M.J.; Zhao, Y.; Jin, Y.S.; Li, S.M.; Bago, J.R.; Klyachko, N.L.; Kabanov, A.V.; Batrakova, E.V. Macrophage-derived extracellular vesicles as drug delivery systems for triple negative breast cancer (TNBC) therapy. J. Neuroimmune Pharmacol., 2020, 15(3), 487-500.
[http://dx.doi.org/10.1007/s11481-019-09884-9] [PMID: 31722094]
[90]
Xin, L.; Yuan, Y.W.; Liu, C.; Zhou, L.Q.; Liu, L.; Zhou, Q.; Li, S.H. Preparation of internalizing RGD-modified recombinant methioninase exosome active targeting vector and antitumor effect evaluation. Dig. Dis. Sci., 2021, 66(4), 1045-1053.
[http://dx.doi.org/10.1007/s10620-020-06262-x] [PMID: 32323072]
[91]
Zhan, Q.; Yi, K.; Li, X.; Cui, X.; Yang, E.; Chen, N.; Yuan, X.; Zhao, J.; Hou, X.; Kang, C. Phosphatidylcholine engineered exosomes for enhanced tumor cell uptake and intracellular antitumor drug Delivery. Macromol. Biosci., 2021, 21(8), 2100042.
[http://dx.doi.org/10.1002/mabi.202100042] [PMID: 33949800]
[92]
Tao, H.; Xu, H.; Zuo, L.; Li, C.; Qiao, G.; Guo, M.; Zheng, L.; Leitgeb, M.; Lin, X. Exosomes-coated bcl-2 siRNA inhibits the growth of digestive system tumors both in vitro and in vivo. Int. J. Biol. Macromol., 2020, 161, 470-480.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.052] [PMID: 32531356]
[93]
Zhong, H.; Yang, Y.; Ma, S.; Xiu, F.; Cai, Z.; Zhao, H.; Du, L. Induction of a tumour-specific CTL response by exosomes isolated from heat-treated malignant ascites of gastric cancer patients. Int. J. Hyperthermia, 2011, 27(6), 604-611.
[http://dx.doi.org/10.3109/02656736.2011.564598]
[94]
Chen, Z.; You, L.; Wang, L.; Huang, X.; Liu, H.; Wei, J.; Zhu, L.; Qian, W. Dual effect of DLBCL-derived EXOs in lymphoma to improve DC vaccine efficacy in vitro while favor tumorgenesis in vivo. J. Exp. Clin. Cancer Res., 2018, 37(1), 190.
[http://dx.doi.org/10.1186/s13046-018-0863-7] [PMID: 30103789]
[95]
Yildirim, M.; Yildirim, T.C.; Turay, N.; Bildik, T.; Ibibik, B.; Evcili, I.; Ersan, P.G.; Tokat, U.M.; Sahin, O.; Gursel, I. TLR ligand loaded exosome mediated immunotherapy of established mammary Tumor in mice. Immunol. Lett., 2021, 239, 32-41.
[http://dx.doi.org/10.1016/j.imlet.2021.08.004] [PMID: 34418488]
[96]
Kim, W.S.; Choi, D.; Park, J.M.; Song, H.Y.; Seo, H.S.; Lee, D.E.; Byun, E.B. Comparison of exosomes derived from non- and gamma-irradiated melanoma cancer cells as a potential antigenic and immunogenic source for dendritic cell-based immunotherapeutic vaccine. Vaccines (Basel), 2020, 8(4), 699.
[http://dx.doi.org/10.3390/vaccines8040699] [PMID: 33228229]
[97]
Li, Z.; Suo, B.; Long, G.; Gao, Y.; Song, J.; Zhang, M.; Feng, B.; Shang, C.; Wang, D. Exosomal miRNA-16-5p derived from m1 macrophages enhances T cell-dependent immune response by regulating PD-l1 in gastric cancer. Front. Cell Dev. Biol., 2020, 8, 572689.
[http://dx.doi.org/10.3389/fcell.2020.572689] [PMID: 33330451]
[98]
Gunassekaran, G.R.; Poongkavithai Vadevoo, S.M.; Baek, M.C.; Lee, B. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials, 2021, 278, 121137.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121137] [PMID: 34560422]
[99]
Lou, G.; Chen, L.; Xia, C.; Wang, W.; Qi, J.; Li, A.; Zhao, L.; Chen, Z.; Zheng, M.; Liu, Y. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. J. Exp. Clin. Cancer Res., 2020, 39(1), 4.
[http://dx.doi.org/10.1186/s13046-019-1512-5] [PMID: 31898515]
[100]
Yao, S.; Yin, Y.; Jin, G.; Li, D.; Li, M.; Hu, Y.; Feng, Y.; Liu, Y.; Bian, Z.; Wang, X.; Mao, Y.; Zhang, J.; Wu, Z.; Huang, Z. Exosome-mediated delivery of miR-204-5p inhibits tumor growth and chemo resistance. Cancer Med., 2020, 9(16), 5989-5998.
[http://dx.doi.org/10.1002/cam4.3248] [PMID: 32618144]
[101]
Han, D.; Wang, K.; Zhang, T.; Gao, G.C.; Xu, H. Natural killer cell-derived exosome-entrapped paclitaxel can enhance its anti-tumor effect. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(10), 5703-5713.
[PMID: 32495906]
[102]
Zhang, Q.; Zhang, H.; Ning, T.; Liu, D.; Deng, T.; Liu, R.; Bai, M.; Zhu, K.; Li, J.; Qian, F.; Ying, G.; Ba, Y. Exosome-delivered c-Met siRNA Could reverse chemoresistance to cisplatin in gastric cancer. Int. J. Nanomedicine, 2020, 15, 2323-2335.
[http://dx.doi.org/10.2147/IJN.S231214] [PMID: 32308384]
[103]
Xiao, Z.; Liu, Y.; Li, Q.; Liu, Q.; Liu, Y.; Luo, Y.; Wei, S. EVs delivery of miR-1915-3p improves the chemotherapeutic efficacy of oxaliplatin in colorectal cancer. Cancer Chemother. Pharmacol., 2021, 88(6), 1021-1031.
[http://dx.doi.org/10.1007/s00280-021-04348-5] [PMID: 34599680]
[104]
Li, D.; Meng, D.; Niu, R. Exosome-reversed chemoresistance to cisplatin in non-small lung cancer through transferring miR-613. Cancer Manag. Res., 2020, 12, 7961-7972.
[http://dx.doi.org/10.2147/CMAR.S254310] [PMID: 32943930]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy