Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Mini-Review Article

Nano Emulsion Drug Delivery System: A Review

Author(s): Nitin Mishra, Niranjan Kaushik*, Pramod Kumar Sharma and Md. Aftab Alam

Volume 13, Issue 1, 2023

Published on: 27 March, 2023

Page: [2 - 16] Pages: 15

DOI: 10.2174/2468187313666230213121011

Price: $65

Abstract

In nanoemulsions, both oil and water droplets are stabilised by an amphiphilic surfactant. Ultrafine dispersions with varying drug loading, viscoelastic properties, and aesthetic characteristics may be useful for the administration of medication. A 20-500-nanometer droplet size range for nanoemulsions has been established. The biological behavior of a nanoemulsions formulation is heavily influenced by its droplet diameter and surface properties. Small droplet size results in clear emulsions; therefore, the appearance of the product is unaffected even by the addition of an oil phase. Nanoemulsions are oil-in-water dispersions that are transparent or translucent and are stabilized by an interfacial layer of surfactants and cosurfactant particles with droplet size smaller than 100 nm. New nanoscience-based technologies are becoming increasingly popular as a means of improving food safety, quality, and nutrition. In this field, nanoemulsions have been a key focus since they can be readily manufactured using current food components and technology. Food nanoemulsions, which are tiny oil droplets distributed in water, are being used as delivery methods for a variety of hydrophobic compounds, including nutrients, nutraceuticals, antioxidants, and antimicrobial agents. The present review is focused on the formulation, characterization, and applications of nanoemulsions.

Graphical Abstract

[1]
Mason TG. Nanoemulsions: Formation, structure, and physical properties. J Phys Condens 2006; 18(41): R635.
[http://dx.doi.org/10.1088/0953-8984/18/41/R01]
[2]
Aboofazeli R. Nanometric-scaled emulsions (nanoemulsions). Iran J Pharm Res 2010; 9(4): 325.
[3]
Aulton ME, Kevin T, Eds. Aulton’s pharmaceutics: The design and manufacture of Medicines. Elsevier Health Sciences 2013.
[4]
McClements DJ. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012; 8(6): 1719-29.
[http://dx.doi.org/10.1039/C2SM06903B]
[5]
Tan SL, Stanslas J, Basri M, et al. Nanoemulsion-based parenteral drug delivery system of carbamazepine: Preparation, characterization, stability evaluation and blood-brain pharmacokinetics. Curr Drug Deliv 2015; 12(6): 795-804.
[http://dx.doi.org/10.2174/1567201812666150901112544] [PMID: 26324229]
[6]
Sharma N. Preparation and optimization of nanoemulsions for targeting drug delivery. Int J Pharm Res Dev 2013; 5(4): 37-48.
[7]
Al-Edres S, Saringat B. Formulation and stability of whitening VCO-in-water nano-Cream. Int J Pharm 2009; 373(1-2): 174-8.
[http://dx.doi.org/10.1016/j.ijpharm.2009.02.011]
[8]
Makidon PE, Nigavekar SS, Bielinska AU, et al. Characterization of stability and nasal delivery systems for immunization with nanoemulsion-based vaccines. J Aerosol Med Pulm Drug Deliv 2010; 23(2): 77-89.
[http://dx.doi.org/10.1089/jamp.2009.0766] [PMID: 19778268]
[9]
Lala RR, Awari NG. Nanoemulsion-based gel formulations of COX-2 inhibitors for enhanced efficacy in inflammatory conditions. Appl Nanosci 2014; 4(2): 143-51.
[http://dx.doi.org/10.1007/s13204-012-0177-6]
[10]
Hussain A, Samad A, Singh SK, et al. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv 2016; 23(2): 642-57.
[http://dx.doi.org/10.3109/10717544.2014.933284] [PMID: 25013957]
[11]
Nasr M, Samrana N, Abdelbary E. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int J Pharm 2012; 436(1-2): 611-6.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.028]
[12]
Zhao Y, Brown MB, Jones SA. Pharmaceutical foams: Are they the answer to the dilemma of topical nanoparticles? Nanomedicine 2010; 6(2): 227-36.
[http://dx.doi.org/10.1016/j.nano.2009.08.002] [PMID: 19715774]
[13]
Mou D. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic Drugs. Int J Pharm 2008; 353(1-2): 270-6.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.051]
[14]
Khani S, Keyhanfar F, Amani A. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine. Drug Deliv 2016; 23(6): 2035-43.
[http://dx.doi.org/10.3109/10717544.2015.1088597] [PMID: 26406153]
[15]
Pawar VK, Panchal SB, Singh Y, et al. Immunotherapeutic vitamin E nanoemulsion synergies the antiproliferative activity of paclitaxel in breast cancer cells via modulating Th1 and Th2 immune response. J Control Release 2014; 196: 295-306.
[http://dx.doi.org/10.1016/j.jconrel.2014.10.010] [PMID: 25459427]
[16]
Bhanushali RS. Nanoemulsion based intranasal delivery of antimigraine drugs fornose to brain targeting. Ind Int J Pharm 2009; 71(6): 707.
[17]
Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech 2009; 10(3): 808-19.
[http://dx.doi.org/10.1208/s12249-009-9268-4] [PMID: 19536653]
[18]
Yukuyama MN, Ghisleni DDM, Pinto TJA, Bou-Chacra NA. Nanoemulsion: Process selection and application in cosmetics - A review. Int J Cosmet Sci 2016; 38(1): 13-24.
[http://dx.doi.org/10.1111/ics.12260] [PMID: 26171789]
[19]
Wang L, Li X, Zhang G, Dong J, Eastoe J. Oil in water nanoemulsions for pesticide formulations. J Colloid Interface Sci 2007; 314(1): 230-5.
[http://dx.doi.org/10.1016/j.jcis.2007.04.079] [PMID: 17612555]
[20]
Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ. Infection-mimicking materials to program dendritic cells in situ. Nat Mater 2009; 8(2): 151-8.
[http://dx.doi.org/10.1038/nmat2357] [PMID: 19136947]
[21]
Wu H. Topical transfection using plasmid DNA in a water in oil nanoemulsion. Int J Pharm 2001; 221(1-2): 23-34.
[http://dx.doi.org/10.1016/S0378-5173(01)00672-X]
[22]
Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci 1996; 85(5): 530-6.
[http://dx.doi.org/10.1021/js950474+] [PMID: 8742946]
[23]
El-Aasser MS, David Sudol E. Miniemulsions: Overview of research and applications. JCT Res 2004; 1(1): 21-32.
[24]
Solans C. Nanoemulsion: Formulation and properties. Soft matter 2002; 525-54.
[25]
Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interface Sci 2004; 108-109: 303-18.
[http://dx.doi.org/10.1016/j.cis.2003.10.023] [PMID: 15072948]
[26]
Zhang Y, Shang Z, Gao C, et al. Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery. AAPS PharmSciTech 2014; 15(4): 1000-8.
[http://dx.doi.org/10.1208/s12249-014-0129-4] [PMID: 24831090]
[27]
Jiang SP, He SN, Li YL, et al. Preparation and characteristics of lipid nanoemulsion formulations loaded with doxorubicin. Int J Nanomedicine 2013; 8: 3141-50.
[PMID: 23990722]
[28]
Devalapally H, Zhou F, McDade J, et al. Optimization of PEGylated nanoemulsions for improved pharmacokinetics of BCS class II compounds. Drug Deliv 2015; 22(4): 467-74.
[http://dx.doi.org/10.3109/10717544.2013.869275] [PMID: 24344786]
[29]
Tiwari SB, Amiji MM. Nanoemulsion formulations for improved oral delivery of poorly soluble drugs. J Nanobiotechnology 2006; 1: 475-8.
[30]
Shakeel F, Baboota S, Ahuja A, Ali J, Aqil M, Shafiq S. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech 2007; 8(4): 191.
[http://dx.doi.org/10.1208/pt0804104] [PMID: 18181525]
[31]
Beltran C. Nano-emulsion preparation by low energy methods: studies on optimization and scale-up. http://acs.confex.Com/acs/csss07/techprogram2007.
[32]
Sharma N. Nanoemulsion: A new concept of delivery system. Chronicles of Young Scientists 2010; 1(2): 2-6.
[33]
Warisnoicharoen W, Lansley AB, Lawrence MJ. Light-scattering investigations on dilute nonionic oil-in-water microemulsions. AAPS PharmSci 2000; 2(2): 16-26.
[http://dx.doi.org/10.1208/ps020212] [PMID: 11741228]
[34]
Uson NM, Conxita S. Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids Surf A Physicochem Eng Asp 2004; 250(1-3): 415-21.
[http://dx.doi.org/10.1016/j.colsurfa.2004.03.039]
[35]
Devarajan V. Nanoemulsions: As modified drug delivery tool. Int J Pharm 2011; 2(4): 1-6.
[36]
Shah P, Shelat DP. Nanoemulsion: A pharmaceutical review, systematic reviews in pharmacy 2010; 1(1): 25-6.
[37]
Chime SA. Nanoemulsions—advances in formulation, characterization and applications in drug delivery. In: Application of nanotechnology in drug delivery. 2014; 3: p. 77-126.
[38]
Mishra R, Kumar GC, Rekha M. Nanoemulsion: A novel drug delivery tool. Int J Pharma Res Rev 2014; 3(7): 32-43.
[39]
Chavda VP, Dhaval S. A review on novel emulsification technique: A nanoemulsion. J Pharmacol Toxicol 2017; 5(1): 32-3.
[40]
Mangale MR. Nanoemulsion: As pharmaceutical overview. J Pharm Sci 2015; 33(1): 244-52.
[PMID: 25393417]
[41]
Patil PA, Bhutkar BR. Biomedical application of nanoemulsion - A features review. Int J Res Methodol 2016; 1(3): 37-58.
[42]
Kale SN, Sharada LD. Emulsion micro emulsion and nano emulsion: A review. Sys Rev Pharm 2017; 8(1): 39.
[43]
Jaiswal M, Rupesh D, Sharma P K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7.
[http://dx.doi.org/10.1007/s13205-014-0214-0]
[44]
Pathan I, Mangle M, Bairagi S. Design and characterization of nanoemulsion for transdermal delivery of meloxicam. Anal Chem Lett 2016; 6(3): 286-95.
[http://dx.doi.org/10.1080/22297928.2016.1209126]
[45]
Debnath SS, Kumar GV. Nanoemulsion-a method to improve the solubility of lipophilic drugs. Int J Adv Pharm Med Bioallied Sci 2011; 2: 72-83.
[46]
Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm 2007; 66(2): 227-43.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.014] [PMID: 17127045]
[47]
Tiwari SB, Amiji MM. Nanoemulsion formulations for tumor-targeted delivery. In: Nanotech Cancer Therapy. 2006; p. 723-39.
[48]
Shinoda K, Saito H. The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant. J Colloid Interface Sci 1968; 26(1): 70-4.
[http://dx.doi.org/10.1016/0021-9797(68)90273-7]
[49]
Solans C. Nano-emulsions: Formation, properties, and applications. Surfactant science series 2003; 525-54.
[50]
Barkat MA. Harshita, Rizwanullah M, et al. Therapeutic nanoemulsion: Concept to delivery. Curr Pharm Des 2020; 26(11): 1145-66.
[http://dx.doi.org/10.2174/1381612826666200317140600] [PMID: 32183664]
[51]
Izquierdo P, Feng J, Esquena J, et al. The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. J Colloid Interface Sci 2005; 285(1): 388-94.
[http://dx.doi.org/10.1016/j.jcis.2004.10.047] [PMID: 15797437]
[52]
Sonneville-Aubrun O, Simonnet JT, L’Alloret F. Nanoemulsions: A new vehicle for skincare products. Adv Colloid Interface Sci 2004; 108-109: 145-9.
[http://dx.doi.org/10.1016/j.cis.2003.10.026] [PMID: 15072937]
[53]
Solans C, Solé I. Nano-emulsions: Formation by low-energy methods. Curr Opin Colloid Interface Sci 2012; 17(5): 246-54.
[http://dx.doi.org/10.1016/j.cocis.2012.07.003]
[54]
Maestro A, Solè I, González C, Solans C, Gutiérrez JM. Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method. J Colloid Interface Sci 2008; 327(2): 433-9.
[http://dx.doi.org/10.1016/j.jcis.2008.07.059] [PMID: 18799164]
[55]
Anton N, Vandamme TF. Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharm Res 2011; 28(5): 978-85.
[http://dx.doi.org/10.1007/s11095-010-0309-1] [PMID: 21057856]
[56]
Gutiérrez JM, González C, Maestro A, Solè I, Pey CM, Nolla J. Nano-emulsions: New applications and optimization of their preparation. Curr Opin Colloid Interface Sci 2008; 13(4): 245-51.
[http://dx.doi.org/10.1016/j.cocis.2008.01.005]
[57]
D’Arrigo J. Aspects of future R&D regarding targeted lipid nanoemulsions.In: Studies in Interface Science Elsevier. 2011; 25: p. 333-42.
[58]
Hubbell JA, Thomas SN, Swartz MA. Materials engineering for immunomodulation. Nature 2009; 462(7272): 449-60.
[http://dx.doi.org/10.1038/nature08604] [PMID: 19940915]
[59]
Lamaallam S, Bataller H, Dicharry C, Lachaise J. Formation and stability of miniemulsions produced by dispersion of water/oil/surfactants concentrates in a large amount of water. Colloids Surf A Physicochem Eng Asp 2005; 270-271: 44-51.
[http://dx.doi.org/10.1016/j.colsurfa.2005.05.035]
[60]
Singh M, Kazzaz J, Ugozzoli M, Chesko J, O’Hagan DT. Charged polylactide co-glycolide microparticles as antigen delivery systems. Expert opinion on biological therapy 2004; 4(4): 483-91.
[http://dx.doi.org/10.1517/14712598.4.4.483]
[61]
Porra M. Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008; 324: 1-3.
[http://dx.doi.org/10.1016/j.colsurfa.2008.04.012]
[62]
Kaiser-Schulz G, Heit A, Quintanilla-Martinez L, et al. Polylactide-coglycolide microspheres co-encapsulating recombinant tandem prion protein with CpG-oligonucleotide break self-tolerance to prion protein in wild-type mice and induce CD4 and CD8 T cell responses. J Immunol 2007; 179(5): 2797-807.
[http://dx.doi.org/10.4049/jimmunol.179.5.2797] [PMID: 17709493]
[63]
Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates-A review. J Control Release 2008; 128(3): 185-99.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.007] [PMID: 18374443]
[64]
Maa YF, Chung H. Liquid-liquid emulsification by rotor/stator homogenization. J Control Release 1996; 38(2-3): 219-28.
[http://dx.doi.org/10.1016/0168-3659(95)00123-9]
[65]
Koroleva MY, Evgenii VY. Nanoemulsions: The properties, methods of preparation and promising applications. Russian Chemical Reviews 2012; 81(1): 21.
[http://dx.doi.org/10.1070/RC2012v081n01ABEH004219]
[66]
Che Marzuki NH, Wahab RA, Abdul Hamid M. An overview of nanoemulsion: Concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip 2019; 33(1): 779-97.
[http://dx.doi.org/10.1080/13102818.2019.1620124]
[67]
Kotta S, Khan AW, Ansari SH, Sharma RK, Ali J. Formulation of nanoemulsion: A comparison between phase inversion composition method and high-pressure homogenization method. Drug Deliv 2015; 22(4): 455-66.
[http://dx.doi.org/10.3109/10717544.2013.866992] [PMID: 24329559]
[68]
Yang HJ, Cho WG, Park SN. Stability of oil-in-water nano-emulsions prepared using the phase inversion composition method. J Ind Eng Chem 2009; 15(3): 331-5.
[http://dx.doi.org/10.1016/j.jiec.2009.01.001]
[69]
Solè I, Pey CM, Maestro A, et al. Nano-emulsions prepared by the phase inversion composition method: Preparation variables and scale up. J Colloid Interface Sci 2010; 344(2): 417-23.
[http://dx.doi.org/10.1016/j.jcis.2009.11.046] [PMID: 20129612]
[70]
Pan H, Yu L, Xu J, Sun D. Preparation of highly stable concentrated W/O nanoemulsions by PIC method at elevated temperature. Colloids Surf A Physicochem Eng Asp 2014; 447: 97-102.
[http://dx.doi.org/10.1016/j.colsurfa.2014.01.063]
[71]
Reddy ST, van der Vlies AJ, Simeoni E, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 2007; 25(10): 1159-64.
[http://dx.doi.org/10.1038/nbt1332] [PMID: 17873867]
[72]
Hori Y, Stern PJ, Hynes RO, Irvine DJ. Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials 2009; 30(35): 6757-67.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.037] [PMID: 19766305]
[73]
Agrawal N, Maddikeri GL, Pandit AB. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques. Ultrason Sonochem 2017; 36: 367-74.
[http://dx.doi.org/10.1016/j.ultsonch.2016.11.037] [PMID: 28069223]
[74]
Rao J, McClements DJ. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. J Agric Food Chem 2010; 58(11): 7059-66.
[http://dx.doi.org/10.1021/jf100990r] [PMID: 20476765]
[75]
Tan SF, Masoumi HRF, Karjiban RA, et al. Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability. Ultrason Sonochem 2016; 29: 299-308.
[http://dx.doi.org/10.1016/j.ultsonch.2015.09.015] [PMID: 26585010]
[76]
Sjöblom J, Ed. Emulsions and emulsion stability. New York, NY, USA: Taylor & Francis 2006; p. 45.
[77]
Fernandez P. Nano-emulsion formation by emulsion phase inversion. Colloids Surf A Physicochem Eng Asp 2004; 251(1-3): 53-8.
[http://dx.doi.org/10.1016/j.colsurfa.2004.09.029]
[78]
Bucak S, Deniz R. Colloid and surface chemistry: a laboratory guide for exploration of the nano world. CRC Press 2013.
[http://dx.doi.org/10.1201/b16238]
[79]
Shinoda K, Arai H. The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier. J Phys Chem 1964; 68(12): 3485-90.
[http://dx.doi.org/10.1021/j100794a007]
[80]
Izquierdo P, Esquena J, Tadros TF, et al. Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir 2004; 20(16): 6594-8.
[http://dx.doi.org/10.1021/la049566h] [PMID: 15274560]
[81]
Izquierdo P, Esquena J, Tadros TF, et al. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 2002; 18(1): 26-30.
[http://dx.doi.org/10.1021/la010808c]
[82]
Teo SY, Yew MY, Lee SY, Rathbone MJ, Gan SN, Coombes AGA. In vitro evaluation of novel phenytoin-loaded alkyd nanoemulsions designed for application in topical wound healing. J Pharm Sci 2017; 106(1): 377-84.
[http://dx.doi.org/10.1016/j.xphs.2016.06.028] [PMID: 27522920]
[83]
Bhosale RR. Nanoemulsion: A review on novel profusion in advanced drug delivery. Indian J Pharm Biol Res 2014; 2(1): 122.
[http://dx.doi.org/10.30750/ijpbr.2.1.19]
[84]
Bouchemal K. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. Int J Pharm 2004; 1-2: 241-51.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.016]
[85]
Halnor VV. Nanoemulsion: A novel platform for drug delivery system. J Mat Sci Nanotechol 2018; 6(1): 104.
[86]
Milinčić DD. Application of polyphenol-loaded nanoparticles in food industry. Nanomaterials 2019; 9(11): 1629.
[87]
Ruiz-Montañez G, Ragazzo-Sanchez JA, Picart-Palmade L, Calderón-Santoyo M, Chevalier-Lucia D. Optimization of nanoemulsions processed by high-pressure homogenization to protect a bioactive extract of jackfruit (Artocarpus heterophyllus Lam). Innov Food Sci Emerg Technol 2017; 40: 35-41.
[http://dx.doi.org/10.1016/j.ifset.2016.10.020]
[88]
Ricaurte L, Perea-Flores MJ, Martinez A, Quintanilla-Carvajal MX. Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innov Food Sci Emerg Technol 2016; 35: 75-85.
[http://dx.doi.org/10.1016/j.ifset.2016.04.004]
[89]
Solans C, Morales D, Homs M. Spontaneous emulsification. Curr Opin Colloid Interface Sci 2016; 22: 88-93.
[http://dx.doi.org/10.1016/j.cocis.2016.03.002]
[90]
Mbela TKM, Deharo E, Haemers A, Ludwig A. Submicron oil-in-water emulsion formulations for mefloquine and halofantrine: effect of electric-charge inducers on antimalarial activity in mice. J Pharm Pharmacol 2011; 50(11): 1221-5.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb03337.x] [PMID: 9877306]
[91]
Meleson K, Sara G, Thomas GM. Formation of concentrated nanoemulsions by extreme shear. Soft Materials 2004; 2(2-3): 109-23.
[http://dx.doi.org/10.1081/SMTS-200056102]
[92]
Anton N, Thierry FV. The universality of low-energy nano-emulsification. Int J Pharm 2009; 377(1-2): 142-7.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.014]
[93]
Ghosh P, Murthy R. Microemulsions: A potential drug delivery system. Curr Drug Deliv 2006; 3(2): 167-80.
[http://dx.doi.org/10.2174/156720106776359168] [PMID: 16611003]
[94]
Graves S. Structure of concentrated nanoemulsions. J Chem Phys 2005; 122(13): 13.: 134703.
[http://dx.doi.org/10.1063/1.1874952]
[95]
Jafari SM, He Y, Bhandari B. Optimization of nano-emulsions production by microfluidization. Eur Food Res Technol 2007; 225(5-6): 733-41.
[http://dx.doi.org/10.1007/s00217-006-0476-9]
[96]
Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J Control Release 2018; 270: 203-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[97]
Ali OA, Emerich D, Dranoff G, Mooney DJ. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci Transl Med 2009; 1(8): 8ra19.
[http://dx.doi.org/10.1126/scitranslmed.3000359] [PMID: 20368186]
[98]
Fischbach C, Chen R, Matsumoto T, et al. Engineering tumors with 3D scaffolds. Nat Methods 2007; 4(10): 855-60.
[http://dx.doi.org/10.1038/nmeth1085] [PMID: 17767164]
[99]
Savardekar P, Amrita B. Nanoemulsions- A review. Int J Pharm Sci Res 2016; 6312.
[100]
Reza KH. Nanoemulsion as a novel transdermal drug delivery system. Int J Pharm Sci Res 2011; 2(8): 1938.
[101]
Scholz P, Cornelia MK. Nanoemulsions produced by rotor-stator high speed stirring. Int J Pharm 2015; 482(1-2): 110-7.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.040]
[102]
Stang M, Schuchmann H, Schubert H. Emulsification in high‐pressure homogenizers. Eng Life Sci 2001; 1(4): 151-7.
[http://dx.doi.org/10.1002/1618-2863(200110)1:4<151::AID-ELSC151>3.0.CO;2-D]
[103]
Zahi MR, Wan P, Liang H, Yuan Q. Formation and stability of D-limonene organogel-based nanoemulsion prepared by a high-pressure homogenizer. J Agric Food Chem 2014; 62(52): 12563-9.
[http://dx.doi.org/10.1021/jf5032108] [PMID: 25514199]
[104]
Aithal GC. Localized in situ nanoemulgel drug delivery system of quercetin for periodontitis: Development and computational simulations. Molecules 2018; 23(6): 1363.
[http://dx.doi.org/10.3390/molecules23061363]
[105]
Sakulku U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 2009; 372(1-2): 105-11.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.029]
[106]
Utomo AT, Baker M, Pacek AW. Flow pattern, periodicity and energy dissipation in a batch rotor-stator mixer. Chem Eng Res Des 2008; 86(12): 1397-409.
[http://dx.doi.org/10.1016/j.cherd.2008.07.012]
[107]
Perrier-Cornet JM, Marie P, Gervais P. Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization. J Food Eng 2005; 66(2): 211-7.
[http://dx.doi.org/10.1016/j.jfoodeng.2004.03.008]
[108]
Walstra P. Principles of emulsion formation. Chem Eng Sci 1993; 48(2): 333-49.
[http://dx.doi.org/10.1016/0009-2509(93)80021-H]
[109]
Kraichnan RH. The structure of isotropic turbulence at very high Reynolds numbers. J Fluid Mech 1959; 5(4): 497-543.
[http://dx.doi.org/10.1017/S0022112059000362]
[110]
Albert ML, Darnell JC, Bender A, Francisco LM, Bhardwaj N, Darnell RB. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med 1998; 4(11): 1321-4.
[http://dx.doi.org/10.1038/3315] [PMID: 9809559]
[111]
Grauer OM, Molling JW, Bennink E, et al. TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol 2008; 181(10): 6720-9.
[http://dx.doi.org/10.4049/jimmunol.181.10.6720] [PMID: 18981089]
[112]
Al-Sabagh AM, Emara MM, Noor El-Din MR, Aly WR. Formation of water-in-diesel oil nano-emulsions using high energy method and studying some of their surface active properties. Egypt J Pet 2011; 20(2): 17-23.
[http://dx.doi.org/10.1016/j.ejpe.2011.06.005]
[113]
Reineccius GA. Flavour manufacturing. Source Book of Flavours 1994; pp. 572-6.
[114]
Shen L, Tang C-H. Microfluidization as a potential technique to modify surface properties of soy protein isolate. Food Res Int 2012; 48(1): 108-18.
[http://dx.doi.org/10.1016/j.foodres.2012.03.006]
[115]
Thakur A, Manpreet KW, Kumar SL. Nanoemulsion in enhancement of bioavailability of poorly soluble drugs: A review. Pharmacophore 2013; 4(1): 15-25.
[116]
Mahdi Jafari S, He Y, Bhandari B. Nano-emulsion production by sonication and microfluidization—a comparison. Int J Food Prop 2006; 9(3): 475-85.
[http://dx.doi.org/10.1080/10942910600596464]
[117]
Lee L, Norton IT. Comparing droplet breakup for a high-pressure valve homogeniser and a microfluidizer for the potential production of food-grade nanoemulsions. J Food Eng 2013; 114(2): 158-63.
[http://dx.doi.org/10.1016/j.jfoodeng.2012.08.009]
[118]
Towbin H, Pignat W, Wiesenberg I. Time-dependent cytokine production in the croton oil-induced mouse ear oedema and inhibition by prednisolone. Inflamm Res 1995; 44(S2): S160-1.
[http://dx.doi.org/10.1007/BF01778311] [PMID: 8548377]
[119]
Okada H. Brain tumor immunotherapy with type-1 polarizing strategies. Ann N Y Acad Sci 2009; 1174(1): 18-23.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04932.x] [PMID: 19769732]
[120]
Aguilera JM, David WS. Microstructural principles of food processing and engineering. Springer Science & Business Media 1999.
[121]
Kentish S, Wooster TJ, Ashokkumar M, Balachandran S, Mawson R, Simons L. The use of ultrasonics for nanoemulsion preparation. Innov Food Sci Emerg Technol 2008; 9(2): 170-5.
[http://dx.doi.org/10.1016/j.ifset.2007.07.005]
[122]
Tang SY, Shridharan P, Sivakumar M. Impact of process parameters in the generation of novel aspirin nanoemulsions - Comparative studies between ultrasound cavitation and microfluidizer. Ultrason Sonochem 2013; 20(1): 485-97.
[http://dx.doi.org/10.1016/j.ultsonch.2012.04.005] [PMID: 22633626]
[123]
Perkins E, Calvert J, Lancon JA, Parent AD, Zhang J. Inhibition of H-ras as a treatment for experimental brain C6 glioma. Brain Res Mol Brain Res 2003; 111(1-2): 42-51.
[http://dx.doi.org/10.1016/S0169-328X(02)00668-X] [PMID: 12654504]
[124]
Shi Y, Li H, Li J, et al. Development, optimization and evaluation of emodin loaded nanoemulsion prepared by ultrasonic emulsification. J Drug Deliv Sci Technol 2015; 27: 46-55.
[http://dx.doi.org/10.1016/j.jddst.2015.04.003]
[125]
Canselier JP. Ultrasound emulsification—an overview. Journal of dispersion science and technology 2002; 23(1-3): 333-49.
[http://dx.doi.org/10.1080/01932690208984209]
[126]
Jafari SM, He Y, Bhandari B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. J Food Eng 2007; 82(4): 478-88.
[http://dx.doi.org/10.1016/j.jfoodeng.2007.03.007]
[127]
Zhang S, Zhang M, Fang Z, Liu Y. Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. Lebensm Wiss Technol 2017; 75: 316-22.
[http://dx.doi.org/10.1016/j.lwt.2016.08.046]
[128]
Basha SP, Koteswara PR. A brief introduction to methods of preparation, applications and characterization of nanoemulsion drug delivery. IJRPB 1(1).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy