Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Constructing and Analyzing Competing Endogenous RNA Networks Reveal Potential Biomarkers in Human Colorectal Cancer

Author(s): Jing Zhang, Xia Meng, Shanshan Deng and Wei Wang*

Volume 26, Issue 13, 2023

Published on: 31 March, 2023

Page: [2333 - 2344] Pages: 12

DOI: 10.2174/1386207326666230213111028

Price: $65

Abstract

Background: The role of the lncRNA-miRNA-mRNA competing endogenous RNA network in human colorectal cancer remains largely unknown, and accurate prognostics still elude us. This study aimed to identify differentially expressed mRNAs and lncRNAs between tumor and normal samples, delineate their interactions and find reliable biomarkers.

Material and Methods: We downloaded the RNA sequencing profiles and clinical information of 624 CRC patients from The Cancer Genome Atlas database. After expression difference analysis and interaction prediction, we identified 37 miRNAs, 5 lncRNAs, and 93 mRNAs to construct the ceRNA network (|log2 Fold Change| > 1, P-value < 0.05), and assessed relationships between them and clinical characteristics by t-test, Spearman correlation analysis, and Kaplan-Meier curve analysis. Besides, we validated PIGR and CD3D protein expression by immunohistochemistry staining.

Results: PIGR and CD3D mRNAs showed a negative correlation with tumor stage and their protein levels were lower in tumor tissues than in normal tissues. By survival analysis, MYC, F2RL2, and GINS2 positively correlated with the overall survival of CRC patients.

Conclusion: Our study provides a novel comprehension of lncRNA-related ceRNA network in CRC and candidate molecules that serve as potential biomarkers of tumor stage and patient survival.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(3), 177-193.
[http://dx.doi.org/10.3322/caac.21395] [PMID: 28248415]
[3]
Huang, L.; Cai, J.L.; Huang, P.Z.; Kang, L.; Huang, M.J.; Wang, L.; Wang, J.P. miR19b-3p promotes the growth and metastasis of colorectal cancer via directly targeting ITGB8. Am. J. Cancer Res., 2017, 7(10), 1996-2008.
[PMID: 29119049]
[4]
Lulla, A.R.; Slifker, M.J.; Zhou, Y.; Lev, A.; Einarson, M.B.; Dicker, D.T.; El-Deiry, W.S. miR-6883 family miRNAs target CDK4/6 to induce G1 phase cell cycle arrest in colon cancer cells. Cancer Res., 2017, 77(24), 6902-6913.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1767] [PMID: 29061672]
[5]
Takahashi, H.; Takahashi, M.; Ohnuma, S.; Unno, M.; Yoshino, Y.; Ouchi, K.; Takahashi, S.; Yamada, Y.; Shimodaira, H.; Ishioka, C. microRNA-193a-3p is specifically down-regulated and acts as a tumor suppressor in BRAF-mutated colorectal cancer. BMC Cancer, 2017, 17(1), 723.
[http://dx.doi.org/10.1186/s12885-017-3739-x] [PMID: 29115941]
[6]
Han, D.; Wang, M.; Ma, N.; Xu, Y.; Jiang, Y.; Gao, X. Long noncoding RNAs: Novel players in colorectal cancer. Cancer Lett., 2015, 361(1), 13-21.
[http://dx.doi.org/10.1016/j.canlet.2015.03.002] [PMID: 25754818]
[7]
Li, H.; Ma, S.Q.; Huang, J.; Chen, X.P.; Zhou, H.H. Roles of long noncoding RNAs in colorectal cancer metastasis. Oncotarget, 2017, 8(24), 39859-39876.
[http://dx.doi.org/10.18632/oncotarget.16339] [PMID: 28418892]
[8]
Xu, M.; Qi, P.; Du, X. Long non-coding RNAs in colorectal cancer: Implications for pathogenesis and clinical application. Mod. Pathol., 2014, 27(10), 1310-1320.
[http://dx.doi.org/10.1038/modpathol.2014.33] [PMID: 24603586]
[9]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[10]
Chen, D.; Lu, Y.; Zhang, J.; Wei, X.; Wang, F.; Zeng, Z.; Pan, Z.; Yuan, Y.; Wang, F.; Pelicano, H.; Chiao, P.J.; Huang, P.; Xie, D.; Li, Y.; Ju, H.; Xu, R. Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression. Theranostics, 2017, 7(19), 4836-4849.
[http://dx.doi.org/10.7150/thno.20942] [PMID: 29187907]
[11]
Li, Y.; Zeng, C.; Hu, J.; Pan, Y.; Shan, Y.; Liu, B.; Jia, L. Long non-coding RNA-SNHG7 acts as a target of miR-34a to increase GALNT7 level and regulate PI3K/Akt/mTOR pathway in colorectal cancer progression. J. Hematol. Oncol., 2018, 11(1), 89.
[http://dx.doi.org/10.1186/s13045-018-0632-2] [PMID: 29970122]
[12]
Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res., 2002, 30(1), 207-210.
[http://dx.doi.org/10.1093/nar/30.1.207] [PMID: 11752295]
[13]
Stange, D.E.; Engel, F.; Longerich, T.; Koo, B.K.; Koch, M.; Delhomme, N.; Aigner, M.; Toedt, G.; Schirmacher, P.; Lichter, P.; Weitz, J.; Radlwimmer, B. Expression of an ASCL2 related stem cell signature and IGF2 in colorectal cancer liver metastases with 11p15.5 gain. Gut, 2010, 59(9), 1236-1244.
[http://dx.doi.org/10.1136/gut.2009.195701] [PMID: 20479215]
[14]
Jorissen, R.N.; Gibbs, P.; Christie, M.; Prakash, S.; Lipton, L.; Desai, J.; Kerr, D.; Aaltonen, L.A.; Arango, D.; Kruhøffer, M.; Ørntoft, T.F.; Andersen, C.L.; Gruidl, M.; Kamath, V.P.; Eschrich, S.; Yeatman, T.J.; Sieber, O.M. Metastasis-associated gene expression changes predict poor outcomes in patients with Dukes Stage B and C colorectal cancer. Clin. Cancer Res., 2009, 15(24), 7642-7651.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1431] [PMID: 19996206]
[15]
Marisa, L.; de Reyniès, A.; Duval, A.; Selves, J.; Gaub, M.P.; Vescovo, L.; Etienne-Grimaldi, M.C.; Schiappa, R.; Guenot, D.; Ayadi, M.; Kirzin, S.; Chazal, M.; Fléjou, J.F.; Benchimol, D.; Berger, A.; Lagarde, A.; Pencreach, E.; Piard, F.; Elias, D.; Parc, Y.; Olschwang, S.; Milano, G.; Laurent-Puig, P.; Boige, V. Gene expression classification of colon cancer into molecular subtypes: Characterization, validation, and prognostic value. PLoS Med., 2013, 10(5), e1001453.
[http://dx.doi.org/10.1371/journal.pmed.1001453] [PMID: 23700391]
[16]
Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1), 139-140.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[17]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[18]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[19]
Yu, G.; Wang, L.G.; Yan, G.R.; He, Q.Y. DOSE: An R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics, 2015, 31(4), 608-609.
[http://dx.doi.org/10.1093/bioinformatics/btu684] [PMID: 25677125]
[20]
Furió-Tarí, P.; Tarazona, S.; Gabaldón, T.; Enright, A.J.; Conesa, A. SpongeScan: A web for detecting microRNA binding elements in lncRNA sequences. Nucleic Acids Res., 2016, 44(W1), W176-W180.
[http://dx.doi.org/10.1093/nar/gkw443] [PMID: 27198221]
[21]
Chou, C.H.; Shrestha, S.; Yang, C.D. MiRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res., 2017, 46(D1), D296-302.
[PMID: 29126174]
[22]
Li, R.; Qu, H.; Wang, S.; Wei, J.; Zhang, L.; Ma, R.; Lu, J.; Zhu, J.; Zhong, W.D.; Jia, Z. GDCRNATools: An R/Bioconductor package for integrative analysis of lncRNA, miRNA and mRNA data in GDC. Bioinformatics, 2018, 34(14), 2515-2517.
[http://dx.doi.org/10.1093/bioinformatics/bty124] [PMID: 29509844]
[23]
Paci, P.; Colombo, T.; Farina, L. Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst. Biol., 2014, 8(1), 83.
[http://dx.doi.org/10.1186/1752-0509-8-83] [PMID: 25033876]
[24]
Terry, M. Modeling Survival Data: Extending the {C}ox Model; Springer: New York, 2000. 978-1-4419-3161-0.
[25]
Ren, J.; Ding, L.; Zhang, D.; Shi, G.; Xu, Q.; Shen, S.; Wang, Y.; Wang, T.; Hou, Y. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics, 2018, 8(14), 3932-3948.
[http://dx.doi.org/10.7150/thno.25541] [PMID: 30083271]
[26]
Wu, K.; Liang, W.C.; Feng, L.; Pang, J.; Waye, M.M.Y.; Zhang, J.F.; Fu, W.M. H19 mediates methotrexate resistance in colorectal cancer through activating Wnt/β-catenin pathway. Exp. Cell Res., 2017, 350(2), 312-317.
[http://dx.doi.org/10.1016/j.yexcr.2016.12.003] [PMID: 27919747]
[27]
Chen, S.; Bu, D.; Ma, Y.; Zhu, J.; Chen, G.; Sun, L.; Zuo, S.; Li, T.; Pan, Y.; Wang, X.; Liu, Y.; Wang, P. H19 overexpression induces resistance to 1,25(OH)2D3 by targeting VDR through miR-675-5p in colon cancer cells. Neoplasia, 2017, 19(3), 226-236.
[http://dx.doi.org/10.1016/j.neo.2016.10.007] [PMID: 28189050]
[28]
Ding, D.; Li, C.; Zhao, T.; Li, D.; Yang, L.; Zhang, B. LncRNA H19/miR-29b-3p/PGRN axis promoted epithelial-mesenchymal transition of colorectal cancer cells by acting on wnt signaling. Mol. Cells, 2018, 41(5), 423-435.
[PMID: 29754471]
[29]
Yang, Q.; Wang, X.; Tang, C.; Chen, X.; He, J. H19 promotes the migration and invasion of colon cancer by sponging miR-138 to upregulate the expression of HMGA1. Int. J. Oncol., 2017, 50(5), 1801-1809.
[http://dx.doi.org/10.3892/ijo.2017.3941] [PMID: 28358427]
[30]
Han, D.; Gao, X.; Wang, M.; Qiao, Y.; Xu, Y.; Yang, J.; Dong, N.; He, J.; Sun, Q.; Lv, G.; Xu, C.; Tao, J.; Ma, N. Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget, 2016, 7(16), 22159-22173.
[http://dx.doi.org/10.18632/oncotarget.8063] [PMID: 26989025]
[31]
Ohtsuka, M.; Ling, H.; Ivan, C.; Pichler, M.; Matsushita, D.; Goblirsch, M.; Stiegelbauer, V.; Shigeyasu, K.; Zhang, X.; Chen, M.; Vidhu, F.; Bartholomeusz, G.A.; Toiyama, Y.; Kusunoki, M.; Doki, Y.; Mori, M.; Song, S.; Gunther, J.R.; Krishnan, S.; Slaby, O.; Goel, A.; Ajani, J.A.; Radovich, M.; Calin, G.A. H19 noncoding RNA, an independent prognostic factor, regulates essential Rb-E2F and CDK8-β-catenin signaling in colorectal cancer. EBioMedicine, 2016, 13, 113-124.
[http://dx.doi.org/10.1016/j.ebiom.2016.10.026] [PMID: 27789274]
[32]
Wang, X.; Wu, X. The role of MicroRNA-1207-5p in colorectal cancer. Clin. Lab., 2017, 63(11+12/2017), 1875-1882.
[http://dx.doi.org/10.7754/Clin.Lab.2017.170625] [PMID: 29226644]
[33]
Li, C.; Zuo, D.; Yin, L.; Lin, Y.; Li, C.; Liu, T.; Wang, L. Prognostic value of MUC2 expression in colorectal cancer: A systematic review and meta-analysis. Gastroenterol. Res. Pract., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/6986870] [PMID: 29967641]
[34]
Kasprzak, A.; Siodła, E.; Andrzejewska, M.; Szmeja, J.; Seraszek-Jaros, A.; Cofta, S.; Szaflarski, W. Differential expression of mucin 1 and mucin 2 in colorectal cancer. World J. Gastroenterol., 2018, 24(36), 4164-4177.
[http://dx.doi.org/10.3748/wjg.v24.i36.4164] [PMID: 30271081]
[35]
Al-Maghrabi, J.; Sultana, S.; Gomaa, W. Low expression of MUC2 is associated with longer disease-free survival in patients with colorectal carcinoma. Saudi J. Gastroenterol., 2018, 25(1), 61-66.
[PMID: 30226481]
[36]
Torrejón, B.; Cristóbal, I.; Caramés, C.; Prieto-Potín, I.; Chamizo, C.; Santos, A.; Sanz-Alvarez, M.; Serna-Blasco, R.; Luque, M.; Madoz-Gúrpide, J.; Rojo, F.; García-Foncillas, J. Analysis of potential alterations affecting SETBP1 as a novel contributing mechanism to inhibit PP2A in colorectal cancer patients. World J. Surg., 2018, 42(11), 3771-3778.
[http://dx.doi.org/10.1007/s00268-018-4684-9] [PMID: 29796729]
[37]
Liu, J.; Li, H.; Zheng, B.; Sun, L.; Yuan, Y.; Xing, C. Competitive endogenous RNA (cerna) regulation network of lncRNA–miRNA–mRNA in colorectal carcinogenesis. Dig. Dis. Sci., 2019, 64(7), 1868-1877.
[http://dx.doi.org/10.1007/s10620-019-05506-9] [PMID: 30734239]
[38]
Yuan, W.; Li, X.; Liu, L.; Wei, C.; Sun, D.; Peng, S.; Jiang, L. Comprehensive analysis of lncRNA-associated ceRNA network in colorectal cancer. Biochem. Biophys. Res. Commun., 2019, 508(2), 374-379.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.151] [PMID: 30503344]
[39]
Zhu, Y.; Bian, Y.; Zhang, Q.; Hu, J.; Li, L.; Yang, M.; Qian, H.; Yu, L.; Liu, B.; Qian, X. Construction and analysis of dysregulated lncRNA‐associated ceRNA network in colorectal cancer. J. Cell. Biochem., 2019, 120(6), 9250-9263.
[http://dx.doi.org/10.1002/jcb.28201] [PMID: 30525245]
[40]
Boltin, D.; Perets, T.T.; Vilkin, A.; Niv, Y. Mucin function in inflammatory bowel disease: An update. J. Clin. Gastroenterol., 2013, 47(2), 106-111.
[http://dx.doi.org/10.1097/MCG.0b013e3182688e73] [PMID: 23164684]
[41]
Shan, Y.S.; Hsu, H.P.; Lai, M.D.; Yen, M.C.; Fang, J.H.; Weng, T.Y.; Chen, Y.L. Suppression of mucin 2 promotes interleukin-6 secretion and tumor growth in an orthotopic immune-competent colon cancer animal model. Oncol. Rep., 2014, 32(6), 2335-2342.
[http://dx.doi.org/10.3892/or.2014.3544] [PMID: 25322805]
[42]
Yang, H.S.; Tamayo, R.; Almonte, M. Clinical significance of MUC1, MUC2 and CK17 expression patterns for diagnosis of pancreatobiliary arcinoma. Biotech Histochem, 2012, 87(2), 126-32.
[43]
Bao, Y.; Guo, Y.; Li, Z.; Fang, W.; Yang, Y.; Li, X.; Li, Z.; Xiong, B.; Chen, Z.; Wang, J.; Kang, K.; Gou, D.; Yang, W. MicroRNA profiling in Muc2 knockout mice of colitis-associated cancer model reveals epigenetic alterations during chronic colitis malignant transformation. PLoS One, 2014, 9(6), e99132.
[http://dx.doi.org/10.1371/journal.pone.0099132] [PMID: 24941171]
[44]
Ocak, S.; Pedchenko, T.V.; Chen, H.; Harris, F.T.; Qian, J.; Polosukhin, V.; Pilette, C.; Sibille, Y.; Gonzalez, A.L.; Massion, P.P. Loss of polymeric immunoglobulin receptor expression is associated with lung tumourigenesis. Eur. Respir. J., 2012, 39(5), 1171-1180.
[http://dx.doi.org/10.1183/09031936.00184410] [PMID: 21965228]
[45]
Berntsson, J.; Lundgren, S.; Nodin, B.; Uhlén, M.; Gaber, A.; Jirström, K. Expression and prognostic significance of the polymeric immunoglobulin receptor in epithelial ovarian cancer. J. Ovarian Res., 2014, 7(1), 26.
[http://dx.doi.org/10.1186/1757-2215-7-26] [PMID: 24568264]
[46]
Qi, X.; Li, X.; Sun, X. Reduced expression of polymeric immunoglobulin receptor (pIgR) in nasopharyngeal carcinoma and its correlation with prognosis. Tumour Biol., 2016, 37(8), 11099-11104.
[http://dx.doi.org/10.1007/s13277-016-4791-x] [PMID: 26910773]
[47]
Fristedt, R.; Gaber, A.; Hedner, C.; Nodin, B.; Uhlén, M.; Eberhard, J.; Jirström, K. Expression and prognostic significance of the polymeric immunoglobulin receptor in esophageal and gastric adenocarcinoma. J. Transl. Med., 2014, 12(1), 83.
[http://dx.doi.org/10.1186/1479-5876-12-83] [PMID: 24694107]
[48]
Traicoff, J.L.; De Marchis, L.; Ginsburg, B.L.; Zamora, R.E.; Khattar, N.H.; Blanch, V.J.; Plummer, S.; Bargo, S.A.; Templeton, D.J.; Casey, G.; Kaetzel, C.S. Characterization of the human polymeric immunoglobulin receptor (PIGR) 3'UTR and differential expression of PIGR mRNA during colon tumorigenesis. J. Biomed. Sci., 2003, 10(6), 792-804.
[http://dx.doi.org/10.1159/000073967] [PMID: 14631119]
[49]
Ågesen, T.H.; Sveen, A.; Merok, M.A.; Lind, G.E.; Nesbakken, A.; Skotheim, R.I.; Lothe, R.A. ColoGuideEx: A robust gene classifier specific for stage II colorectal cancer prognosis. Gut, 2012, 61(11), 1560-1567.
[http://dx.doi.org/10.1136/gutjnl-2011-301179] [PMID: 22213796]
[50]
Ai, J.; Tang, Q.; Wu, Y.; Xu, Y.; Feng, T.; Zhou, R.; Chen, Y.; Gao, X.; Zhu, Q.; Yue, X.; Pan, Q.; Xu, S.; Li, J.; Huang, M.; Daugherty-Holtrop, J.; He, Y.; Xu, H.E.; Fan, J.; Ding, J.; Geng, M. The role of polymeric immunoglobulin receptor in inflammation-induced tumor metastasis of human hepatocellular carcinoma. J. Natl. Cancer Inst., 2011, 103(22), 1696-1712.
[http://dx.doi.org/10.1093/jnci/djr360] [PMID: 22025622]
[51]
Mei, Z.; Liu, Y.; Liu, C.; Cui, A.; Liang, Z.; Wang, G.; Peng, H.; Cui, L.; Li, C. Tumour-infiltrating inflammation and prognosis in colorectal cancer: Systematic review and meta-analysis. Br. J. Cancer, 2014, 110(6), 1595-1605.
[http://dx.doi.org/10.1038/bjc.2014.46] [PMID: 24504370]
[52]
Yang, Y.; Zang, Y.; Zheng, C.; Li, Z.; Gu, X.; Zhou, M.; Wang, Z.; Xiang, J.; Chen, Z.; Zhou, Y. CD3D is associated with immune checkpoints and predicts favorable clinical outcome in colon cancer. Immunotherapy, 2020, 12(1), 25-35.
[http://dx.doi.org/10.2217/imt-2019-0145] [PMID: 31914842]
[53]
Seo, A.N.; Yang, J.M.; Kim, H.; Jheon, S.; Kim, K.; Lee, C.T.; Jin, Y.; Yun, S.; Chung, J-H.; Paik, J.H. Clinicopathologic and prognostic significance of c-MYC copy number gain in lung adenocarcinomas. Br. J. Cancer, 2014, 110(11), 2688-2699.
[http://dx.doi.org/10.1038/bjc.2014.218] [PMID: 24809777]
[54]
Tsiatis, A.C.; Herceg, M.E.; Keedy, V.L. Prognostic significance of c-Myc expression in soft tissue leiomyosarcoma. Mod Pathol, 2009, 22(11), 1432-1438.
[55]
Wang, W.; Xue, L.; Wang, P. Prognostic value of β-catenin, c-myc, and cyclin D1 expressions in patients with esophageal squamous cell carcinoma. Med. Oncol., 2011, 28(1), 163-169.
[http://dx.doi.org/10.1007/s12032-010-9436-0] [PMID: 20143187]
[56]
Lee, K.S.; Kwak, Y.; Nam, K.H.; Kim, D.W.; Kang, S.B.; Choe, G.; Kim, W.H.; Lee, H.S. Favorable prognosis in colorectal cancer patients with co-expression of c-MYC and ß-catenin. BMC Cancer, 2016, 16(1), 730.
[http://dx.doi.org/10.1186/s12885-016-2770-7] [PMID: 27619912]
[57]
Liu, M.; Pan, H.; Zhang, F.; Zhang, Y.; Zhang, Y.; Xia, H.; Zhu, J.; Fu, W.; Zhang, X. Identification of TNM stage-specific genes in lung adenocarcinoma by genome-wide expression profiling. Oncol. Lett., 2013, 6(3), 763-768.
[http://dx.doi.org/10.3892/ol.2013.1469] [PMID: 24137407]
[58]
Zheng, M.; Zhou, Y.; Yang, X.; Tang, J.; Wei, D.; Zhang, Y.; Jiang, J.L.; Chen, Z.; Zhu, P. High GINS2 transcript level predicts poor prognosis and correlates with high histological grade and endocrine therapy resistance through mammary cancer stem cells in breast cancer patients. Breast Cancer Res. Treat., 2014, 148(2), 423-436.
[http://dx.doi.org/10.1007/s10549-014-3172-7] [PMID: 25348432]
[59]
Ouyang, F.; Liu, J.; Xia, M.; Lin, C.; Wu, X.; Ye, L.; Song, L.; Li, J.; Wang, J.; Guo, P.; He, M. GINS2 is a novel prognostic biomarker and promotes tumor progression in early-stage cervical cancer. Oncol. Rep., 2017, 37(5), 2652-2662.
[http://dx.doi.org/10.3892/or.2017.5573] [PMID: 28405687]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy