Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

LncRNA-mediated Modulation of Endothelial Cells: Novel Progress in the Pathogenesis of Coronary Atherosclerotic Disease

Author(s): Shao Ouyang, Zhi-Xiang Zhou, Hui-Ting Liu, Zhong Ren, Huan Liu, Nian-Hua Deng, Kai-Jiang Tian, Kun Zhou, Hai-lin Xie and Zhi-Sheng Jiang*

Volume 31, Issue 10, 2024

Published on: 22 March, 2023

Page: [1251 - 1264] Pages: 14

DOI: 10.2174/0929867330666230213100732

Price: $65

Abstract

Coronary atherosclerotic disease (CAD) is a common cardiovascular disease and an important cause of death. Moreover, endothelial cells (ECs) injury is an early pathophysiological feature of CAD, and long noncoding RNAs (lncRNAs) can modulate gene expression. Recent studies have shown that lncRNAs are involved in the pathogenesis of CAD, especially by regulating ECs. In this review, we summarize the novel progress of lncRNA-modulated ECs in the pathogenesis of CAD, including ECs proliferation, migration, adhesion, angiogenesis, inflammation, apoptosis, autophagy, and pyroptosis. Thus, as lncRNAs regulate ECs in CAD, lncRNAs will provide ideal and novel targets for the diagnosis and drug therapy of CAD.

[1]
Sun, S.; Cao, W.; Ge, Y.; Ran, J.; Sun, F.; Zeng, Q.; Guo, M.; Huang, J.; Lee, R.S.Y.; Tian, L.; Wellenius, G.A. Outdoor light at night and risk of coronary heart disease among older adults: a prospective cohort study. Eur. Heart J., 2021, 42(8), 822-830.
[http://dx.doi.org/10.1093/eurheartj/ehaa846] [PMID: 33205210]
[2]
Peters, S.A.E.; Colantonio, L.D.; Dai, Y.; Zhao, H.; Bittner, V.; Farkouh, M.E.; Dluzniewski, P.; Poudel, B.; Muntner, P.; Woodward, M. Trends in recurrent coronary heart disease after myocardial infarction among us women and men between 2008 and 2017. Circulation, 2021, 143(7), 650-660.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047065] [PMID: 32951451]
[3]
Zeitouni, M.; Nanna, M.G.; Sun, J.L.; Chiswell, K.; Peterson, E.D.; Navar, A.M. Performance of guideline recommendations for prevention of myocardial infarction in young adults. J. Am. Coll. Cardiol., 2020, 76(6), 653-664.
[http://dx.doi.org/10.1016/j.jacc.2020.06.030] [PMID: 32762899]
[4]
Deal, B.J.; Huffman, M.D.; Binns, H.; Stone, N.J. Perspective: childhood obesity requires new strategies for prevention. Adv. Nutr., 2020, 11(5), 1071-1078.
[http://dx.doi.org/10.1093/advances/nmaa040] [PMID: 32361757]
[5]
Li, J.J.; Li, S.; Zhu, C.G.; Wu, N.Q.; Zhang, Y.; Guo, Y.L.; Gao, Y.; Li, X.L.; Qing, P.; Cui, C.J.; Xu, R.X.; Jiang, Z.W.; Sun, J.; Liu, G.; Dong, Q. Familial hypercholesterolemia phenotype in chinese patients undergoing coronary angiography. Arterioscler. Thromb. Vasc. Biol., 2017, 37(3), 570-579.
[http://dx.doi.org/10.1161/ATVBAHA.116.308456] [PMID: 27932355]
[6]
Mulders, T.A.; Sivapalaratnam, S.; Stroes, E.S.G.; Kastelein, J.J.P.; Guerci, A.D.; Pinto-Sietsma, S.J. Asymptomatic individuals with a positive family history for premature coronary artery disease and elevated coronary calcium scores benefit from statin treatment: a post hoc analysis from the St. Francis Heart Study. JACC Cardiovasc. Imaging, 2012, 5(3), 252-260.
[http://dx.doi.org/10.1016/j.jcmg.2011.11.014] [PMID: 22421169]
[7]
Bai, Y.; Zhang, Q.; Su, Y.; Pu, Z.; Li, K. Modulation of the proliferation/apoptosis balance of vascular smooth muscle cells in atherosclerosis by lncRNA-MEG3 via regulation of miR-26a/Smad1 Axis. Int. Heart J., 2019, 60(2), 444-450.
[http://dx.doi.org/10.1536/ihj.18-195] [PMID: 30745534]
[8]
Taheri, M.; Shoorei, H.; Dinger, M.E.; Ghafouri-Fard, S. Perspectives on the role of non-coding RNAs in the regulation of expression and function of the estrogen receptor. Cancers (Basel), 2020, 12(8), 2162.
[http://dx.doi.org/10.3390/cancers12082162] [PMID: 32759784]
[9]
Jackson, C.L.; Keeton, J.Z.; Eason, S.J.; Ahmad, Z.A.; Ayers, C.R.; Gore, M.O.; McGuire, D.K.; Sayers, M.H.; Khera, A. Identifying familial hypercholesterolemia using a blood donor screening program with more than 1 million volunteer donors. JAMA Cardiol., 2019, 4(7), 685-689.
[http://dx.doi.org/10.1001/jamacardio.2019.1518] [PMID: 31116347]
[10]
Sun, H.; Wang, J.; Que, J.; Peng, Y.; Yu, Y.; Wang, L.; Ye, H.; Huang, K.; Xue, Y.; Zhou, Y.; Ji, K. RNA sequencing revealing the role of AMP-activated protein kinase signaling in mice myocardial ischemia reperfusion injury. Gene, 2019, 703, 91-101.
[http://dx.doi.org/10.1016/j.gene.2019.04.010] [PMID: 30974198]
[11]
Forini, F.; Nicolini, G.; Kusmic, C.; D’Aurizio, R.; Mercatanti, A.; Iervasi, G.; Pitto, L. T3 critically affects the Mhrt/Brg1 axis to regulate the cardiac MHC switch: role of an epigenetic cross-talk. Cells, 2020, 9(10), 2155.
[http://dx.doi.org/10.3390/cells9102155] [PMID: 32987653]
[12]
Xu, S.; Xu, Y.; Liu, P.; Zhang, S.; Liu, H.; Slavin, S.; Kumar, S.; Koroleva, M.; Luo, J.; Wu, X.; Rahman, A.; Pelisek, J.; Jo, H.; Si, S.; Miller, C.L.; Jin, Z.G. The novel coronary artery disease risk gene JCAD/KIAA1462 promotes endothelial dysfunction and atherosclerosis. Eur. Heart J., 2019, 40(29), 2398-2408.
[http://dx.doi.org/10.1093/eurheartj/ehz303] [PMID: 31539914]
[13]
Park, S.H.; Belcastro, E.; Hasan, H.; Matsushita, K.; Marchandot, B.; Abbas, M.; Toti, F.; Auger, C.; Jesel, L.; Ohlmann, P.; Morel, O.; Schini-Kerth, V.B. Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and dysfunction: protective effect of gliflozins. Cardiovasc. Diabetol., 2021, 20(1), 65.
[http://dx.doi.org/10.1186/s12933-021-01252-3] [PMID: 33726768]
[14]
Boulberdaa, M.; Scott, E.; Ballantyne, M.; Garcia, R.; Descamps, B.; Angelini, G.D.; Brittan, M.; Hunter, A.; McBride, M.; McClure, J.; Miano, J.M.; Emanueli, C.; Mills, N.L.; Mountford, J.C.; Baker, A.H. A role for the long noncoding RNA sencr in commitment and function of endothelial cells. Mol. Ther., 2016, 24(5), 978-990.
[http://dx.doi.org/10.1038/mt.2016.41] [PMID: 26898221]
[15]
Thomas, A.A.; Biswas, S.; Feng, B.; Chen, S.; Gonder, J.; Chakrabarti, S. lncRNA H19 prevents endothelial–mesenchymal transition in diabetic retinopathy. Diabetologia, 2019, 62(3), 517-530.
[http://dx.doi.org/10.1007/s00125-018-4797-6] [PMID: 30612136]
[16]
Dieci, G.; Fiorino, G.; Castelnuovo, M.; Teichmann, M.; Pagano, A. The expanding RNA polymerase III transcriptome. Trends Genet., 2007, 23(12), 614-622.
[http://dx.doi.org/10.1016/j.tig.2007.09.001] [PMID: 17977614]
[17]
Holoch, D.; Moazed, D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet., 2015, 16(2), 71-84.
[http://dx.doi.org/10.1038/nrg3863] [PMID: 25554358]
[18]
St Laurent, G.; Wahlestedt, C.; Kapranov, P. The Landscape of long noncoding RNA classification. Trends Genet., 2015, 31(5), 239-251.
[http://dx.doi.org/10.1016/j.tig.2015.03.007] [PMID: 25869999]
[19]
Jiang, S.; Cheng, S.J.; Ren, L.C.; Wang, Q.; Kang, Y.J.; Ding, Y.; Hou, M.; Yang, X.X.; Lin, Y.; Liang, N.; Gao, G. An expanded landscape of human long noncoding RNA. Nucleic Acids Res., 2019, 47(15), 7842-7856.
[http://dx.doi.org/10.1093/nar/gkz621] [PMID: 31350901]
[20]
Wang, C.; Wang, L.; Ding, Y.; Lu, X.; Zhang, G.; Yang, J.; Zheng, H.; Wang, H.; Jiang, Y.; Xu, L. LncRNA structural characteristics in epigenetic regulation. Int. J. Mol. Sci., 2017, 18(12), 2659.
[http://dx.doi.org/10.3390/ijms18122659] [PMID: 29292750]
[21]
Liu, J.; Li, Y.; Tong, J.; Gao, J.; Guo, Q.; Zhang, L.; Wang, B.; Zhao, H.; Wang, H.; Jiang, E.; Kurita, R.; Nakamura, Y.; Tanabe, O.; Engel, J.D.; Bresnick, E.H.; Zhou, J.; Shi, L. Long non-coding RNA-dependent mechanism to regulate heme biosynthesis and erythrocyte development. Nat. Commun., 2018, 9(1), 4386.
[http://dx.doi.org/10.1038/s41467-018-06883-x] [PMID: 30349036]
[22]
Sun, Q.; Hao, Q.; Prasanth, K.V. Nuclear long noncoding RNAs: Key regulators of gene expression. Trends Genet., 2018, 34(2), 142-157.
[http://dx.doi.org/10.1016/j.tig.2017.11.005] [PMID: 29249332]
[23]
Yubero-Serrano, E.M.; Fernandez-Gandara, C.; Garcia-Rios, A.; Rangel-Zuñiga, O.A.; Gutierrez-Mariscal, F.M.; Torres-Peña, J.D.; Marin, C.; Lopez-Moreno, J.; Castaño, J.P.; Delgado-Lista, J.; Ordovas, J.M.; Perez-Martinez, P.; Lopez-Miranda, J. Mediterranean diet and endothelial function in patients with coronary heart disease: An analysis of the CORDIOPREV randomized controlled trial. PLoS Med., 2020, 17(9), e1003282.
[http://dx.doi.org/10.1371/journal.pmed.1003282] [PMID: 32903262]
[24]
Latorre, E.; Pilling, L.C.; Lee, B.P.; Bandinelli, S.; Melzer, D.; Ferrucci, L.; Harries, L.W. The VEGFA156b isoform is dysregulated in senescent endothelial cells and may be associated with prevalent and incident coronary heart disease. Clin. Sci. (Lond.), 2018, 132(3), 313-325.
[http://dx.doi.org/10.1042/CS20171556] [PMID: 29330351]
[25]
Zhou, H.; Simion, V.; Pierce, J.B.; Haemmig, S.; Chen, A.F.; Feinberg, M.W. LncRNA-MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and cis -modulation of MAP3K4. FASEB J., 2021, 35(1), e21133.
[http://dx.doi.org/10.1096/fj.202001654RR] [PMID: 33184917]
[26]
Radhakrishnan, R.; Kowluru, R.A.; Long Noncoding, R.N.A. Long noncoding RNA MALAT1 and regulation of the antioxidant defense system in diabetic retinopathy. Diabetes, 2021, 70(1), 227-239.
[http://dx.doi.org/10.2337/db20-0375] [PMID: 33051272]
[27]
Liao, B.; Chen, R.; Lin, F.; Mai, A.; Chen, J.; Li, H.; Xu, Z.; Dong, S. Long noncoding RNA HOTTIP promotes endothelial cell proliferation and migration via activation of the Wnt/β-catenin pathway. J. Cell. Biochem., 2018, 119(3), 2797-2805.
[http://dx.doi.org/10.1002/jcb.26448] [PMID: 29058802]
[28]
Wu, Z.; He, Y.; Li, D.; Fang, X.; Shang, T.; Zhang, H.; Zheng, X. Long noncoding RNA MEG3 suppressed endothelial cell proliferation and migration through regulating miR-21. Am. J. Transl. Res., 2017, 9(7), 3326-3335.
[PMID: 28804550]
[29]
Li, P.; Li, Y.; Chen, L.; Ma, X.; Yan, X.; Yan, M.; Qian, B.; Wang, F.; Xu, J.; Yin, J.; Xu, G.; Sun, K. Long noncoding RNA uc003pxg.1 regulates endothelial cell proliferation and migration via miR-25-5p in coronary artery disease. Int. J. Mol. Med., 2021, 48(2), 160.
[http://dx.doi.org/10.3892/ijmm.2021.4993] [PMID: 34212983]
[30]
Shang, J.; Li, Q.Z.; Zhang, J.Y.; Yuan, H.J. FAL1 regulates endothelial cell proliferation in diabetic arteriosclerosis through PTEN/AKT pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(19), 6492-6499.
[PMID: 30338819]
[31]
Wang, X.; Zhao, Z.; Zhang, W.; Wang, Y. Long noncoding RNA LINC00968 promotes endothelial cell proliferation and migration via regulating miR-9-3p expression. J. Cell. Biochem., 2018.
[PMID: 30485507]
[32]
Du, H.; Yang, L.; Zhang, H.; Zhang, X.; Shao, H. LncRNA TUG1 silencing enhances proliferation and migration of ox-LDL-treated human umbilical vein endothelial cells and promotes atherosclerotic vascular injury repairing via the Runx2/ANPEP axis. Int. J. Cardiol., 2021, 338, 204-214.
[http://dx.doi.org/10.1016/j.ijcard.2021.05.014] [PMID: 33971184]
[33]
Zhang, S.; Xie, B.; Wang, L.; Yang, H.; Zhang, H.; Chen, Y.; Wang, F.; Liu, C.; He, H. Macrophage-mediated vascular permeability via VLA4/VCAM1 pathway dictates ascites development in ovarian cancer. J. Clin. Invest., 2021, 131(3), e140315.
[http://dx.doi.org/10.1172/JCI140315] [PMID: 33295887]
[34]
Simion, V.; Zhou, H.; Pierce, J.B.; Yang, D.; Haemmig, S.; Tesmenitsky, Y.; Sukhova, G.; Stone, P.H.; Libby, P.; Feinberg, M.W. LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling. JCI Insight, 2020, 5(21), e140627.
[http://dx.doi.org/10.1172/jci.insight.140627] [PMID: 33021969]
[35]
Li, Y.; Cho, H.; Wang, F.; Canela-Xandri, O.; Luo, C.; Rawlik, K.; Archacki, S.; Xu, C.; Tenesa, A.; Chen, Q.; Wang, Q.K. Statistical and functional studies identify epistasis of cardiovascular risk genomic variants from genome-wide association studies. J. Am. Heart Assoc., 2020, 9(7), e014146.
[http://dx.doi.org/10.1161/JAHA.119.014146] [PMID: 32237974]
[36]
Arnold, L.; Weberbauer, M.; Herkel, M.; Fink, K.; Busch, H.J.; Diehl, P.; Grundmann, S.; Bode, C.; Elsässer, A.; Moser, M.; Helbing, T. Endothelial BMP4 promotes leukocyte rolling and adhesion and is elevated in patients after survived out-of-hospital cardiac arrest. Inflammation, 2020, 43(6), 2379-2391.
[http://dx.doi.org/10.1007/s10753-020-01307-9] [PMID: 32803667]
[37]
Cho, H.; Shen, G.Q.; Wang, X.; Wang, F.; Archacki, S.; Li, Y.; Yu, G.; Chakrabarti, S.; Chen, Q.; Wang, Q.K. Long noncoding RNA ANRIL regulates endothelial cell activities associated with coronary artery disease by up-regulating CLIP1, EZR, and LYVE1 genes. J. Biol. Chem., 2019, 294(11), 3881-3898.
[http://dx.doi.org/10.1074/jbc.RA118.005050] [PMID: 30655286]
[38]
Cho, H.; Li, Y.; Archacki, S.; Wang, F.; Yu, G.; Chakrabarti, S.; Guo, Y.; Chen, Q.; Wang, Q.K. Splice variants of lncRNA RNA ANRIL exert opposing effects on endothelial cell activities associated with coronary artery disease. RNA Biol., 2020, 17(10), 1391-1401.
[http://dx.doi.org/10.1080/15476286.2020.1771519] [PMID: 32602777]
[39]
Leisegang, M.S.; Bibli, S.I.; Günther, S.; Pflüger-Müller, B.; Oo, J.A.; Höper, C.; Seredinski, S.; Yekelchyk, M.; Schmitz-Rixen, T.; Schürmann, C.; Hu, J.; Looso, M.; Sigala, F.; Boon, R.A.; Fleming, I.; Brandes, R.P. Pleiotropic effects of laminar flow and statins depend on the Krüppel-like factor-induced lncRNA MANTIS. Eur. Heart J., 2019, 40(30), 2523-2533.
[http://dx.doi.org/10.1093/eurheartj/ehz393] [PMID: 31222221]
[40]
Lyu, Q.; Xu, S.; Lyu, Y.; Choi, M.; Christie, C.K.; Slivano, O.J.; Rahman, A.; Jin, Z.G.; Long, X.; Xu, Y.; Miano, J.M. SENCR stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4. Proc. Natl. Acad. Sci. USA, 2019, 116(2), 546-555.
[http://dx.doi.org/10.1073/pnas.1810729116] [PMID: 30584103]
[41]
Petre, A.; Balta, C.; Herman, H.; Gharbia, S.; Codreanu, A.; Onita-Mladin, B.; Anghel-Zurbau, N.; Hermenean, A.G.; Ignat, S.R.; Dinescu, S.; Urzica, I.; Drafta, S.; Oancea, L.; Hermenean, A. A novel experimental approach to evaluate guided bone regeneration (GBR) in the rat femur using a 3D-printed CAD/CAM zirconia space-maintaining barrier. J. Adv. Res., 2021, 28, 221-229.
[http://dx.doi.org/10.1016/j.jare.2020.07.012] [PMID: 33364058]
[42]
Zhu, Q.M.; MacDonald, B.T.; Mizoguchi, T.; Chaffin, M.; Leed, A.; Arduini, A.; Malolepsza, E.; Lage, K.; Kaushik, V.K.; Kathiresan, S.; Ellinor, P.T. Endothelial ARHGEF26 is an angiogenic factor promoting VEGF signaling. Cardiovasc. Res., 2021.
[43]
Tsai, W.C.; Chiang, W.H.; Wu, C.H.; Li, Y.C.; Campbell, M.; Huang, P.H.; Lin, M.W.; Lin, C.H.; Cheng, S.M.; Chang, P.C.; Cheng, C.C. miR-548aq-3p is a novel target of Far infrared radiation which predicts coronary artery disease endothelial colony forming cell responsiveness. Sci. Rep., 2020, 10(1), 6805.
[http://dx.doi.org/10.1038/s41598-020-63311-1] [PMID: 32322002]
[44]
Ouyang, S.; Li, Y.; Wu, X.; Wang, Y.; Liu, F.; Zhang, J.; Qiu, Y.; Zhou, Z.; Wang, Z.; Xia, W.; Lin, X. GPR4 signaling is essential for the promotion of acid-mediated angiogenic capacity of endothelial progenitor cells by activating STAT3/VEGFA pathway in patients with coronary artery disease. Stem Cell Res. Ther., 2021, 12(1), 149.
[http://dx.doi.org/10.1186/s13287-021-02221-z] [PMID: 33632325]
[45]
Mushimiyimana, I.; Tomas Bosch, V.; Niskanen, H.; Downes, N.L.; Moreau, P.R.; Hartigan, K.; Ylä-Herttuala, S.; Laham-Karam, N.; Kaikkonen, M.U. Genomic landscapes of noncoding RNAs regulating VEGFA and VEGFC expression in endothelial cells. Mol. Cell. Biol., 2021, 41(7), e00594-20.
[http://dx.doi.org/10.1128/MCB.00594-20] [PMID: 33875575]
[46]
Zhang, M.; Wang, X.; Yao, J.; Qiu, Z. Long non-coding RNA NEAT1 inhibits oxidative stress-induced vascular endothelial cell injury by activating the miR-181d-5p/CDKN3 axis. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3129-3137.
[http://dx.doi.org/10.1080/21691401.2019.1646264] [PMID: 31352814]
[47]
Huang, P.; Wang, L.; Li, Q.; Tian, X.; Xu, J.; Xu, J.; Xiong, Y.; Chen, G.; Qian, H.; Jin, C.; Yu, Y.; Cheng, K.; Qian, L.; Yang, Y. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc. Res., 2020, 116(2), 353-367.
[http://dx.doi.org/10.1093/cvr/cvz139] [PMID: 31119268]
[48]
Kong, C.; Lyu, D.; He, C.; Li, R.; Lu, Q. Dioscin elevates lncRNA MANTIS in therapeutic angiogenesis for heart diseases. Aging Cell, 2021, 20(7), e13392.
[http://dx.doi.org/10.1111/acel.13392] [PMID: 34081836]
[49]
Hosen, M.R.; Li, Q.; Liu, Y.; Zietzer, A.; Maus, K.; Goody, P.; Uchida, S.; Latz, E.; Werner, N.; Nickenig, G.; Jansen, F. CAD increases the long noncoding RNA PUNISHER in small extracellular vesicles and regulates endothelial cell function via vesicular shuttling. Mol. Ther. Nucleic Acids, 2021, 25, 388-405.
[http://dx.doi.org/10.1016/j.omtn.2021.05.023] [PMID: 34484864]
[50]
Kai, H.; Wu, Q.; Yin, R.; Tang, X.; Shi, H.; Wang, T.; Zhang, M.; Pan, C. LncRNA NORAD Promotes vascular endothelial cell injury and atherosclerosis through suppressing VEGF gene transcription via enhancing H3K9 deacetylation by recruiting HDAC6. Front. Cell Dev. Biol., 2021, 9, 701628.
[http://dx.doi.org/10.3389/fcell.2021.701628] [PMID: 34307380]
[51]
Noerman, S.; Kokla, M.; Koistinen, V.M.; Lehtonen, M.; Tuomainen, T.P.; Brunius, C.; Virtanen, J.K.; Hanhineva, K. Associations of the serum metabolite profile with a healthy Nordic diet and risk of coronary artery disease. Clin. Nutr., 2021, 40(5), 3250-3262.
[http://dx.doi.org/10.1016/j.clnu.2020.10.051] [PMID: 33190988]
[52]
Lin, A.; Kolossváry, M.; Yuvaraj, J.; Cadet, S.; McElhinney, P.A.; Jiang, C.; Nerlekar, N.; Nicholls, S.J.; Slomka, P.J.; Maurovich-Horvat, P.; Wong, D.T.L.; Dey, D. Myocardial infarction associates with a distinct pericoronary adipose tissue radiomic phenotype. JACC Cardiovasc. Imaging, 2020, 13(11), 2371-2383.
[http://dx.doi.org/10.1016/j.jcmg.2020.06.033] [PMID: 32861654]
[53]
Shirai, T.; Nazarewicz, R.R.; Wallis, B.B.; Yanes, R.E.; Watanabe, R.; Hilhorst, M.; Tian, L.; Harrison, D.G.; Giacomini, J.C.; Assimes, T.L.; Goronzy, J.J.; Weyand, C.M. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J. Exp. Med., 2016, 213(3), 337-354.
[http://dx.doi.org/10.1084/jem.20150900] [PMID: 26926996]
[54]
Molina, E.; Chew, G.S.; Myers, S.A.; Clarence, E.M.; Eales, J.M.; Tomaszewski, M.; Charchar, F.J. A novel Y-specific long non-coding RNA associated with cellular lipid accumulation in HepG2 cells and atherosclerosis-related genes. Sci. Rep., 2017, 7(1), 16710.
[http://dx.doi.org/10.1038/s41598-017-17165-9] [PMID: 29196750]
[55]
Lei, D.; Lv, L.; Yang, L.; Wu, W.; Liu, Y.; Tu, Y.; Xu, D.; Jin, Y.; Nong, X.; He, L. Genome-wide analysis of mRNA and long noncoding RNA profiles in chronic actinic dermatitis. BioMed Res. Int., 2017, 2017, 7479523.
[http://dx.doi.org/10.1155/2017/7479523] [PMID: 29359156]
[56]
Wang, Q.C.; Wang, Z.Y.; Xu, Q.; Chen, X.L.; Shi, R.Z. lncRNA expression profiles and associated ceRNA network analyses in epicardial adipose tissue of patients with coronary artery disease. Sci. Rep., 2021, 11(1), 1567.
[http://dx.doi.org/10.1038/s41598-021-81038-5] [PMID: 33452392]
[57]
Li, P.; Xing, J.; Zhang, J.; Jiang, J.; Liu, X.; Zhao, D.; Zhang, Y. Inhibition of long noncoding RNA HIF1A-AS2 confers protection against atherosclerosis via ATF2 downregulation. J. Adv. Res., 2020, 26, 123-135.
[http://dx.doi.org/10.1016/j.jare.2020.07.015] [PMID: 33133688]
[58]
Guo, F.; Tang, C.; Li, Y.; Liu, Y.; Lv, P.; Wang, W.; Mu, Y. The interplay of Lnc RNA ANRIL and miR-181b on the inflammation-relevant coronary artery disease through mediating NF -κB signalling pathway. J. Cell. Mol. Med., 2018, 22(10), 5062-5075.
[http://dx.doi.org/10.1111/jcmm.13790] [PMID: 30079603]
[59]
Bai, J.; Liu, J.; Fu, Z.; Feng, Y.; Wang, B.; Wu, W.; Zhang, R. Silencing lncRNA AK136714 reduces endothelial cell damage and inhibits atherosclerosis. Aging (Albany NY), 2021, 13(10), 14159-14169.
[http://dx.doi.org/10.18632/aging.203031] [PMID: 34015766]
[60]
Wang, Y.; Yang, X.; Jiang, A.; Wang, W.; Li, J.; Wen, J. Methylation-dependent transcriptional repression of RUNX3 by KCNQ1OT1 regulates mouse cardiac microvascular endothelial cell viability and inflammatory response following myocardial infarction. FASEB J., 2019, 33(12), 13145-13160.
[http://dx.doi.org/10.1096/fj.201900310R] [PMID: 31625414]
[61]
Jaeschke, H.; Adelusi, O.B.; Akakpo, J.Y.; Nguyen, N.T.; Sanchez-Guerrero, G.; Umbaugh, D.S.; Ding, W.X.; Ramachandran, A. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm. Sin. B, 2021, 11(12), 3740-3755.
[http://dx.doi.org/10.1016/j.apsb.2021.09.023] [PMID: 35024303]
[62]
Sun, J.; Singh, P.; Österlund, J.; Orho-Melander, M.; Melander, O.; Engström, G.; Edsfeldt, A. Hyperglycaemia-associated Caspase-3 predicts diabetes and coronary artery disease events. J. Intern. Med., 2021, 290(4), 855-865.
[http://dx.doi.org/10.1111/joim.13327] [PMID: 34309093]
[63]
Jayasuriya, R.; Ganesan, K.; Xu, B.; Ramkumar, K.M. Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed. Pharmacother., 2022, 145, 112421.
[http://dx.doi.org/10.1016/j.biopha.2021.112421] [PMID: 34798473]
[64]
Ni, J.; Huang, Z.; Wang, D. LncRNA TP73-AS1 promotes oxidized low-density lipoprotein-induced apoptosis of endothelial cells in atherosclerosis by targeting the miR-654-3p/AKT3 axis. Cell. Mol. Biol. Lett., 2021, 26(1), 27.
[http://dx.doi.org/10.1186/s11658-021-00264-x] [PMID: 34103010]
[65]
Zhang, H.; Ji, N.; Gong, X.; Ni, S.; Wang, Y. NEAT1/miR-140-3p/MAPK1 mediates the viability and survival of coronary endothelial cells and affects coronary atherosclerotic heart disease. Acta Biochim. Biophys. Sin. (Shanghai), 2020, 52(9), 967-974.
[http://dx.doi.org/10.1093/abbs/gmaa087] [PMID: 32844995]
[66]
Wu, L.; Tan, G.; Li, X.; Jiang, X.; Run, B.; Zhou, W.; Liao, H. LncRNA TONSL-AS1 participates in coronary artery disease by interacting with miR-197. Microvasc. Res., 2021, 136, 104152.
[http://dx.doi.org/10.1016/j.mvr.2021.104152] [PMID: 33662410]
[67]
You, G.; Long, X.; Song, F.; Huang, J.; Tian, M.; Xiao, Y.; Deng, S.; Wu, Q.; Long Noncoding, R.N.A. Long Noncoding, R.N.A. Long noncoding RNA EZR-AS1 regulates the proliferation, migration, and apoptosis of human venous endothelial cells via SMYD3. BioMed Res. Int., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/6840234] [PMID: 32596350]
[68]
Sun, Y.; Huang, S.; Wan, C.; Ruan, Q.; Xie, X.; Wei, D.; Li, G.; Lin, S.; Li, H.; Wu, S. Knockdown of lncRNA ENST00000609755.1 confers protection against early oxLDL-induced coronary heart disease. Front. Cardiovasc. Med., 2021, 8, 650212.
[http://dx.doi.org/10.3389/fcvm.2021.650212] [PMID: 34095248]
[69]
Li, W.; He, P.; Huang, Y.; Li, Y.F.; Lu, J.; Li, M.; Kurihara, H.; Luo, Z.; Meng, T.; Onishi, M.; Ma, C.; Jiang, L.; Hu, Y.; Gong, Q.; Zhu, D.; Xu, Y.; Liu, R.; Liu, L.; Yi, C.; Zhu, Y.; Ma, N.; Okamoto, K.; Xie, Z.; Liu, J.; He, R.R.; Feng, D. Selective autophagy of intracellular organelles: Recent research advances. Theranostics, 2021, 11(1), 222-256.
[http://dx.doi.org/10.7150/thno.49860] [PMID: 33391472]
[70]
Wang, L.; Xu, C.; Johansen, T.; Berger, S.L.; Dou, Z. SIRT1 – a new mammalian substrate of nuclear autophagy. Autophagy, 2021, 17(2), 593-595.
[http://dx.doi.org/10.1080/15548627.2020.1860541] [PMID: 33292048]
[71]
Nnah, I.C.; Wang, B.; Saqcena, C.; Weber, G.F.; Bonder, E.M.; Bagley, D.; De Cegli, R.; Napolitano, G.; Medina, D.L.; Ballabio, A.; Dobrowolski, R. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy, 2019, 15(1), 151-164.
[http://dx.doi.org/10.1080/15548627.2018.1511504] [PMID: 30145926]
[72]
Chao, T.; Shih, H.T.; Hsu, S.C.; Chen, P.J.; Fan, Y.S.; Jeng, Y.M.; Shen, Z.Q.; Tsai, T.F.; Chang, Z.F. Autophagy restricts mitochondrial DNA damage-induced release of ENDOG (endonuclease G) to regulate genome stability. Autophagy, 2021, 17(11), 3444-3460.
[http://dx.doi.org/10.1080/15548627.2021.1874209] [PMID: 33465003]
[73]
Hwang, H.Y.; Shim, J.S.; Kim, D.; Kwon, H.J. Antidepressant drug sertraline modulates AMPK-MTOR signaling-mediated autophagy via targeting mitochondrial VDAC1 protein. Autophagy, 2021, 17(10), 2783-2799.
[http://dx.doi.org/10.1080/15548627.2020.1841953] [PMID: 33124469]
[74]
Meng, Q.; Li, Y.; Ji, T.; Chao, Y.; Li, J.; Fu, Y.; Wang, S.; Chen, Q.; Chen, W.; Huang, F.; Wang, Y.; Zhang, Q.; Wang, X.; Bian, H. Estrogen prevent atherosclerosis by attenuating endothelial cell pyroptosis via activation of estrogen receptor α-mediated autophagy. J. Adv. Res., 2021, 28, 149-164.
[http://dx.doi.org/10.1016/j.jare.2020.08.010] [PMID: 33364052]
[75]
He, L.; Chen, Y.; Hao, S.; Qian, J. Uncovering novel landscape of cardiovascular diseases and therapeutic targets for cardioprotection via long noncoding RNA–miRNA–mRNA axes. Epigenomics, 2018, 10(5), 661-671.
[http://dx.doi.org/10.2217/epi-2017-0176] [PMID: 29692219]
[76]
Liang, W.; Fan, T.; Liu, L.; Zhang, L. Knockdown of growth-arrest specific transcript 5 restores oxidized low-density lipoprotein-induced impaired autophagy flux via upregulating miR-26a in human endothelial cells. Eur. J. Pharmacol., 2019, 843, 154-161.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.005] [PMID: 30468731]
[77]
Wang, K.; Yang, C.; Shi, J.; Gao, T. Ox-LDL-induced lncRNA MALAT1 promotes autophagy in human umbilical vein endothelial cells by sponging miR-216a-5p and regulating Beclin-1 expression. Eur. J. Pharmacol., 2019, 858, 172338.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.019] [PMID: 31029709]
[78]
Zhu, Y.; Yang, T.; Duan, J.; Mu, N.; Zhang, T. MALAT1/miR-15b-5p/MAPK1 mediates endothelial progenitor cells autophagy and affects coronary atherosclerotic heart disease via mTOR signaling pathway. Aging (Albany NY), 2019, 11(4), 1089-1109.
[http://dx.doi.org/10.18632/aging.101766] [PMID: 30787203]
[79]
Xiao, J.; Lu, Y.; Yang, X. THRIL mediates endothelial progenitor cells autophagy via AKT pathway and FUS. Mol. Med., 2020, 26(1), 86.
[http://dx.doi.org/10.1186/s10020-020-00201-2] [PMID: 32907536]
[80]
You, G.; Long, X.; Song, F.; Huang, J.; Tian, M.; Xiao, Y.; Deng, S.; Wu, Q. Metformin activates the AMPK-mTOR pathway by modulating lncRNA TUG1 to induce autophagy and inhibit atherosclerosis. Drug Des. Devel. Ther., 2020, 14, 457-468.
[http://dx.doi.org/10.2147/DDDT.S233932] [PMID: 32099330]
[81]
Jin, H.; Zhu, Y.; Wang, X.; Luo, E.; Li, Y.; Wang, B.; Chen, Y. BDNF corrects NLRP3 inflammasome-induced pyroptosis and glucose metabolism reprogramming through KLF2/HK1 pathway in vascular endothelial cells. Cell. Signal., 2021, 78, 109843.
[http://dx.doi.org/10.1016/j.cellsig.2020.109843] [PMID: 33253911]
[82]
McCarty, M.F.; Iloki Assanga, S.B.; Lewis Luján, L.; O’Keefe, J.H.; DiNicolantonio, J.J. Nutraceutical strategies for suppressing NLRP3 inflammasome activation: pertinence to the management of COVID-19 and beyond. Nutrients, 2020, 13(1), 47.
[http://dx.doi.org/10.3390/nu13010047] [PMID: 33375692]
[83]
Wu, P.; Chen, J.; Chen, J.; Tao, J.; Wu, S.; Xu, G.; Wang, Z.; Wei, D.; Yin, W. Trimethylamine N-oxide promotes apoE −/− mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway. J. Cell. Physiol., 2020, 235(10), 6582-6591.
[http://dx.doi.org/10.1002/jcp.29518] [PMID: 32012263]
[84]
Yang, M.; Lv, H.; Liu, Q.; Zhang, L.; Zhang, R.; Huang, X.; Wang, X.; Han, B.; Hou, S.; Liu, D.; Wang, G.; Hou, J.; Yu, B. Colchicine alleviates cholesterol crystal-induced endothelial cell pyroptosis through activating AMPK/SIRT1 pathway. Oxid. Med. Cell. Longev., 2020, 2020, 9173530.
[http://dx.doi.org/10.1155/2020/9173530] [PMID: 32733639]
[85]
Zhang, Y.; Liu, X.; Bai, X.; Lin, Y.; Li, Z.; Fu, J.; Li, M.; Zhao, T.; Yang, H.; Xu, R.; Li, J.; Ju, J.; Cai, B.; Xu, C.; Yang, B. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/ miR-223/NLRP3 axis. J. Pineal Res., 2018, 64(2), e12449.
[http://dx.doi.org/10.1111/jpi.12449] [PMID: 29024030]
[86]
Song, B.; Dang, H.; Dong, R. Differential expression of LOXL1-AS1 in coronary heart disease and its regulatory mechanism in ox-LDL-induced human coronary artery endothelial cell pyroptosis. Cardiovasc. Drugs Ther., 2021. [Online ahead of print].
[http://dx.doi.org/10.1007/s10557-021-07274-z] [PMID: 34633594]
[87]
Wu, L.M.; Wu, S.G.; Chen, F.; Wu, Q.; Wu, C.M.; Kang, C.M.; He, X.; Zhang, R.Y.; Lu, Z.F.; Li, X.H.; Xu, Y.J.; Li, L.M.; Ding, L.; Bai, H.L.; Liu, X.H.; Hu, Y.W.; Zheng, L. Atorvastatin inhibits pyroptosis through the lncRNA NEXN-AS1/NEXN pathway in human vascular endothelial cells. Atherosclerosis, 2020, 293, 26-34.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.11.033] [PMID: 31830726]
[88]
Song, Y.; Yang, L.; Guo, R.; Lu, N.; Shi, Y.; Wang, X. Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22. Biochem. Biophys. Res. Commun., 2019, 509(2), 359-366.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.139] [PMID: 30591217]
[89]
Zhang, X.; Chen, Z.; Zang, J.; Yao, C.; Shi, J.; Nie, R.; Wu, G. LncRNA-mRNA co-expression analysis discovered the diagnostic and prognostic biomarkers and potential therapeutic agents for myocardial infarction. Aging (Albany NY), 2021, 13(6), 8944-8959.
[http://dx.doi.org/10.18632/aging.202713] [PMID: 33668039]
[90]
Chen, Z.; Zhou, D.; Zhang, X.; Wu, Q.; Wu, G. Diagnostic biomarkers and potential drug targets for coronary artery disease as revealed by systematic analysis of lncRNA characteristics. Ann. Transl. Med., 2021, 9(15), 1243.
[http://dx.doi.org/10.21037/atm-21-3276] [PMID: 34532380]
[91]
Zuo, J.; Xu, M.; Wang, D.; Bai, W.; Li, G. Role of competitive endogenous RNA networks in the pathogenesis of coronary artery disease. Ann. Transl. Med., 2021, 9(15), 1234.
[http://dx.doi.org/10.21037/atm-21-2737] [PMID: 34532371]
[92]
Zhao, Z.; Sun, W.; Guo, Z.; Liu, B.; Yu, H.; Zhang, J. Long noncoding RNAs in myocardial ischemia-reperfusion injury. Oxid. Med. Cell. Longev., 2021, 2021, 8889123.
[http://dx.doi.org/10.1155/2021/8889123] [PMID: 33884101]
[93]
Boon, R.A.; Jaé, N.; Holdt, L.; Dimmeler, S. Long noncoding RNAs. J. Am. Coll. Cardiol., 2016, 67(10), 1214-1226.
[http://dx.doi.org/10.1016/j.jacc.2015.12.051] [PMID: 26965544]
[94]
Qian, X.; Zhao, J.; Yeung, P.Y.; Zhang, Q.C.; Kwok, C.K. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem. Sci., 2019, 44(1), 33-52.
[http://dx.doi.org/10.1016/j.tibs.2018.09.012] [PMID: 30459069]
[95]
Ali, T.; Grote, P. Beyond the RNA-dependent function of LncRNA genes. eLife, 2020, 9, e60583.
[http://dx.doi.org/10.7554/eLife.60583] [PMID: 33095159]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy