Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Circular RNAs in Prostate Cancer: Is it Time to Further Explore Liquid Biopsies?

Author(s): Jianpeng Yu, Hanlin Li, Zhiqun Shang* and Yuanjie Niu*

Volume 23, Issue 18, 2023

Published on: 03 March, 2023

Page: [1772 - 1779] Pages: 8

DOI: 10.2174/1389557523666230209152948

Price: $65

conference banner
Abstract

Background: Although diagnosis and treatment of prostate cancer (PCa) have evolved rapidly in recent years, clinically significant molecular biomarkers are still needed to lower the mortality. Circular RNAs (circRNAs) are a poorly characterized component of PCa transcriptome. Recently, since the development of deep RNA sequencing and novel bioinformatic pipelines, emerging evidence suggests circRNAs to have diverse functions in the development and progression of PCa. Thus, we attempt to summarize the current situation and potential development prospects about the role of circRNAs in PCa liquid biopsies.

Methods: The role of circRNAs in PCa was summarized by searching the literature related to circRNAs in PubMed in recent years.

Results: Deregulation of circRNAs is associated with cell proliferation, apoptosis, cell invasion, migration, as well as metastasis in PCa. Because of the high stability and tissue specificity of circRNAs, with improved detection methodologies, circRNAs may be predictive biomarkers in liquid biopsies.

Conclusion: From the perspective of recent research, with the development of high-throughput sequencing and novel bioinformatics tools, knowledge of circRNAs will be further expanded. Improved technologies will make personalized precision medicine less of a paper exercise. It is time to further explore circRNA in liquid biopsies.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
de Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B., Jr; Saad, F.; Staffurth, J.N.; Mainwaring, P.; Harland, S.; Flaig, T.W.; Hutson, T.E.; Cheng, T.; Patterson, H.; Hainsworth, J.D.; Ryan, C.J.; Sternberg, C.N.; Ellard, S.L.; Fléchon, A.; Saleh, M.; Scholz, M.; Efstathiou, E.; Zivi, A.; Bianchini, D.; Loriot, Y.; Chieffo, N.; Kheoh, T.; Haqq, C.M.; Scher, H.I. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med., 2011, 364(21), 1995-2005.
[http://dx.doi.org/10.1056/NEJMoa1014618] [PMID: 21612468]
[3]
Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; Carles, J.; Mulders, P.F.A.; Basch, E.; Small, E.J.; Saad, F.; Schrijvers, D.; Van Poppel, H.; Mukherjee, S.D.; Suttmann, H.; Gerritsen, W.R.; Flaig, T.W.; George, D.J.; Yu, E.Y.; Efstathiou, E.; Pantuck, A.; Winquist, E.; Higano, C.S.; Taplin, M.E.; Park, Y.; Kheoh, T.; Griffin, T.; Scher, H.I.; Rathkopf, D.E. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med., 2013, 368(2), 138-148.
[http://dx.doi.org/10.1056/NEJMoa1209096] [PMID: 23228172]
[4]
Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.E.; Sternberg, C.N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; Armstrong, A.J.; Flaig, T.W.; Fléchon, A.; Mainwaring, P.; Fleming, M.; Hainsworth, J.D.; Hirmand, M.; Selby, B.; Seely, L.; de Bono, J.S.; Investigators, A. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med., 2012, 367(13), 1187-1197.
[http://dx.doi.org/10.1056/NEJMoa1207506] [PMID: 22894553]
[5]
Scher, H.I.; Beer, T.M.; Higano, C.S.; Anand, A.; Taplin, M.E.; Efstathiou, E.; Rathkopf, D.; Shelkey, J.; Yu, E.Y.; Alumkal, J.; Hung, D.; Hirmand, M.; Seely, L.; Morris, M.J.; Danila, D.C.; Humm, J.; Larson, S.; Fleisher, M.; Sawyers, C.L. Prostate cancer foundation/department of defense prostate cancer clinical trials consortium. Antitumour activity of MDV3100 in castration-resistant prostate cancer: A phase 1–2 study. Lancet, 2010, 375(9724), 1437-1446.
[http://dx.doi.org/10.1016/S0140-6736(10)60172-9] [PMID: 20398925]
[6]
Arora, V.K.; Schenkein, E.; Murali, R.; Subudhi, S.K.; Wongvipat, J.; Balbas, M.D.; Shah, N.; Cai, L.; Efstathiou, E.; Logothetis, C.; Zheng, D.; Sawyers, C.L. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell, 2013, 155(6), 1309-1322.
[http://dx.doi.org/10.1016/j.cell.2013.11.012] [PMID: 24315100]
[7]
Carver, B.S. Defining and targeting the oncogenic drivers of neuroendocrine prostate cancer. Cancer Cell, 2016, 29(4), 431-432.
[http://dx.doi.org/10.1016/j.ccell.2016.03.023] [PMID: 27070695]
[8]
Palmgren, J.S.; Karavadia, S.S.; Wakefield, M.R. Unusual and underappreciated: Small cell carcinoma of the prostate. Semin. Oncol., 2007, 34(1), 22-29.
[http://dx.doi.org/10.1053/j.seminoncol.2006.10.026] [PMID: 17270662]
[9]
Nigro, J.M.; Cho, K.R.; Fearon, E.R.; Kern, S.E.; Ruppert, J.M.; Oliner, J.D.; Kinzler, K.W.; Vogelstein, B. Scrambled exons. Cell, 1991, 64(3), 607-613.
[http://dx.doi.org/10.1016/0092-8674(91)90244-S] [PMID: 1991322]
[10]
Capel, B.; Swain, A.; Nicolis, S.; Hacker, A.; Walter, M.; Koopman, P.; Goodfellow, P.; Lovell-Badge, R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell, 1993, 73(5), 1019-1030.
[http://dx.doi.org/10.1016/0092-8674(93)90279-Y] [PMID: 7684656]
[11]
Cocquerelle, C.; Mascrez, B.; Hétuin, D.; Bailleul, B. Mis-splicing yields circular RNA molecules. FASEB J., 1993, 7(1), 155-160.
[http://dx.doi.org/10.1096/fasebj.7.1.7678559] [PMID: 7678559]
[12]
Gualandi, F.; Martini, A.; Calzolari, E. Progress in understanding GJB2-linked deafness. Community Genet., 2003, 6(3), 125-132.
[PMID: 15237196]
[13]
Zaphiropoulos, P.G. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol. Cell. Biol., 1997, 17(6), 2985-2993.
[http://dx.doi.org/10.1128/MCB.17.6.2985] [PMID: 9154796]
[14]
Jeck, W.R.; Sharpless, N.E. Detecting and characterizing circular RNAs. Nat. Biotechnol., 2014, 32(5), 453-461.
[http://dx.doi.org/10.1038/nbt.2890] [PMID: 24811520]
[15]
Salzman, J.; Chen, R.E.; Olsen, M.N.; Wang, P.L.; Brown, P.O. Cell-type specific features of circular RNA expression. PLoS Genet., 2013, 9(9)e1003777
[http://dx.doi.org/10.1371/journal.pgen.1003777] [PMID: 24039610]
[16]
Conn, S.J.; Pillman, K.A.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.A.; Roslan, S.; Schreiber, A.W.; Gregory, P.A.; Goodall, G.J. The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015, 160(6), 1125-1134.
[http://dx.doi.org/10.1016/j.cell.2015.02.014] [PMID: 25768908]
[17]
Memczak, S.; Papavasileiou, P.; Peters, O.; Rajewsky, N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One, 2015, 10(10)e0141214
[http://dx.doi.org/10.1371/journal.pone.0141214] [PMID: 26485708]
[18]
Eskra, J.N.; Rabizadeh, D.; Mangold, L.; Fabian, E.; Brennen, W.N.; Yeater, D.B.; Pienta, K.J.; Partin, A.W.; Isaacs, W.B.; Pavlovich, C.P.; Luo, J. A novel method for detection of exfoliated prostate cancer cells in urine by RNA in situ hybridization. Prostate Cancer Prostatic Dis., 2021, 24(1), 220-232.
[http://dx.doi.org/10.1038/s41391-020-00272-6] [PMID: 32820256]
[19]
Fettke, H.; Kwan, E.M.; Docanto, M.M.; Bukczynska, P.; Ng, N.; Graham, L.J.K.; Mahon, K.; Hauser, C.; Tan, W.; Wang, X.H.; Zhao, Z.; Zheng, T.; Zhou, K.; Du, P.; Yu, J.; Huang, Y.; Jia, S.; Kohli, M.; Horvath, L.G.; Azad, A.A. Combined cell-free DNA and RNA profiling of the androgen receptor: clinical utility of a novel multianalyte liquid biopsy assay for metastatic prostate cancer. Eur. Urol., 2020, 78(2), 173-180.
[http://dx.doi.org/10.1016/j.eururo.2020.03.044] [PMID: 32487321]
[20]
Chen, S.; Huang, V.; Xu, X.; Livingstone, J.; Soares, F.; Jeon, J.; Zeng, Y.; Hua, J.T.; Petricca, J.; Guo, H.; Wang, M.; Yousif, F.; Zhang, Y.; Donmez, N.; Ahmed, M.; Volik, S.; Lapuk, A.; Chua, M.L.K.; Heisler, L.E.; Foucal, A.; Fox, N.S.; Fraser, M.; Bhandari, V.; Shiah, Y.J.; Guan, J.; Li, J.; Orain, M.; Picard, V.; Hovington, H.; Bergeron, A.; Lacombe, L.; Fradet, Y.; Têtu, B.; Liu, S.; Feng, F.; Wu, X.; Shao, Y.W.; Komor, M.A.; Sahinalp, C.; Collins, C.; Hoogstrate, Y.; de Jong, M.; Fijneman, R.J.A.; Fei, T.; Jenster, G.; van der Kwast, T.; Bristow, R.G.; Boutros, P.C.; He, H.H. Widespread and functional RNA circularization in localized prostate cancer. Cell, 2019, 176(4), 831-843.e22.
[http://dx.doi.org/10.1016/j.cell.2019.01.025] [PMID: 30735634]
[21]
Zhang, X.O.; Wang, H.B.; Zhang, Y.; Lu, X.; Chen, L.L.; Yang, L. Complementary sequence-mediated exon circularization. Cell, 2014, 159(1), 134-147.
[http://dx.doi.org/10.1016/j.cell.2014.09.001] [PMID: 25242744]
[22]
Vo, J.N.; Cieslik, M.; Zhang, Y.; Shukla, S.; Xiao, L.; Zhang, Y.; Wu, Y.M.; Dhanasekaran, S.M.; Engelke, C.G.; Cao, X.; Robinson, D.R.; Nesvizhskii, A.I.; Chinnaiyan, A.M. The landscape of circular RNA in cancer. Cell, 2019, 176(4), 869-881.e13.
[http://dx.doi.org/10.1016/j.cell.2018.12.021] [PMID: 30735636]
[23]
Xia, Q.; Ding, T.; Zhang, G.; Li, Z.; Zeng, L.; Zhu, Y.; Guo, J.; Hou, J.; Zhu, T.; Zheng, J.; Wang, J. Circular RNA expression profiling identifies prostate cancer- Specific circRNAs in prostate cancer. Cell. Physiol. Biochem., 2018, 50(5), 1903-1915.
[http://dx.doi.org/10.1159/000494870] [PMID: 30396163]
[24]
Wu, G.; Sun, Y.; Xiang, Z.; Wang, K.; Liu, B.; Xiao, G.; Niu, Y.; Wu, D.; Chang, C. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis., 2019, 10(2), 37.
[http://dx.doi.org/10.1038/s41419-018-1048-1] [PMID: 30674872]
[25]
Huang, C.; Deng, H.; Wang, Y.; Jiang, H.; Xu, R.; Zhu, X.; Huang, Z.; Zhao, X. Circular RNA circABCC4 as the ceRNA of miR-1182 facilitates prostate cancer progression by promoting FOXP4 expression. J. Cell. Mol. Med., 2019, 23(9), 6112-6119.
[http://dx.doi.org/10.1111/jcmm.14477] [PMID: 31270953]
[26]
Yang, Z.; Qu, C.B.; Zhang, Y.; Zhang, W.F.; Wang, D.D.; Gao, C.C.; Ma, L.; Chen, J.S.; Liu, K.L.; Zheng, B.; Zhang, X.H.; Zhang, M.L.; Wang, X.L.; Wen, J.K.; Li, W. Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene, 2019, 38(14), 2516-2532.
[http://dx.doi.org/10.1038/s41388-018-0602-8] [PMID: 30531834]
[27]
Chen, D.; Lu, X.; Yang, F.; Xing, N. Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer by sponging miR-193a-3p and regulating MCL1 expression. Cancer Manag. Res., 2019, 11, 1415-1423.
[http://dx.doi.org/10.2147/CMAR.S190669] [PMID: 30863152]
[28]
Cai, C.; Zhi, Y.; Wang, K.; Zhang, P.; Ji, Z.; Xie, C.; Sun, F. CircHIPK3 overexpression accelerates the proliferation and invasion of prostate cancer cells through regulating miRNA-338-3p. OncoTargets Ther., 2019, 12, 3363-3372.
[http://dx.doi.org/10.2147/OTT.S196931] [PMID: 31118688]
[29]
He, J.H.; Han, Z.P.; Zhou, J.B.; Chen, W.M.; Lv, Y.B.; He, M.L.; Li, Y.G. MiR-145 affected the circular RNA expression in prostate cancer LNCaP cells. J. Cell. Biochem., 2018, 119(11), 9168-9177.
[http://dx.doi.org/10.1002/jcb.27181] [PMID: 30136305]
[30]
Kong, Z.; Wan, X.; Zhang, Y.; Zhang, P.; Zhang, Y.; Zhang, X.; Qi, X.; Wu, H.; Huang, J.; Li, Y. Androgen-responsive circular RNA circSMARCA5 is up-regulated and promotes cell proliferation in prostate cancer. Biochem. Biophys. Res. Commun., 2017, 493(3), 1217-1223.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.162] [PMID: 28765045]
[31]
Xie, X.; Sun, F.K.; Huang, X.; Wang, C.H.; Dai, J.; Zhao, J.P.; Fang, C.; He, W. A circular RNA, circSMARCA5, inhibits prostate cancer proliferative, migrative, and invasive capabilities via the miR-181b-5p/miR-17-3p-TIMP3 axis. Aging, 2021, 13(15), 19908-19919.
[http://dx.doi.org/10.18632/aging.203408] [PMID: 34390329]
[32]
Jiang, X.; Guo, S.; Wang, S.; Zhang, Y.; Chen, H.; Wang, Y.; Liu, R.; Niu, Y.; Xu, Y. EIF4A3-Induced circARHGAP29 Promotes Aerobic Glycolysis in Docetaxel-Resistant Prostate Cancer through IGF2BP2/c-Myc/LDHA Signaling. Cancer Res., 2022, 82(5), 831-845.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-2988] [PMID: 34965937]
[33]
Rodríguez-Trelles, F.; Tarrío, R.; Ayala, F.J. Origins and evolution of spliceosomal introns. Annu. Rev. Genet., 2006, 40(1), 47-76.
[http://dx.doi.org/10.1146/annurev.genet.40.110405.090625] [PMID: 17094737]
[34]
Panda, A.C.; De, S.; Grammatikakis, I.; Munk, R.; Yang, X.; Piao, Y.; Dudekula, D.B.; Abdelmohsen, K.; Gorospe, M. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res., 2017, 45(12)e116
[http://dx.doi.org/10.1093/nar/gkx297] [PMID: 28444238]
[35]
Zhang, Y.; Zhang, X.O.; Chen, T.; Xiang, J.F.; Yin, Q.F.; Xing, Y.H.; Zhu, S.; Yang, L.; Chen, L.L. Circular intronic long noncoding RNAs. Mol. Cell, 2013, 51(6), 792-806.
[http://dx.doi.org/10.1016/j.molcel.2013.08.017] [PMID: 24035497]
[36]
Chen, Y.; Yang, F.; Fang, E.; Xiao, W.; Mei, H.; Li, H.; Li, D.; Song, H.; Wang, J.; Hong, M.; Wang, X.; Huang, K.; Zheng, L.; Tong, Q. Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes. Cell Death Differ., 2018, 26(7), 1346-1364.
[PMID: 30341421]
[37]
Wang, S.; Chao, F.; Zhang, C.; Han, D.; Xu, G.; Chen, G. Circular RNA circPFKP promotes cell proliferation by activating IMPDH2 in prostate cancer. Cancer Lett., 2022, 524, 109-120.
[http://dx.doi.org/10.1016/j.canlet.2021.10.021] [PMID: 34673127]
[38]
He, T.; Tao, W.; Zhang, L.L.; Wang, B.Y.; Li, K.; Lu, H.M.; Tang, G.J.; He, Y.D.; Li, L.Y. CircSCAF8 promotes growth and metastasis of prostate cancer through the circSCAF8-miR-140-3p/miR-335-LIF pathway. Cell Death Dis., 2022, 13(6), 517.
[http://dx.doi.org/10.1038/s41419-022-04913-7] [PMID: 35654787]
[39]
Almeida, A.; Gabriel, M.; Firlej, V.; Martin-Jaular, L.; Lejars, M.; Cipolla, R.; Petit, F.; Vogt, N.; San-Roman, M.; Dingli, F.; Loew, D.; Destouches, D.; Vacherot, F.; de la Taille, A.; Théry, C.; Morillon, A. Urinary extracellular vesicles contain mature transcriptome enriched in circular and long noncoding RNAs with functional significance in prostate cancer. J. Extracell. Vesicles, 2022, 11(5)e12210
[http://dx.doi.org/10.1002/jev2.12210] [PMID: 35527349]
[40]
Cao, S.; Ma, T.; Ungerleider, N.; Roberts, C.; Kobelski, M.; Jin, L.; Concha, M.; Wang, X.; Baddoo, M.; Nguyen, H.M.; Corey, E.; Fazli, L.; Ledet, E.; Zhang, R.; Silberstein, J.L.; Zhang, W.; Zhang, K.; Sartor, O.; Dong, X.; Flemington, E.K.; Dong, Y. Circular RNAs add diversity to androgen receptor isoform repertoire in castration-resistant prostate cancer. Oncogene, 2019, 38(45), 7060-7072.
[http://dx.doi.org/10.1038/s41388-019-0947-7] [PMID: 31409897]
[41]
Hansen, E.B.; Fredsøe, J.; Okholm, T.L.H.; Ulhøi, B.P.; Klingenberg, S.; Jensen, J.B.; Kjems, J.; Bouchelouche, K.; Borre, M.; Damgaard, C.K.; Pedersen, J.S.; Kristensen, L.S.; Sørensen, K.D. The transcriptional landscape and biomarker potential of circular RNAs in prostate cancer. Genome Med., 2022, 14(1), 8.
[http://dx.doi.org/10.1186/s13073-021-01009-3] [PMID: 35078526]
[42]
Kong, Z.; Wan, X.; Lu, Y.; Zhang, Y.; Huang, Y.; Xu, Y.; Liu, Y.; Zhao, P.; Xiang, X.; Li, L.; Li, Y. Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. J. Cell. Mol. Med., 2020, 24(1), 799-813.
[http://dx.doi.org/10.1111/jcmm.14791] [PMID: 31733095]
[43]
Li, T.; Sun, X.; Chen, L. Exosome circ_0044516 promotes prostate cancer cell proliferation and metastasis as a potential biomarker. J. Cell. Biochem., 2020, 121(3), 2118-2126.
[http://dx.doi.org/10.1002/jcb.28239] [PMID: 31625175]
[44]
Mao, S.; Zhang, W.; Yang, F.; Guo, Y.; Wang, H.; Wu, Y.; Wang, R.; Maskey, N.; Zheng, Z.; Li, C.; Ma, W.; Zhang, J.; Yan, Y.; Yao, X. Hsa_circ_0004296 inhibits metastasis of prostate cancer by interacting with EIF4A3 to prevent nuclear export of ETS1 mRNA. J. Exp. Clin. Cancer Res., 2021, 40(1), 336.
[http://dx.doi.org/10.1186/s13046-021-02138-8] [PMID: 34696782]
[45]
Gong, L.; Tang, Y.; Jiang, L.; Tang, W.; Luo, S. Regulation of circGOLPH3 and its binding protein CBX7 on the proliferation and apoptosis of prostate cancer cells. Biosci. Rep., 2020, 40(12)BSR20200936
[http://dx.doi.org/10.1042/BSR20200936] [PMID: 33245100]
[46]
Lin, Q.; Cai, J.; Wang, Q.Q. The significance of circular RNA DDX17 in prostate cancer. BioMed Res. Int., 2020, 2020, 1-16.
[http://dx.doi.org/10.1155/2020/1878431] [PMID: 32904557]
[47]
Chen, D.; Chou, F.J.; Chen, Y.; Tian, H.; Wang, Y.; You, B.; Niu, Y.; Huang, C.P.; Yeh, S.; Xing, N.; Chang, C. Targeting the radiation-induced TR4 nuclear receptor-mediated QKI/circZEB1/miR-141-3p/ZEB1 signaling increases prostate cancer radiosensitivity. Cancer Lett., 2020, 495, 100-111.
[http://dx.doi.org/10.1016/j.canlet.2020.07.040] [PMID: 32768524]
[48]
Shi, J.; Liu, C.; Chen, C.; Guo, K.; Tang, Z.; Luo, Y.; Chen, L.; Su, Y.; Xu, K. Circular RNA circMBOAT2 promotes prostate cancer progression via a miR-1271-5p/mTOR axis. Aging, 2020, 12(13), 13255-13280.
[http://dx.doi.org/10.18632/aging.103432] [PMID: 32645691]
[49]
Weng, X.D.; Yan, T.; Liu, C.L. Circular RNA_LARP4 inhibits cell migration and invasion of prostate cancer by targeting FOXO3A. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(10), 5303-5309.
[PMID: 32495863]
[50]
Dong, J.S.; Wu, B.; Chen, X.H. Circ PSMC3 inhibits prostate cancer cell proliferation by downregulating DGCR8. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(5), 2264-2270.
[PMID: 32196577]
[51]
Zheng, Y.; Li, J.; Chen, C.; Lin, Z.; Liu, J.; Lin, F. Extracellular vesicle-derived circ_SLC19A1 promotes prostate cancer cell growth and invasion through the miR-497/septin 2 pathway. Cell Biol. Int., 2020, 44(4), 1037-1045.
[http://dx.doi.org/10.1002/cbin.11303] [PMID: 31903637]
[52]
Zheng, Y.; Chen, C.; Lin, Z.; Li, J.; Liu, J.; Lin, F.; Zhou, X. Circ_KATNAL1 regulates prostate cancer cell growth and invasiveness through the miR-145-3p/WISP1 pathway. Biochem. Cell Biol., 2020, 98(3), 396-404.
[http://dx.doi.org/10.1139/bcb-2019-0211] [PMID: 31800303]
[53]
Hu, Y.; Guo, B. Circ-MTO1 correlates with favorable prognosis and inhibits cell proliferation, invasion as well as miR-17-5p expression in prostate cancer. J. Clin. Lab. Anal., 2020, 34(3)e23086
[http://dx.doi.org/10.1002/jcla.23086] [PMID: 31713278]
[54]
Jiang, H.; Lv, D.J.; Song, X.L.; Wang, C.; Yu, Y.Z.; Zhao, S.C. Upregulated circZMIZ1 promotes the proliferation of prostate cancer cells and is a valuable marker in plasma. Neoplasma, 2020, 67(1), 68-77.
[http://dx.doi.org/10.4149/neo_2019_190213N116] [PMID: 31686520]
[55]
Feng, Y.; Yang, Y.; Zhao, X.; Fan, Y.; Zhou, L.; Rong, J.; Yu, Y. Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis., 2019, 10(11), 792.
[http://dx.doi.org/10.1038/s41419-019-2028-9] [PMID: 31624242]
[56]
Shen, Z.; Zhou, L.; Zhang, C.; Xu, J. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett., 2020, 468, 88-101.
[http://dx.doi.org/10.1016/j.canlet.2019.10.006] [PMID: 31593800]
[57]
Huang, E.; Chen, X.; Yuan, Y. Downregulated circular RNA itchy E3 ubiquitin protein ligase correlates with advanced pathologic T stage, high lymph node metastasis risk and poor survivals in prostate cancer patients. Cancer Biomark., 2019, 26(1), 41-50.
[http://dx.doi.org/10.3233/CBM-182111] [PMID: 31306101]
[58]
Yuan, Y.; Chen, X.; Huang, E. Upregulation of Circular RNA Itchy E3 ubiquitin protein ligase inhibits cell proliferation and promotes cell apoptosis through targeting MiR-197 in prostate cancer. Technol. Cancer Res. Treat., 2019, 18, 1-9.
[http://dx.doi.org/10.1177/1533033819886867] [PMID: 31694481]
[59]
Jin, C.; Zhao, W.; Zhang, Z.; Liu, W. Silencing circular RNA circZNF609 restrains growth, migration and invasion by up-regulating microRNA-186-5p in prostate cancer. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3350-3358.
[http://dx.doi.org/10.1080/21691401.2019.1648281] [PMID: 31387394]
[60]
Dai, Y.; Li, D.; Chen, X.; Tan, X.; Gu, J.; Chen, M.; Zhang, X. Circular RNA Myosin Light Chain Kinase (MYLK) promotes prostate cancer progression through modulating Mir-29a expression. Med. Sci. Monit., 2018, 24, 3462-3471.
[http://dx.doi.org/10.12659/MSM.908009] [PMID: 29798970]
[61]
Si-Tu, J.; Cai, Y.; Feng, T.; Yang, D.; Yuan, S.; Yang, X.; He, S.; Li, Z.; Wang, Y.; Tang, Y.; Ye, C.; Li, Z. Upregulated circular RNA circ-102004 that promotes cell proliferation in prostate cancer. Int. J. Biol. Macromol., 2019, 122, 1235-1243.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.076] [PMID: 30219508]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy