Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Procyanidins Extracted from the Lotus Seedpod Ameliorate Cognitive Impairment through CREB-BDNF Pathway Mediated LTP in APP/PS1 Transgenic Mice

Author(s): Ziping Wang, Xiaolong Li, Xiaotong Ren, Siqi Zhao, Wenwen Chen, Cheng Fan, Yangliu Xu, Xuejiao Pi, Yidan Zhang, Ting Wang* and Shuang Rong*

Volume 24, Issue 12, 2023

Published on: 01 March, 2023

Page: [1560 - 1567] Pages: 8

DOI: 10.2174/1389201024666230209142145

Price: $65

Abstract

Background: Alzheimer’s disease (AD) is an age-related neurodegenerative disease and is featured by cognitive impairment. Procyanidins have been shown to have a potential protective effect against neurodegenerative diseases, but the underlying mechanism is not comprehensive enough.

Objective: To further investigate the effects of procyanidins from lotus seedpod (LSPC) on cognition in AD.

Methods: The APP/PS1 transgenic mice were administered with LSPC (100 mg/kg body weight) for five months. The Morris water maze test was used to assess learning and memory function, the long-term potentiation (LTP) was measured, and the expressions of Aβ, pCREB/CREB and BDNF were quantified by western blot.

Results: LSPC significantly ameliorated cognitive dysfunction, reduced Aβ deposition and reversed the remarkable reduction of the phosphorylation of CREB and the expression of BDNF, and then enhanced the effect of LTP in APP/PS1 mice.

Conclusion: These results revealed that LSPC could ameliorate cognitive impairment through the CREB-BDNF pathway that mediates the enhancement of LTP in APP/PS1 transgenic mice.

Graphical Abstract

[1]
Kerr, J.S.; Adriaanse, B.A.; Greig, N.H.; Mattson, M.P.; Cader, M.Z.; Bohr, V.A.; Fang, E.F. Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci., 2017, 40(3), 151-166.
[http://dx.doi.org/10.1016/j.tins.2017.01.002] [PMID: 28190529]
[2]
Cummings, J.L.; Morstorf, T.; Zhong, K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimers Res. Ther., 2014, 6(4), 37.
[http://dx.doi.org/10.1186/alzrt269] [PMID: 25024750]
[3]
Wang, Y.; Chung, S.J.; Song, W.O.; Chun, O.K. Estimation of daily proanthocyanidin intake and major food sources in the U.S. diet. J. Nutr., 2011, 141(3), 447-452.
[http://dx.doi.org/10.3945/jn.110.133900] [PMID: 21270367]
[4]
Jiang, X.; Liu, J.; Lin, Q.; Mao, K.; Tian, F.; Jing, C.; Wang, C.; Ding, L.; Pang, C. Proanthocyanidin prevents lipopolysaccharide-induced depressive-like behavior in mice via neuroinflammatory pathway. Brain Res. Bull., 2017, 135, 40-46.
[http://dx.doi.org/10.1016/j.brainresbull.2017.09.010] [PMID: 28941603]
[5]
Kent, K.; Charlton, KE.; Netzel, M.; Fanning, K. Food-based anthocyanin intake and cognitive outcomes in human intervention trials: A systematic review. J. Human Nutrit. Dietetics., 2017, 30, 260-274.
[http://dx.doi.org/10.1111/jhn.12431]
[6]
Lai, R.; Xian, D.; Xiong, X.; Yang, L.; Song, J.; Zhong, J. Proanthocyanidins: Novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Rep., 2018, 23(1), 130-135.
[http://dx.doi.org/10.1080/13510002.2018.1462027] [PMID: 29630472]
[7]
Yang, L.; Xian, D.; Xiong, X.; Lai, R.; Song, J.; Zhong, J. Proanthocyanidins against oxidative stress: From molecular mechanisms to clinical applications. Biomed. Res. Int., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/8584136] [PMID: 29750172]
[8]
Krikorian, R.; Boespflug, E.L.; Fleck, D.E.; Stein, A.L.; Wightman, J.D.; Shidler, M.D.; Sadat-Hossieny, S. Concord grape juice supplementation and neurocognitive function in human aging. J. Agric. Food Chem., 2012, 60(23), 5736-5742.
[http://dx.doi.org/10.1021/jf300277g] [PMID: 22468945]
[9]
Krikorian, R.; Nash, T.A.; Shidler, M.D.; Shukitt-Hale, B.; Joseph, J.A. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br. J. Nutr., 2010, 103(5), 730-734.
[http://dx.doi.org/10.1017/S0007114509992364] [PMID: 20028599]
[10]
Brewer, G.J.; Torricelli, J.R.; Lindsey, A.L.; Kunz, E.Z.; Neuman, A.; Fisher, D.R.; Joseph, J.A. Age-related toxicity of amyloid-beta associated with increased pERK and pCREB in primary hippocampal neurons: reversal by blueberry extract. J. Nutr. Biochem., 2010, 21(10), 991-998.
[http://dx.doi.org/10.1016/j.jnutbio.2009.08.005] [PMID: 19954954]
[11]
Wang, J.; Ferruzzi, M.G.; Ho, L.; Blount, J.; Janle, E.M.; Gong, B.; Pan, Y.; Gowda, G.A.N.; Raftery, D.; Arrieta-Cruz, I.; Sharma, V.; Cooper, B.; Lobo, J.; Simon, J.E.; Zhang, C.; Cheng, A.; Qian, X.; Ono, K.; Teplow, D.B.; Pavlides, C.; Dixon, R.A.; Pasinetti, G.M. Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J. Neurosci., 2012, 32(15), 5144-5150.
[http://dx.doi.org/10.1523/JNEUROSCI.6437-11.2012] [PMID: 22496560]
[12]
Yang, Q.; Zhang, Y.; Zhang, L.; Li, X.; Dong, R.; Song, C. Combination of tea polyphenols and proanthocyanidins prevents menopause-related memory decline in rats via increased hippocampal synaptic plasticity by inhibiting p38 MAPK and TNF-α pathway. Nutr. Neurosci., 2021, 25(9), 1909-1927.
[http://dx.doi.org/10.1080/1028415X.2021.1913929] [PMID: 33871312]
[13]
Tsien, J.Z.; Huerta, P.T.; Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 1996, 87(7), 1327-1338.
[http://dx.doi.org/10.1016/S0092-8674(00)81827-9] [PMID: 8980238]
[14]
Martin, S.J.; Grimwood, P.D.; Morris, R.G.M. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci., 2000, 23(1), 649-711.
[http://dx.doi.org/10.1146/annurev.neuro.23.1.649] [PMID: 10845078]
[15]
Yan, P.; Xue, Z.; Li, D.; Ni, S.; Wang, C.; Jin, X.; Zhou, D.; Li, X.; Zhao, X.; Chen, X.; Cui, W.; Xu, D.; Zhou, W.; Zhang, J. Dysregulated CRTC1-BDNF signaling pathway in the hippocampus contributes to Aβ oligomer-induced long-term synaptic plasticity and memory impairment. Exp. Neurol., 2021, 345, 113812.
[http://dx.doi.org/10.1016/j.expneurol.2021.113812] [PMID: 34274327]
[16]
Ortega-Martínez, S. A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front. Mol. Neurosci., 2015, 8, 46.
[http://dx.doi.org/10.3389/fnmol.2015.00046] [PMID: 26379491]
[17]
Caccamo, A.; Maldonado, M.A.; Bokov, A.F.; Majumder, S.; Oddo, S. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci., 2010, 107(52), 22687-22692.
[http://dx.doi.org/10.1073/pnas.1012851108]
[18]
Xu, J.; Rong, S.; Xie, B.; Sun, Z.; Zhang, L.; Wu, H.; Yao, P.; Hao, L.; Liu, L. Procyanidins extracted from the lotus seedpod ameliorate age-related antioxidant deficit in aged rats. J. Gerontol. A Biol. Sci. Med. Sci., 2010, 65A(3), 236-241.
[http://dx.doi.org/10.1093/gerona/glp211] [PMID: 20061344]
[19]
Xu, J.; Rong, S.; Xie, B.; Sun, Z.; Zhang, L.; Wu, H.; Yao, P.; Zhang, X.; Zhang, Y.; Liu, L. Rejuvenation of antioxidant and cholinergic systems contributes to the effect of procyanidins extracted from the lotus seedpod ameliorating memory impairment in cognitively impaired aged rats. Eur. Neuropsychopharmacol., 2009, 19(12), 851-860.
[http://dx.doi.org/10.1016/j.euroneuro.2009.07.006] [PMID: 19716273]
[20]
Xu, J.; Rong, S.; Xie, B.; Sun, Z.; Deng, Q.; Bao, W.; Wang, D.; Yao, P.; Huang, F.; Liu, L. Changes in the nitric oxide system contribute to effect of procyanidins extracted from the lotus seedpod ameliorating memory impairment in cognitively impaired aged rats. Rejuv. Res., 2011, 14(1), 33-43.
[http://dx.doi.org/10.1089/rej.2010.1076] [PMID: 21269138]
[21]
Ling, Z.Q.; Xie, B.J.; Yang, E.L. Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. J. Agric. Food Chem., 2005, 53(7), 2441-2445.
[http://dx.doi.org/10.1021/jf040325p] [PMID: 15796576]
[22]
Xu, J.; Rong, S.; Xie, B.; Sun, Z.; Deng, Q.; Wu, H.; Bao, W.; Wang, D.; Yao, P.; Huang, F.; Liu, L. Memory impairment in cognitively impaired aged rats associated with decreased hippocampal CREB phosphorylation: reversal by procyanidins extracted from the lotus seedpod. J. Gerontol. A Biol. Sci. Med. Sci., 2010, 65A(9), 933-940.
[http://dx.doi.org/10.1093/gerona/glq094] [PMID: 20530246]
[23]
D’Hooge, R.; De Deyn, P.P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev., 2001, 36(1), 60-90.
[http://dx.doi.org/10.1016/S0165-0173(01)00067-4] [PMID: 11516773]
[24]
Jiang, X.; Chai, G.S.; Wang, Z.H.; Hu, Y.; Li, X.G.; Ma, Z.W.; Wang, Q.; Wang, J.Z.; Liu, G.P. CaMKII-dependent dendrite ramification and spine generation promote spatial training-induced memory improvement in a rat model of sporadic Alzheimer’s disease. Neurobiol. Aging, 2015, 36(2), 867-876.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.10.018] [PMID: 25457025]
[25]
Stojakovic, A.; Trushin, S.; Sheu, A.; Khalili, L.; Chang, S.Y.; Li, X.; Christensen, T.; Salisbury, J.L.; Geroux, R.E.; Gateno, B.; Flannery, P.J.; Dehankar, M.; Funk, C.C.; Wilkins, J.; Stepanova, A.; O’Hagan, T.; Galkin, A.; Nesbitt, J.; Zhu, X.; Tripathi, U.; Macura, S.; Tchkonia, T.; Pirtskhalava, T.; Kirkland, J.L.; Kudgus, R.A.; Schoon, R.A.; Reid, J.M.; Yamazaki, Y.; Kanekiyo, T.; Zhang, S.; Nemutlu, E.; Dzeja, P.; Jaspersen, A.; Kwon, Y.I.C.; Lee, M.K.; Trushina, E. Partial inhibition of mitochondrial complex I ameliorates Alzheimer’s disease pathology and cognition in APP/PS1 female mice. Commun. Biol., 2021, 4(1), 61.
[http://dx.doi.org/10.1038/s42003-020-01584-y] [PMID: 33420340]
[26]
Morley, J.E.; Farr, S.A. The role of amyloid-beta in the regulation of memory. Biochem. Pharmacol., 2014, 88(4), 479-485.
[http://dx.doi.org/10.1016/j.bcp.2013.12.018] [PMID: 24398426]
[27]
Giacchino, J.; Criado, J.R.; Games, D.; Henriksen, S. In vivo synaptic transmission in young and aged amyloid precursor protein transgenic mice. Brain Res., 2000, 876(1-2), 185-190.
[http://dx.doi.org/10.1016/S0006-8993(00)02615-9] [PMID: 10973607]
[28]
Walsh, D.M.; Klyubin, I.; Fadeeva, J.V.; Cullen, W.K.; Anwyl, R.; Wolfe, M.S.; Rowan, M.J.; Selkoe, D.J. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 2002, 416(6880), 535-539.
[http://dx.doi.org/10.1038/416535a] [PMID: 11932745]
[29]
Shema, R.; Sacktor, T.C.; Dudai, Y. Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM zeta. Science, 2007, 317(5840), 951-953.
[http://dx.doi.org/10.1126/science.1144334] [PMID: 17702943]
[30]
Gao, W.; Li, X.; Dun, X.; Jing, X.; Yang, K.; Li, Y. Grape seed proanthocyanidin extract ameliorates streptozotocin-induced cognitive and synaptic plasticity deficits by inhibiting oxidative stress and preserving akt and erk activities. Curr. Med. Sci., 2020, 40(3), 434-443.
[http://dx.doi.org/10.1007/s11596-020-2197-x] [PMID: 32681248]
[31]
Trinchese, F.; Liu, S.; Battaglia, F.; Walter, S.; Mathews, P.M.; Arancio, O. Progressive age-related development of alzheimer-like pathology in APP/PS1 mice. Ann. Neurol., 2004, 55(6), 801-814.
[http://dx.doi.org/10.1002/ana.20101] [PMID: 15174014]
[32]
Zhao, P.; Qian, X.; Nie, Y.; Sun, N.; Wang, Z.; Wu, J.; Wei, C.; Ma, R.; Wang, Z.; Chai, G.; Li, Y. Neuropeptide s ameliorates cognitive impairment of app/ps1 transgenic mice by promoting synaptic plasticity and reducing aβ deposition. Front. Behav. Neurosci., 2019, 13, 138.
[http://dx.doi.org/10.3389/fnbeh.2019.00138] [PMID: 31293402]
[33]
Gordon, M.N.; Holcomb, L.A.; Jantzen, P.T.; DiCarlo, G.; Wilcock, D.; Boyett, K.W.; Connor, K.; Melachrino, J.; O’Callaghan, J.P.; Morgan, D. Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse. Exp. Neurol., 2002, 173(2), 183-195.
[http://dx.doi.org/10.1006/exnr.2001.7754] [PMID: 11822882]
[34]
Yu, X.; Curlik, D.; Oh, M.; Yin, J. CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats. eLife, 2017, 6, e19358.
[http://dx.doi.org/10.7554/eLife.19358] [PMID: 28051768]
[35]
Barman, B.; Kushwaha, A.; Thakur, M.K. Vitamin B12-folic acid supplementation regulates neuronal immediate early gene expression and improves hippocampal dendritic arborization and memory in old male mice. Neurochem. Int., 2021, 150, 105181.
[http://dx.doi.org/10.1016/j.neuint.2021.105181] [PMID: 34509560]
[36]
Leal, G.; Bramham, C.R.; Duarte, C.B. BDNF and hippocampal synaptic plasticity. Vitam. Horm., 2017, 104, 153-195.
[http://dx.doi.org/10.1016/bs.vh.2016.10.004] [PMID: 28215294]
[37]
Schroeter, H.; Bahia, P.; Spencer, J.P.E.; Sheppard, O.; Rattray, M.; Cadenas, E.; Rice-Evans, C.; Williams, R.J. (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J. Neurochem., 2007, 101(6), 1596-1606.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04434.x] [PMID: 17298385]
[38]
Rendeiro, C.; Vauzour, D.; Rattray, M.; Waffo-Téguo, P.; Mérillon, J.M.; Butler, L.T.; Williams, C.M.; Spencer, J.P.E. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS One, 2013, 8(5), e63535.
[http://dx.doi.org/10.1371/journal.pone.0063535] [PMID: 23723987]
[39]
Huang, H.; Yan, P.; Sun, T.; Mo, X.; Yin, J.; Li, P.; Zhu, Y.; Rong, S.; Yang, W.; Chen, X.; Liu, L. Procyanidins extracted from lotus seedpod ameliorate amyloid- β -induced toxicity in rat pheochromocytoma cells. Oxid. Med. Cell. Longev., 2018, 2018, 1-14.
[http://dx.doi.org/10.1155/2018/4572893] [PMID: 30538801]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy