Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Revealing the Role of the Arg and Lys in Shifting Paradigm from BTK Selective Inhibition to the BTK/HCK Dual Inhibition - Delving into the Inhibitory Activity of KIN-8194 against BTK, and HCK in the Treatment of Mutated BTKCys481 Waldenström Macroglobulinemia: A Computational Approach

Author(s): Ghazi Elamin, Aimen Aljoundi, Mohamed I. Alahmdi, Nader E. Abo-Dya and Mahmoud E.S. Soliman*

Volume 24, Issue 11, 2024

Published on: 15 April, 2024

Page: [813 - 825] Pages: 13

DOI: 10.2174/1871520623666230208102609

Price: $65

Abstract

Background: Despite the early success of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of Waldenström macroglobulinemia (WM), these single-target drug therapies have limitations in their clinical applications, such as drug resistance. Several alternative strategies have been developed, including the use of dual inhibitors, to maximize the therapeutic potential of these drugs.

Objective: Recently, the pharmacological activity of KIN-8194 was repurposed to serve as a ‘dual-target’ inhibitor of BTK and Hematopoietic Cell Kinase (HCK). However, the structural dual inhibitory mechanism remains unexplored, hence the aim of this study.

Methods: Conducting predictive pharmacokinetic profiling of KIN-8194, as well as demonstrating a comparative structural mechanism of inhibition against the above-mentioned enzymes.

Results: Our results revealed favourable binding affinities of -20.17 kcal/mol, and -35.82 kcal/mol for KIN-8194 towards HCK and BTK, respectively. Catalytic residues Arg137/174 and Lys42/170 in BTK and Arg303 and Lys75/173/244/247 in HCK were identified as crucial mediators of the dual binding mechanism of KIN-8194, corroborated by high per-residue energy contributions and consistent high-affinity interactions of these residues. Prediction of the pharmacokinetics and physicochemical properties of KIN-8194 further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. Structurally, KIN-8194 impacted the stability, flexibility, solvent-accessible surface area, and rigidity of BTK and HCK, characterized by various alterations observed in the bound and unbound structures, which proved enough to disrupt their biological function.

Conclusion: These structural insights provided a baseline for the understanding of the dual inhibitory activity of KIN- 8194. Establishing the cruciality of the interactions between the KIN-8194 and Arg and Lys residues could guide the structure-based design of novel dual BTK/HCK inhibitors with improved therapeutic activities.

Next »
[1]
Ababneh, O.; Abushukair, H.; Qarqash, A.; Syaj, S.; al Hadidi, S. The use of bruton tyrosine kinase inhibitors in waldenström’s macroglobulinemia. Clin. Hematol. Int., 2022, 4(1-2), 21-29.
[http://dx.doi.org/ 10.1007/s44228-022-00007-5] [PMID: 35950210]
[2]
Castillo, J.J.; Olszewski, A.J.; Kanan, S.; Meid, K.; Hunter, Z.R.; Treon, S.P. Overall survival and competing risks of death in patients with Waldenström macroglobulinaemia: An analysis of the surveillance, epidemiology and end results database. Br. J. Haematol., 2015, 169(1), 81-89.
[http://dx.doi.org/10.1111/bjh.13264] [PMID: 25521528]
[3]
Jeong, S.; Kong, S.G.; Kim, D.J.; Lee, S.; Lee, H.S. Incidence, prevalence, mortality, and causes of death in Waldenström macroglobulinemia: a nationwide, population-based cohort study. BMC Cancer, 2020, 20(1), 623.
[http://dx.doi.org/10.1186/s12885-020-07120-9] [PMID: 32620091]
[4]
Yin, X.; Chen, L.; Fan, F.; Yan, H.; Zhang, Y.; Huang, Z.; Sun, C.; Hu, Y. Trends in incidence and mortality of waldenström macroglobulinemia: A population-based study. Front. Oncol., 2020, 10, 1712.
[http://dx.doi.org/10.3389/fonc.2020.01712] [PMID: 33014849]
[5]
Pophali, P.A.; Bartley, A.; Kapoor, P.; Gonsalves, W.I.; Ashrani, A.A.; Marshall, A.L.; Siddiqui, M.A.; Kyle, R.A.; Go, R.S. Prevalence and survival of smouldering Waldenström macroglobulinaemia in the United States. Br. J. Haematol., 2019, 184(6), 1014-1017.
[http://dx.doi.org/10.1111/bjh.15201] [PMID: 29532912]
[6]
Kyle, R.A; Benson, J.T; Larson, D.R Progression in smoldering Waldenström macroglobulinemia: Long-term results. Blood, 2012, 119(19), 4462-4466.
[http://dx.doi.org/10.1182/blood-2011-10-384768]
[7]
Herrinton, L.J.; Weiss, N.S. Incidence of Waldenstrom’s macroglobulinemia. Blood, 1993, 82(10), 3148-3150.
[http://dx.doi.org/10.1182/blood.V82.10.3148.3148] [PMID: 8219203]
[8]
Groves, F.D.; Travis, L.B.; Devesa, S.S.; Ries, L.A.; Fraumeni, J.F. Waldenström’s macroglobulinemia: incidence patterns in the United States, 1988-1994. Cancer, 1998, 82(6), 1078-1081.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980315)82:6<1078:AID-CNCR10>3.0.CO;2-3] [PMID: 9506352]
[9]
Sekhar, J.; Sanfilippo, K.; Zhang, Q.; Trinkaus, K.; Vij, R.; Morgensztern, D. Waldenström macroglobulinemia: A surveillance, epidemiology, and end results database review from 1988 to 2005. Leuk. Lymphoma, 2012, 53(8), 1625-1626.
[http://dx.doi.org/10.3109/10428194.2012.656103] [PMID: 22239669]
[10]
Kastritis, E.; Morel, P.; Duhamel, A.; Gavriatopoulou, M.; Kyrtsonis, M.C.; Durot, E.; Symeonidis, A.; Laribi, K.; Hatjiharissi, E.; Ysebaert, L.; Vassou, A.; Giannakoulas, N.; Merlini, G.; Repousis, P.; Varettoni, M.; Michalis, E.; Hivert, B.; Michail, M.; Katodritou, E.; Terpos, E.; Leblond, V.; Dimopoulos, M.A. A revised international prognostic score system for Waldenström’s macroglobulinemia. Leukemia, 2019, 33(11), 2654-2661.
[http://dx.doi.org/10.1038/s41375-019-0431-y] [PMID: 31118465]
[11]
Dimopoulos, M.A.; Tedeschi, A.; Trotman, J.; García-Sanz, R.; Macdonald, D.; Leblond, V.; Mahe, B.; Herbaux, C.; Tam, C.; Orsucci, L.; Palomba, M.L.; Matous, J.V.; Shustik, C.; Kastritis, E.; Treon, S.P.; Li, J.; Salman, Z.; Graef, T.; Buske, C. Phase 3 Trial of Ibrutinib plus Rituximab in Waldenström’s macroglobulinemia. N. Engl. J. Med., 2018, 378(25), 2399-2410.
[http://dx.doi.org/10.1056/NEJMoa1802917] [PMID: 29856685]
[12]
Moreno, D.F.; de Larrea, C.F.; Castillo, J.J. New treatment strategies for Waldenström macroglobulinemia. Clin. Adv. Hematol. Oncol., 2022, 20(8), 506-515. http://www.ncbi.nlm.nih.gov/pubmed/36125957
[PMID: 36125957]
[13]
De, S.K. Fundamentals of cancer detection, treatment, and prevention; WILEY-VCH: New Jersey, 2022, pp. 67-131.
[http://dx.doi.org/10.1002/9783527838561]
[14]
Trotman, J.; Opat, S.; Gottlieb, D.; Simpson, D.; Marlton, P.; Cull, G.; Munoz, J.; Tedeschi, A.; Roberts, A.W.; Seymour, J.F.; Atwal, S.K.; Yu, Y.; Novotny, W.; Holmgren, E.; Tan, Z.; Hilger, J.D.; Huang, J.; Tam, C.S. Zanubrutinib for the treatment of patients with Waldenström macroglobulinemia: 3 years of follow-up. Blood, 2020, 136(18), 2027-2037.
[http://dx.doi.org/10.1182/blood.2020006449] [PMID: 32698195]
[15]
Yang, G.; Buhrlage, S.J.; Tan, L.; Liu, X.; Chen, J.; Xu, L.; Tsakmaklis, N.; Chen, J.G.; Patterson, C.J.; Brown, J.R.; Castillo, J.J.; Zhang, W.; Zhang, X.; Liu, S.; Cohen, P.; Hunter, Z.R.; Gray, N.; Treon, S.P. HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood, 2016, 127(25), 3237-3252.
[http://dx.doi.org/10.1182/blood-2016-01-695098] [PMID: 27143257]
[16]
Treon, S.P.; Xu, L.; Guerrera, M.L.; Jimenez, C.; Hunter, Z.R.; Liu, X.; Demos, M.; Gustine, J.; Chan, G.; Munshi, M.; Tsakmaklis, N.; Chen, J.G.; Kofides, A.; Sklavenitis-Pistofidis, R.; Bustoros, M.; Keezer, A.; Meid, K.; Patterson, C.J.; Sacco, A.; Roccaro, A.; Branagan, A.R.; Yang, G.; Ghobrial, I.M.; Castillo, J.J. Genomic landscape of Waldenström macroglobulinemia and its impact on treatment strategies. J. Clin. Oncol., 2020, 38(11), 1198-1208.
[http://dx.doi.org/10.1200/JCO.19.02314] [PMID: 32083995]
[17]
Taguchi, T.; Kiyokawa, N.; Sato, N.; Saito, M.; Fujimoto, J. Characteristic expression of Hck in human B-cell precursors. Exp. Hematol., 2000, 28(1), 55-64.
[http://dx.doi.org/10.1016/S0301-472X(99)00127-7] [PMID: 10658677]
[18]
Treon, S.P.; Tripsas, C.K.; Meid, K.; Warren, D.; Varma, G.; Green, R.; Argyropoulos, K.V.; Yang, G.; Cao, Y.; Xu, L.; Patterson, C.J.; Rodig, S.; Zehnder, J.L.; Aster, J.C.; Harris, N.L.; Kanan, S.; Ghobrial, I.; Castillo, J.J.; Laubach, J.P.; Hunter, Z.R.; Salman, Z.; Li, J.; Cheng, M.; Clow, F.; Graef, T.; Palomba, M.L.; Advani, R.H. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N. Engl. J. Med., 2015, 372(15), 1430-1440.
[http://dx.doi.org/10.1056/NEJMoa1501548] [PMID: 25853747]
[19]
Herman, S.E.M.; Gordon, A.L.; Hertlein, E.; Ramanunni, A.; Zhang, X.; Jaglowski, S.; Flynn, J.; Jones, J.; Blum, K.A.; Buggy, J.J.; Hamdy, A.; Johnson, A.J.; Byrd, J.C. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood, 2011, 117(23), 6287-6296.
[http://dx.doi.org/10.1182/blood-2011-01-328484] [PMID: 21422473]
[20]
Smith, C.I.E. From identification of the BTK kinase to effective management of leukemia. Oncogene, 2017, 36(15), 2045-2053.
[http://dx.doi.org/10.1038/onc.2016.343] [PMID: 27669440]
[21]
Lucas, F.; Woyach, J.A. Inhibiting bruton’s tyrosine kinase in CLL and other B-cell malignancies. Target. Oncol., 2019, 14(2), 125-138.
[http://dx.doi.org/10.1007/s11523-019-00635-7] [PMID: 30927175]
[22]
Woyach, J.A.; Furman, R.R.; Liu, T.M.; Ozer, H.G.; Zapatka, M.; Ruppert, A.S.; Xue, L.; Li, D.H.H.; Steggerda, S.M.; Versele, M.; Dave, S.S.; Zhang, J.; Yilmaz, A.S.; Jaglowski, S.M.; Blum, K.A.; Lozanski, A.; Lozanski, G.; James, D.F.; Barrientos, J.C.; Lichter, P.; Stilgenbauer, S.; Buggy, J.J.; Chang, B.Y.; Johnson, A.J.; Byrd, J.C. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med., 2014, 370(24), 2286-2294.
[http://dx.doi.org/10.1056/NEJMoa1400029] [PMID: 24869598]
[23]
Bond, D.A.; Woyach, J.A. Targeting BTK in CLL: Beyond Ibrutinib. Curr. Hematol. Malig. Rep., 2019, 14(3), 197-205.
[http://dx.doi.org/10.1007/s11899-019-00512-0] [PMID: 31028669]
[24]
Kapoor, I.; Li, Y.; Sharma, A.; Zhu, H.; Bodo, J.; Xu, W.; Hsi, E.D.; Hill, B.T.; Almasan, A. Resistance to BTK inhibition by ibrutinib can be overcome by preventing FOXO3a nuclear export and PI3K/AKT activation in B-cell lymphoid malignancies. Cell Death Dis., 2019, 10(12), 924.
[http://dx.doi.org/10.1038/s41419-019-2158-0] [PMID: 31801949]
[25]
Boran, A.D.W.; Iyengar, R. Systems approaches to polypharmacology and drug discovery. Curr. Opin. Drug Discov. Devel., 2010, 13(3), 297-309.http://www.ncbi.nlm.nih.gov/pubmed/20443163
[PMID: 20443163]
[26]
Raghavendra, N.M.; Pingili, D.; Kadasi, S.; Mettu, A.; Prasad, S.V.U.M. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur. J. Med. Chem., 2018, 143, 1277-1300.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.021] [PMID: 29126724]
[27]
Méndez-Lucio, O.; Naveja, J.J.; Vite-Caritino, H.; Prieto-Martínez, F.D.; Medina-Franco, J.L. One drug for multiple targets: A computational perspective. J. Mex. Chem. Soc., 2016, 60(3), 168-181.https://www.jmcs.org.mx/index.php/jmcs/article/view/100
[28]
Zhang, X.; Zegar, T.; Weiser, T.; Hamdan, F.H.; Berger, B.T.; Lucas, R.; Balourdas, D.I.I.; Ladigan, S.; Cheung, P.F.; Liffers, S.T.; Trajkovic-Arsic, M.; Scheffler, B.; Joerger, A.C.; Hahn, S.A.; Johnsen, S.A.; Knapp, S.; Siveke, J.T. Characterization of a dual BET/HDAC inhibitor for treatment of pancreatic ductal adenocarcinoma. Int. J. Cancer, 2020, 147(10), 2847-2861.
[http://dx.doi.org/10.1002/ijc.33137] [PMID: 32599645]
[29]
Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[30]
Mei, Y.; Yang, B. Rational application of drug promiscuity in medicinal chemistry. Future Med. Chem., 2018, 10(15), 1835-1851.
[http://dx.doi.org/10.4155/fmc-2018-0018] [PMID: 30019924]
[31]
Yang, G.; Wang, J.; Liu, X.; Munshi, M.; Chen, J.G.; Kofides, A.; Xu, L.; Tsakmaklis, N.; Demos, M.; Guerrera, M.L.; Chan, G.G.; Jimenez, C.; Hunter, Z.R.; Patterson, C.; Castillo, J.J.; Buhrlage, S.J.; Gray, N.; Treon, S.P. A novel hck and btk dual inhibitor kin-8194 shows superior activity over ibrutinib and overcomes btkc481s mediated ibrutinib resistance in vitro and in vivo in myd88 mutated b-cell lymphomas. Blood, 2019, 134(S1), 394.
[http://dx.doi.org/10.1182/blood-2019-130636]
[32]
Yang, G.; Wang, J.; Tan, L.; Munshi, M.; Liu, X.; Kofides, A.; Chen, J.G.; Tsakmaklis, N.; Demos, M.G.; Guerrera, M.L.; Xu, L.; Hunter, Z.R.; Che, J.; Patterson, C.J.; Meid, K.; Castillo, J.J.; Munshi, N.C.; Anderson, K.C.; Cameron, M.; Buhrlage, S.J.; Gray, N.S.; Treon, S.P. The HCK/BTK inhibitor KIN-8194 is active in MYD88-driven lymphomas and overcomes mutated BTKCys481 ibrutinib resistance. Blood, 2021, 138(20), 1966-1979.
[http://dx.doi.org/10.1182/blood.2021011405] [PMID: 34132782]
[33]
Burley, S.K.; Berman, H.M.; Christie, C. RCSB protein data bank: Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education. Protein Sci., 2018, 27(1), 316.
[http://dx.doi.org/10.1002/pro.3331] [PMID: 29067736]
[34]
Bender, A.T.; Gardberg, A.; Pereira, A.; Johnson, T.; Wu, Y.; Grenningloh, R.; Head, J.; Morandi, F.; Haselmayer, P.; Liu-Bujalski, L. Ability of bruton’s tyrosine kinase inhibitors to sequester y551 and prevent phosphorylation determines potency for inhibition of fc receptor but not b-cell receptor signaling. Mol. Pharmacol., 2017, 91(3), 208-219.
[http://dx.doi.org/10.1124/mol.116.107037] [PMID: 28062735]
[35]
Katsura, K.; Tomabechi, Y.; Matsuda, T.; Yonemochi, M.; Mikuni, J.; Ohsawa, N.; Terada, T.; Yokoyama, S.; Kukimoto-Niino, M.; Takemoto, C.; Shirouzu, M. Phosphorylated and non-phosphorylated HCK kinase domains produced by cell-free protein expression. Protein Expr. Purif., 2018, 150, 92-99.
[http://dx.doi.org/10.1016/j.pep.2018.05.005] [PMID: 29793032]
[36]
Berman, H.M.; Battistuz, T.; Bhat, T.N. TheProtein Data Bank, 2002. Available from: https://pubmed.ncbi.nlm.nih.gov/12037327/
[37]
Susi, K.; Emil, K.; Soleh, K.; Wahono, S. The molecular docking of 1,4-naphthoquinone derivatives as inhibitors of polo-like kinase 1 using molegro virtual docker J. Appl. Pharm. Sci., , 2014, 4(11), 047-053.http://japsonline.com/counter.php?aid=1369
[http://dx.doi.org/10.7324/JAPS.2014.4119]
[38]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[39]
Eswar, N.; Webb, B.; Marti-Renom, M.A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinformatics, 2006, 5(1)
[http://dx.doi.org/10.1002/0471250953.bi0506s15]
[40]
Dunbrack, R.L. Jr Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol., 2002, 12(4), 431-440.
[http://dx.doi.org/10.1016/S0959-440X(02)00344-5] [PMID: 12163064]
[41]
Cherinka, B.; Andrews, B.H.; Sánchez-Gallego, J.; Brownstein, J.; Argudo-Fernández, M.; Blanton, M.; Bundy, K.; Jones, A.; Masters, K.; Law, D.R.; Rowlands, K.; Weijmans, A-M.; Westfall, K.; Yan, R. Marvin: A tool kit for streamlined access and visualization of the sdss-iv manga data set. Astron. J., 2019, 158(2), 74.
[http://dx.doi.org/10.3847/1538-3881/ab2634]
[42]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[43]
Allouche, A.R. Gabedit-A graphical user interface for computational chemistry softwares. J. Comput. Chem., 2011, 32(1), 174-182.
[http://dx.doi.org/10.1002/jcc.21600] [PMID: 20607691]
[44]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[45]
Case, D.A.; Belfon, K.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S. Amber 2020 reference manual; University of California: San Francisco, 2020, pp. 1-918. Available from: https://ambermd.org/doc12/Amber20.pdf
[46]
Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2013, 3(2), 198-210.
[http://dx.doi.org/10.1002/wcms.1121]
[47]
Ponder, J.W.; Case, D.A. Force fields for protein simulations. Adv. Protein Chem., 2003, 66, 27-85.
[http://dx.doi.org/10.1016/S0065-3233(03)66002-X] [PMID: 14631816]
[48]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[49]
Grest, G.S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A Gen. Phys., 1986, 33(5), 3628-3631.
[http://dx.doi.org/10.1103/PhysRevA.33.3628] [PMID: 9897103]
[50]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[51]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[52]
Roe, D.R.; Cheatham, T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[53]
Seifert, E. OriginPro 9.1: Scientific data analysis and graphing software-software review. J. Chem. Inf. Model., 2014, 54(5), 1552.
[http://dx.doi.org/10.1021/ci500161d] [PMID: 24702057]
[54]
BIOVIA In: DS. Discovery Studio 2016 Client; Dassault Systèmes: San Diego, 2016.
[55]
Massova, I.; Kollman, P.A. Combined molecular mechanical and continuum solvent approach (MM- PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des., 2000, 18(1), 113-135.
[http://dx.doi.org/10.1023/A:1008763014207]
[56]
Genheden, S.; Kuhn, O.; Mikulskis, P.; Hoffmann, D.; Ryde, U. The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. J. Chem. Inf. Model., 2012, 52(8), 2079-2088.
[http://dx.doi.org/10.1021/ci3001919] [PMID: 22817270]
[57]
Onufriev, A.; Bashford, D.; Case, D.A. Modification of the generalized born model suitable for macromolecules. J. Phys. Chem. B, 2000, 104(15), 3712-3720.
[http://dx.doi.org/10.1021/jp994072s]
[58]
Ylilauri, M.; Pentikäinen, O.T. MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J. Chem. Inf. Model., 2013, 53(10), 2626-2633.
[http://dx.doi.org/10.1021/ci4002475] [PMID: 23988151]
[59]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[60]
Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model., 2011, 51(1), 69-82.
[http://dx.doi.org/10.1021/ci100275a] [PMID: 21117705]
[61]
Homeyer, N.; Gohlke, H. Free energy calculations by the molecular mechanics poisson-boltzmann surface area method. Mol. Inform., 2012, 31(2), 114-122.
[http://dx.doi.org/10.1002/minf.201100135] [PMID: 27476956]
[62]
Sitkoff, D.; Sharp, K.A.; Honig, B. Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem., 1994, 98(7), 1978-1988.
[http://dx.doi.org/10.1021/j100058a043]
[63]
Wan, H.; Hu, J.; Tian, X.; Chang, S. Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d. Phys. Chem. Chem. Phys., 2013, 15(4), 1241-1251.
[http://dx.doi.org/10.1039/C2CP41388D] [PMID: 23229122]
[64]
Chang, S.; Hu, J.; Lin, P.; Jiao, X.; Tian, X. Substrate recognition and transport behavior analyses of amino acid antiporter with coarse-grained models. Mol. Biosyst., 2010, 6(12), 2430-2438.
[http://dx.doi.org/10.1039/c005266c] [PMID: 20838682]
[65]
Fakhar, Z.; Govender, T.; Maguire, G.E.M.; Lamichhane, G.; Walker, R.C.; Kruger, H.G.; Honarparvar, B. Differential flap dynamics in L, D-transpeptidase2 from Mycobacterium tuberculosis revealed by molecular dynamics. Mol. Biosyst., 2017, 13(6), 1223-1234.
[http://dx.doi.org/10.1039/C7MB00110J] [PMID: 28480928]
[66]
David CC; Jacobs, DJ Principal component analysis: A method for determining the essential dynamics of proteins. Methods Mol. Biol., 2014, 1084, 193-226.
[http://dx.doi.org/10.1007/978-1-62703-658-0_11] [PMID: 24061923]
[67]
Levy, R.M.; Srinivasan, A.R.; Olson, W.K.; McCammon, J.A. Quasi-harmonic method for studying very low frequency modes in proteins. Biopolymers, 1984, 23(6), 1099-1112.
[http://dx.doi.org/10.1002/bip.360230610] [PMID: 6733249]
[68]
Chen, J.; Wang, J.; Zhu, W. Binding modes of three inhibitors 8CA, F8A and I4A to A-FABP studied based on molecular dynamics simulation. PLoS One, 2014, 9(6), e99862.
[http://dx.doi.org/10.1371/journal.pone.0099862] [PMID: 24918907]
[69]
Ichiye, T.; Karplus, M. Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins, 1991, 11(3), 205-217.
[http://dx.doi.org/10.1002/prot.340110305] [PMID: 1749773]
[70]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., , 1996, 14(1) 33-38, 27-28..
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[71]
Webborn, P.J.H. The role of pharmacokinetic studies in drug discovery: where are we now, how did we get here and where are we going? Future Med. Chem., 2014, 6(11), 1233-1235.
[http://dx.doi.org/10.4155/fmc.14.76] [PMID: 25162995]
[72]
Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[73]
Ahmed, S.S.S.J.; Ramakrishnan, V. Systems biological approach of molecular descriptors connectivity: optimal descriptors for oral bioavailability prediction. PLoS One, 2012, 7(7), e40654.
[http://dx.doi.org/10.1371/journal.pone.0040654] [PMID: 22815781]
[74]
Kruijtzer, C.M.F.; Beijnen, J.H.; Schellens, J.H.M. Improvement of oral drug treatment by temporary inhibition of drug transporters and/or cytochrome P450 in the gastrointestinal tract and liver: an overview. Oncologist, 2002, 7(6), 516-530.
[http://dx.doi.org/10.1634/theoncologist.7-6-516] [PMID: 12490739]
[75]
Mukherjee, J.; Gupta, M.N. Increasing importance of protein flexibility in designing biocatalytic processes. Biotechnol. Rep., 2015, 6, 119-123.
[http://dx.doi.org/10.1016/j.btre.2015.04.001] [PMID: 28626705]
[76]
Xie, Y.; An, J.; Yang, G.; Wu, G.; Zhang, Y.; Cui, L.; Feng, Y. Enhanced enzyme kinetic stability by increasing rigidity within the active site. J. Biol. Chem., 2014, 289(11), 7994-8006.
[http://dx.doi.org/10.1074/jbc.M113.536045] [PMID: 24448805]
[77]
Celej, M.S.; Montich, G.G.; Fidelio, G.D. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci., 2003, 12(7), 1496-1506.
[http://dx.doi.org/10.1110/ps.0240003] [PMID: 12824495]
[78]
Liu, K.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. J. Chem. Inf. Model., 2017, 57(10), 2514-2522.
[http://dx.doi.org/10.1021/acs.jcim.7b00412] [PMID: 28902511]
[79]
Agoni, C.; Salifu, E.Y.; Munsamy, G.; Olotu, F.A.; Soliman, M. CF3‐Pyridinyl substitution on antimalarial therapeutics: Probing differential ligand binding and dynamical inhibitory effects of a novel triazolopyrimidine‐based inhibitor on Plasmodium falciparum dihydroorotate dehydrogenase. Chem. Biodivers., 2019, 16(12), e1900365.
[http://dx.doi.org/10.1002/cbdv.201900365] [PMID: 31589372]
[80]
Luque, I.; Freire, E. Structural stability of binding sites: Consequences for binding affinity and allosteric effects. Proteins, 2000, 4, 63-71.
[http://dx.doi.org/10.1002/1097-0134(2000)41:4+<63:AID-PROT60>3.0.CO;2-6]
[81]
Salifu, E.Y.; Issahaku, A.R.; Agoni, C.; Ibrahim, M.A.A.; Manimbulu, N.; Soliman, M.E.S. Prioritizing the catalytic gatekeepers through pan- inhibitory mechanism of entrectinib against alk, ros1 and trka tyrosine kinases. Cell Biochem. Biophys., 2022, 80(1), 11-21.
[http://dx.doi.org/10.1007/s12013-021-01052-2] [PMID: 35040089]
[82]
Brüschweiler, R. Efficient RMSD measures for the comparison of two molecular ensembles. Proteins, 2003, 50(1), 26-34.
[http://dx.doi.org/10.1002/prot.10250] [PMID: 12471596]
[83]
Pitera, J.W. Expected distributions of root-mean-square positional deviations in proteins. J. Phys. Chem. B, 2014, 118(24), 6526-6530.
[http://dx.doi.org/10.1021/jp412776d] [PMID: 24655018]
[84]
Kumar, C.V.; Swetha, R.G.; Anbarasu, A.; Ramaiah, S. Computational analysis reveals the association of threonine 118 methionine mutation in pmp22 resulting in CMT-1A. Adv. Bioinformatics., 2014, 2014, 502618.
[http://dx.doi.org/10.1155/2014/502618] [PMID: 25400662]
[85]
Teilum, K.; Olsen, J.G.; Kragelund, B.B. Functional aspects of protein flexibility. Cell. Mol. Life Sci., 2009, 66(14), 2231-2247.
[http://dx.doi.org/10.1007/s00018-009-0014-6] [PMID: 19308324]
[86]
Gromiha, M.; Ahmad, S. Role of solvent accessibility in structure based drug design. Curr. Computeraided Drug Des., 2005, 1(3), 223-235.
[http://dx.doi.org/10.2174/1573409054367664]
[87]
Lobanov, M.Y.; Bogatyreva, N.S.; Galzitskaya, O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol., 2008, 42(4), 623-628.
[http://dx.doi.org/10.1134/S0026893308040195]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy