Abstract
New coumarin chalcones 3j-p were conveniently obtained in high yields via Claisen-Schmidt condensation reaction, when acetyl coumarin 1 reacted with 3-aryl-1-phenyl pyrazole-4-carbaldehydes 2j-p in boiling ethanol in the presence of triethyl amine as a catalyst. Also, two synthetic pathways were afforded for the synthesis of novel tetrazolo[1,5- a]pyrimidinyl-2H-chromen-2-ones 5a-p. The first pathway is a multistep process including formation and separation of chalcones, which then were allowed to react with 5-aminotetrazole 4. While, the second pathway is a highly efficient one-pot three-component condensation reaction of 3-acetyl coumarin 1, aromatic aldehydes 2a-p and 5-aminotetrazole 4 under green and mild reaction conditions by using acetic acid (AcOH) as a catalyst and solvent. The molecular structure of products was established on the basis of their NMRs, IR and elemental analysis data. Solvent optimization was carried out in the reaction producing 3-(5-Phenyl-4,5-dihydrotetrazolo[1,5- a]pyrimidin-7-yl)-2H-chromen-2-one (5a). The advantages to using environmental-friendly acetic acid are simple operation, short reaction time, high efficient (97%), operationally facile and wide tolerance of starting materials.
Graphical Abstract
[http://dx.doi.org/10.1016/j.ejmech.2017.10.072] [PMID: 29133055]
[http://dx.doi.org/10.5853/jos.2015.17.2.216] [PMID: 26060809]
[http://dx.doi.org/10.1016/j.ejmech.2016.07.056] [PMID: 27484512]
[http://dx.doi.org/10.1134/S1070363218100201]
[http://dx.doi.org/10.1016/j.fitote.2020.104492] [PMID: 32032635]
[http://dx.doi.org/10.2174/2211738504666151127192541]
[http://dx.doi.org/10.3390/molecules20010366] [PMID: 25551187]
[http://dx.doi.org/10.1038/srep13544] [PMID: 26315062]
[http://dx.doi.org/10.1021/acsomega.7b00562] [PMID: 30023744]
[http://dx.doi.org/10.1016/j.ejmech.2014.07.087] [PMID: 25078311]
[http://dx.doi.org/10.1016/j.bioorg.2019.103133] [PMID: 31374524]
[http://dx.doi.org/10.1016/j.ejmech.2018.03.047] [PMID: 29602038]
[http://dx.doi.org/10.1039/c3md00025g]
[http://dx.doi.org/10.1016/j.bmc.2010.02.028] [PMID: 20227281]
[http://dx.doi.org/10.1128/AAC.00541-07] [PMID: 17875990]
[http://dx.doi.org/10.1039/C4RA11197D]
[http://dx.doi.org/10.1021/cc9000983] [PMID: 19950908]
[http://dx.doi.org/10.1002/jhet.5570450609]
[http://dx.doi.org/10.1134/S1070428010050180]
[http://dx.doi.org/10.1007/BF00633502]
[http://dx.doi.org/10.1007/s11030-013-9435-0] [PMID: 23588896]
[http://dx.doi.org/10.1016/j.poly.2019.04.015]
[http://dx.doi.org/10.1016/j.jorganchem.2021.121971]
[http://dx.doi.org/10.1016/j.tet.2014.03.024]
[http://dx.doi.org/10.7537/marsjas080812.122]
[http://dx.doi.org/10.1080/00397911.2013.838266]
[http://dx.doi.org/10.1016/j.molcata.2015.04.023];
(b) El-Remaily, M.A.E.A.A.A.; Abu-Dief, A.M. CuFe2O4 nanoparticles: an efficient heterogeneous magnetically separable catalyst for synthesis of some novel propynyl-1H-imidazoles derivatives. Tetrahedron, 2015, 71(17), 2579-2584.
[http://dx.doi.org/10.1016/j.tet.2015.02.057];
(c) El-Remaily, M.A.E.A.A.A.; Soliman, A.M.M. Epichlorohydrin cross-linked β -cyclodextrin: an environmental method for the synthesis of 2-arylbenzothiazoles derivatives in water. J. Sulfur Chem., 2016, 37(1), 70-79.
[http://dx.doi.org/10.1080/17415993.2015.1089874];
(d) Shokr, E.K.; Kamel, M.S.; Abdel-Ghany, H.; El- Remaily, M.A.E.A.A.A.; Abdou, A. Synthesis, characterization, and DFT study of linear and non-linear optical properties of some novel thieno[2,3-b]thiophene azo dye derivatives. Mater. Chem. Phys., 2022, 290, 126646.
[http://dx.doi.org/10.1016/j.matchemphys.2022.126646]
[http://dx.doi.org/10.1016/S1872-2067(14)60308-9];
(b) El Remaily, M.A.E.A.A.A.; Mohamed, S.K. Eco-friendly synthesis of guanidinyltetrazole compounds and 5-substituted 1H-tetrazoles in water under microwave irradiation. Tetrahedron, 2014, 70(2), 270-275.
[http://dx.doi.org/10.1016/j.tet.2013.11.069];
(c) Elkanzi, N.A.A.; Kadry, A.M.; Ryad, R.M.; Bakr, R.B.; Ali El-Remaily, M.A.E.A.A.; Ali, A.M. Efficient and recoverable bio-organic catalyst cysteine for synthesis, docking study, and antifungal activity of new bio-active 3,4-Dihydropyrimidin-2(1 H)-ones/thiones under microwave irradiation. ACS Omega, 2022, 7(26), 22839-22849.
[http://dx.doi.org/10.1021/acsomega.2c02449] [PMID: 35811927];
(d) Abdel‐Rahman, L. H.; Abdel‐Mawgoud, A. M. M.; Mohamed, S. K.; Shehata, M. R.; Abdel‐Hameed, M.; El-Remaily, M. A. A. Synthesis, spectroscopic, DFT calculations, antimicrobial, cytotoxicity, and DNA binding studies of novel Cu (II), Ni (II), Zn (II), and VO (II) Schiff base complexes based on ibuprofen. Appl. Organomet. Chem., 2022, 36(10), e6817.
[http://dx.doi.org/10.1002/aoc.6817]
[http://dx.doi.org/10.1016/j.ejmech.2011.10.034] [PMID: 22093758];
(b) Ahmed, A.M.; Abdel-Ghany, H.; Moustafa, H.M.; Khodairy, A. New route for the synthesis of hetaryl-1,5-benzodiazepines: Part 2. J. Heterocycl. Chem., 2019, 56(2), 464-469.
[http://dx.doi.org/10.1002/jhet.3420];
(c) Abdel-Ghany, H.; El-Sayed, A.M.; Amer, A.A.; Ahmed, A.M. Synthesis of novel fused heterocycles based on 6-Amino-4-phenyl-2-thioxo-1,2-dihydropyridine-3,5-dicarbonitrile. J. Heterocycl. Chem., 2016, 53(6), 2013-2019.
[http://dx.doi.org/10.1002/jhet.2522];
(d) Tyrkov, A.G.; Abdel’rakhim, M.A.; Sukhenko, L.T.; Degtyarev, O.V. Synthesis and antifungal activity of substituted nitrotetrazole-5-carbaldehyde hydrazones. Pharm. Chem. J., 2014, 47(11), 589-592.
[http://dx.doi.org/10.1007/s11094-014-1013-y]
[http://dx.doi.org/10.1002/aoc.4989];
(b) El-Remaily, M.A.E.A.A.A.; Abu-Dief, A.M.; Elhady, O. Green synthesis of TiO 2 nanoparticles as an efficient heterogeneous catalyst with high reusability for synthesis of 1,2‐dihydroquinoline derivatives. Appl. Organomet. Chem., 2019, 33(8), e5005.
[http://dx.doi.org/10.1002/aoc.5005];
(c) Abdelrakhim, M.A.; Tyrkov, A.G.; Yurtaeva, E.A. Synthesis of 2-(2-methyltetrazol-5-yl)-2,2-dinitroacetonitrile and its reaction with substituted nitrile N-oxides. Russ. J. Org. Chem., 2014, 50(2), 280-284.
[http://dx.doi.org/10.1134/S1070428014020237];
(d) Tyrkov, A.G.; Abdelraheem, M.A.; Sukhenko, L.T. Synthesis and antimicrobial activity of substituted nitrotetrazole-5- carbaldehyde hydrazones. Pharm. Chem. J., 2014, 47(10), 527-530.
[http://dx.doi.org/10.1007/s11094-014-0997-7]
[http://dx.doi.org/10.1016/j.tetlet.2015.12.052];
(b) Aleem Ali El-Remaily, M.A.E.; Abu-Dief, A.M.; El-Khatib, R.M. A robust synthesis and characterization of superparamagnetic CoFe2O4 nanoparticles as an efficient and reusable catalyst for green synthesis of some heterocyclic rings. Appl. Organomet. Chem., 2016, 30(12), 1022-1029.
[http://dx.doi.org/10.1002/aoc.3536];
(c) Ahmed, E. A.; Soliman, A. M.; Ali, A. M.; El-Remaily, M. A. A. Boosting the catalytic performance of zinc linked amino acid complex as an eco-friendly for synthesis of novel pyrimidines in aqueous medium. Appl. Organomet. Chem., 2021, 35(5), e6197.
[http://dx.doi.org/10.1002/aoc.6197];
(d) Tyrkov, A.G.; Abdelraheem, M.A. Synthesis of 2-(2-methyltetrazol-5-yl)-2,2-dinitroacetonitrile. Reaction of the nitrile group with diazomethane. Chem. Heterocycl. Compd., 2013, 49(5), 712-719.
[http://dx.doi.org/10.1007/s10593-013-1302-5]
[http://dx.doi.org/10.1021/acsomega.0c00369] [PMID: 32226904];
(b) Khodairy, A.; Shaaban, K.M.; Ali, M.A.; El-Wassimy, M.T.; Nagwa, S. Eco-friendly and efficiently synthesis, anti-inflammatory activity of 4-tosyloxyphenylpyrans via multi-component reaction under ultrasonic irradiation and room temperature conditions. J. Chem. Pharm. Res., 2015, 7(11), 332-340.;
(c) Mourad, A.F.E.; Amer, A.A.; El-Shaieb, K.M.; Ali, A.M.; Aly, A.A. 4-Hydroxy-1-phenylquinolin-2(1 H)-one in one-pot synthesis of pyrimidoquinolines and related compounds under microwave irradiation and conventional conditions. J. Heterocycl. Chem., 2016, 53(2), 383-388.
[http://dx.doi.org/10.1002/jhet.2286];
(d) Khodairy, A.; Ali, A.M.; El-Wassimy, M.T. 4-toluenesulfonamide as a building block for synthesis of novel triazepines, pyrimidines, and azoles. J. Heterocycl. Chem., 2016, 53(5), 1544-1553.
[http://dx.doi.org/10.1002/jhet.2461]
[http://dx.doi.org/10.1134/S1070428013040271];
(b) Abdel’rakhim, M.A.; Tyrkov, A.G. Nitration of styrenes using 2-methyl-5-trinitromethyltetrazole. Chem. Heterocycl. Compd., 2012, 48(7), 1111-1113.
[http://dx.doi.org/10.1007/s10593-012-1107-y]
[http://dx.doi.org/10.1134/S1070428007090205]
[http://dx.doi.org/10.1055/s-2005-872073]