Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Study on the Mechanism of Hydrolyzed Seawater Pearl Tablet in Treating Chronic Sleep Deprivation Mice Model

Author(s): Fei Luo, Siyin Han, Meng Xia, Zhenxing Chen, Peng Liu and Jiang Lin*

Volume 23, Issue 7, 2023

Published on: 01 March, 2023

Page: [927 - 936] Pages: 10

DOI: 10.2174/1871530323666230206160722

Price: $65

conference banner
Abstract

Background: Modern lifestyle increasingly deprives people from sleep to different degrees. Long-term sleep deprivation will facilitate body’s pathological behaviors, such as lethargy, depression, and anorexia.

Objective: This study is an investigation into the mechanism of hydrolyzed seawater pearl tablet in treating chronic sleep deprivation mice model.

Methods: The chronic sleep deprivation model was established involving C57BL/6mice; the body weight, behavioral characteristics, hippocampal structure, oxidative stress, apoptosis-related protein expression, and intestinal bacteria in mice were assessed to characterise hydrolyzed seawater pearl tablet.

Results: Hydrolyzed seawater pearl tablet significantly accelerated body weight, open field test score, and sugar water preference rate (P < 0.05), alleviated the structural damage of hippocampus, reduced the content of MDA (P < 0.05), Bax protein expression, increased the content of GSH (P < 0.05), the activities of SOD, GSH-Px, and Bcl-2 protein expression in the hippocampus, increased the Escherichia coli, Bacteroides, Bifidobacterium and Lactobacillus (P < 0.05), which are beneficial bacteria in the intestine, in chronic sleep deprivation mice, and reduced the amount of Clostridium perfringens (P < 0.05), which are harmful bacteria in the intestine.

Conclusion: Hydrolyzed seawater pearl tablet can improve the depression-like mental state of mice caused by chronic sleep deprivation. The mechanism involves improving the antioxidant activity of the hippocampus to eliminate the excessive ROS, which inhibits cell apoptosis and alleviates tissue structure damage. Meanwhile, it may also be involved in adjusting the microbiota level and improving the mental and behavioral activities of chronic sleep deprivation mice through the intestine-brain axis.

Graphical Abstract

[1]
Orzeł-Gryglewska, J. Consequences of sleep deprivation. Int. J. Occup. Med. Environ. Health, 2010, 23(1), 95-114.
[http://dx.doi.org/10.2478/v10001-010-0004-9] [PMID: 20442067]
[2]
Pandey, A.; Kar, S.K. Rapid eye movement sleep deprivation of rat generates ROS in the hepatocytes and makes them more susceptible to oxidative stress. Sleep Sci., 2018, 11(4), 245-253.
[http://dx.doi.org/10.5935/1984-0063.20180039] [PMID: 30746042]
[3]
Nedeltcheva, A.V.; Scheer, F.A.J.L. Metabolic effects of sleep disruption, links to obesity and diabetes. Curr. Opin. Endocrinol. Diabetes Obes., 2014, 21(4), 293-298.
[http://dx.doi.org/10.1097/MED.0000000000000082] [PMID: 24937041]
[4]
Lasisi, T.J.; Shittu, S.T.T.; Abeje, J.I.; Ogunremi, K.J.; Shittu, S.A. Paradoxical sleep deprivation induces oxidative stress in the submandibular glands of Wistar rats. J. Basic Clin. Physiol. Pharmacol., 2022, 33(4), 399-408.
[http://dx.doi.org/10.1515/jbcpp-2020-0178] [PMID: 33878251]
[5]
Everson, C.A.; Laatsch, C.D.; Hogg, N. Antioxidant defense responses to sleep loss and sleep recovery. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, 288(2), R374-R383.
[http://dx.doi.org/10.1152/ajpregu.00565.2004] [PMID: 15472007]
[6]
Joseph, T.C.; Puttfarcken, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science, 1993, 262(29), 689-695.
[7]
Furness, J.B. Novel gut afferents: Intrinsic afferent neurons and intestinofugal neurons. Auton. Neurosci., 2006, 125(1-2), 81-85.
[http://dx.doi.org/10.1016/j.autneu.2006.01.007] [PMID: 16476573]
[8]
Park, A.J.; Collins, J.; Blennerhassett, P.A.; Ghia, J.E.; Verdu, E.F.; Bercik, P.; Collins, S.M. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol. Motil., 2013, 25(9), 733-e575.
[http://dx.doi.org/10.1111/nmo.12153] [PMID: 23773726]
[9]
Crumeyrolle-Arias, M.; Jaglin, M.; Bruneau, A.; Vancassel, S.; Cardona, A.; Daugé, V.; Naudon, L.; Rabot, S. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology, 2014, 42, 207-217.
[http://dx.doi.org/10.1016/j.psyneuen.2014.01.014] [PMID: 24636517]
[10]
Goehler, L.E.; Gaykema, R.P.A.; Opitz, N.; Reddaway, R.; Badr, N.; Lyte, M. Activation in vagal afferents and central autonomic pathways: Early responses to intestinal infection with Campylobacter jejuni. Brain Behav. Immun., 2005, 19(4), 334-344.
[http://dx.doi.org/10.1016/j.bbi.2004.09.002] [PMID: 15944073]
[11]
Han, S.Y.; Wu, Y.P.; Wang, Y.B. Study on the effect and mechanism of Nanzhu powder on preventing skin photoaging in mice. Shizhen Trad. Chinese Med., 2021, 32(02), 308-312.
[12]
Han, S.; Huang, D.; Lan, T.; Wu, Y.; Wang, Y.; Wei, J.; Zhang, W.; Ou, Y.; Yan, Q.; Liu, P.; Chen, Z.; Lin, J. Therapeutic effect of seawater pearl powder on uv-induced photoaging in mouse skin. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/9516427] [PMID: 34925534]
[13]
Xia, M.; Huang, D.; Tong, Y.; Lin, J. Pearl powder reduces sleep disturbance stress response through regulating proteomics in a rat model of sleep deprivation. J. Cell. Mol. Med., 2020, 24(9), 4956-4966.
[http://dx.doi.org/10.1111/jcmm.15095] [PMID: 32220128]
[14]
a) Han, S.; Li, H.; Luo, F.; Chen, X.; Cen, Y.; Liu, P.; Chen, Z.; Lan, T.; Lin, J. Inhibitory effect of seawater pearl hydrolysate on uva-induced photoaging of human skin fibroblasts. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-11.;
b) Lin, J.; Lin, Y.; Lin, H. Method of dissolving pearl and pearl honey tonic obtained by said method [P]. Chinese patent: ZL95106283.2, 2001-02-07, 2001.
[http://dx.doi.org/10.1155/2022/1558288] [PMID: 35815281]
[15]
Chen, Z.; Yan, Q.; Zhang, Z.; Lan, T.; Liu, P.; Han, S.; Lin, Y.; Lin, J. Immunomodulatory effects of hydrolyzed seawater pearl tablet (HSPT) on Th1/Th2 functionality in a mice model of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. Evid. Based Complement. Alternat. Med., 2020, 2020(3), 1-17.
[http://dx.doi.org/10.1155/2020/5931652] [PMID: 33281913]
[16]
Cantarella, G.; Di Benedetto, G.; Puzzo, D.; Privitera, L.; Loreto, C.; Saccone, S.; Giunta, S.; Palmeri, A.; Bernardini, R. Neutralization of TNFSF10 ameliorates functional outcome in a murine model of Alzheimer’s disease. Brain, 2015, 138(1), 203-216.
[http://dx.doi.org/10.1093/brain/awu318] [PMID: 25472798]
[17]
Sharma, S.; Haselton, J.; Rakoczy, S.; Branshaw, S.; Brown-Borg, H.M. Spatial memory is enhanced in long-living Ames dwarf mice and maintained following kainic acid induced neurodegeneration. Mech. Ageing Dev., 2010, 131(6), 422-435.
[http://dx.doi.org/10.1016/j.mad.2010.06.004] [PMID: 20561541]
[18]
Osi, Y.; Li, C.; Li, X.; Ding, Y.; Wang, Z. Effect of water extract of flos albiziae and semen ziziphi spinosae on the animal model of sleep deprivation depression based on single herb- compatibility. Jilin J. Chinese Med., 2019, 39(5) Available from:
[http://dx.doi.org/10.13463/j.cnki.jlzyy.2019.05.025]
[19]
Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol., 2012, 10(1), 49.
[http://dx.doi.org/10.1186/1477-7827-10-49] [PMID: 22748101]
[20]
Bosch, R.; Philips, N.; Suárez-Pérez, J.; Juarranz, A.; Devmurari, A.; Chalensouk-Khaosaat, J.; González, S. Mechanisms of photoaging and cutaneous photocarcinogenesis, andphotoprotective strategies with phytochemicals. Antioxidants, 2015, 4(2), 248-268.
[http://dx.doi.org/10.3390/antiox4020248] [PMID: 26783703]
[21]
Rui, Y.; Zhaohui, Z.; Wenshan, S.; Bafang, L.; Hu, H. Protective effect of MAAs extracted from Porphyra tenera against UV irradiation-induced photoaging in mouse skin. J. Photochem. Photobiol. B, 2019, 192, 26-33.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.009] [PMID: 30665147]
[22]
Hernández Santiago, K. López -López, A.L.; Sánchez-Muñoz, F.; Cortés Altamirano, J.L.; Alfaro-Rodríguez, A.; Bonilla-Jaime, H. Sleep deprivation induces oxidative stress in the liver and pancreas in young and aging rats. Heliyon, 2021, 7(3), e06466.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06466] [PMID: 33748503]
[23]
Villafuerte, G.; Miguel-Puga, A.; Murillo Rodríguez, E.; Machado, S.; Manjarrez, E.; Arias-Carrión, O. Sleep deprivation and oxidative stress in animal models: A systematic review. Oxid. Med. Cell. Longev., 2015, 2015, 1-15.
[http://dx.doi.org/10.1155/2015/234952] [PMID: 25945148]
[24]
Zhen, X.; Wu, B.; Wang, J.; Lu, C.; Gao, H.; Qiao, J. Increased incidence of mitochondrial cytochrome C Oxidase 1 gene mutations in patients with primary ovarian insufficiency. PLoS One, 2015, 10(7), e0132610.
[http://dx.doi.org/10.1371/journal.pone.0132610] [PMID: 26225554]
[25]
Liang, L.F.; Qi, S.T.; Xian, Y.X.; Huang, L.; Sun, X.F.; Wang, W.H. Protective effect of antioxidants on the pre-maturation aging of mouse oocytes. Sci. Rep., 2017, 7(1), 1434.
[http://dx.doi.org/10.1038/s41598-017-01609-3] [PMID: 28469172]
[26]
Song, S.; Jacobson, K.N.; Mcdermott, K.M. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells. American J. Physiol. Cell Physiol, 2015, 310(2), C99-C114.
[http://dx.doi.org/10.1152/ajpcell.00092.2015] [PMID: 26491047]
[27]
Montes-Rodríguez, C.J.; Alavez, S.; Soria-Gómez, E.; Rueda-Orozco, P.E.; Guzman, K.; Morán, J.; Prospéro-García, O. BCL-2 and BAX proteins expression throughout the light-dark cycle and modifications induced by sleep deprivation and rebound in adult rat brain. J. Neurosci. Res., 2009, 87(7), 1602-1609.
[http://dx.doi.org/10.1002/jnr.21987] [PMID: 19125405]
[28]
Hirayama, K. Human Flora-Associated (HFA) Animals for studying the role of intestinal flora in human carcinogenesis. Biosci. Microflora, 2002, 21(4), 239-244.
[http://dx.doi.org/10.12938/bifidus1996.21.239]
[29]
Luna, R.A.; Foster, J.A. Gut brain axis: Diet microbiota interactions and implications for modulation of anxiety and depression. Curr. Opin. Biotechnol., 2015, 32, 35-41.
[http://dx.doi.org/10.1016/j.copbio.2014.10.007] [PMID: 25448230]
[30]
Cowan, T.E.; Palmnäs, M.S.A.; Yang, J.; Bomhof, M.R.; Ardell, K.L.; Reimer, R.A.; Vogel, H.J.; Shearer, J. Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. J. Nutr. Biochem., 2014, 25(4), 489-495.
[http://dx.doi.org/10.1016/j.jnutbio.2013.12.009] [PMID: 24629912]
[31]
Turnbaugh, P.J.; Ley, R.E.; Hamady, M. The humanmicrobiome project: Exploring the microbial part ofourselves in a changing world. Nature, 2007, 449(7164), 804-810.
[http://dx.doi.org/10.1038/nature06244] [PMID: 17943116]
[32]
Dinan, T.G.; Cryan, J.F. Regulation of the stress response by the gut microbiota: Implications for psychoneuroendocrinology. Psychoneuroendocrinology, 2012, 37(9), 1369-1378.
[http://dx.doi.org/10.1016/j.psyneuen.2012.03.007] [PMID: 22483040]
[33]
Mayer, E.A. Gut feelings: The emerging biology of gut–brain communication. Nat. Rev. Neurosci., 2011, 12(8), 453-466.
[http://dx.doi.org/10.1038/nrn3071] [PMID: 21750565]
[34]
Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 2004, 558(1), 263-275.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy