Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

VE-822 Enhanced Cisplatin Chemotherapy Effects on Head and Neck Squamous Cell Carcinoma Drug-resistant Cells

Author(s): Tinglan Chen, Fei Yang, Xiaofeng Dai*, Youcheng Yu*, Yang Sun, Xingwen Wu, Ruixue Li and Qianrong Zhou

Volume 23, Issue 6, 2023

Published on: 14 February, 2023

Page: [482 - 495] Pages: 14

DOI: 10.2174/1568009623666230206143216

Price: $65

Abstract

Purpose: The study aimed to assess the effect of p-ATR inhibitor VE-822 in the combination chemotherapy with cisplatin of head and neck squamous cell carcinoma and to explore the possible mechanism.

Methods: The DNA damage levels were determined by comet assay and western blot experiments in cisplatin-resistant and sensitive cell lines. The IC50 value changes after combination treatment with VE-822 in cisplatin sensitive and resistant cell lines were detected by the CCK-8 test. The effects of VE-822 combined with cisplatin on proliferation ability, colony formation ability, migration ability, cell apoptosis and cell cycle changes were observed in vitro. In vivo, the combination treatment effect was verified in the subcutaneous xenograft models of nude mice. Besides, the mechanism of VE-822 assisting cisplatin in chemotherapy was explored by comet assay, western blotting and immunohistochemical experiments.

Results: The increased expression of the p-ATR protein was related to the DNA damage repair pathway in head and neck squamous cell carcinoma cisplatin-resistant cells. VE-822 inhibited cell proliferation, colony formation and migration abilities and improved the cisplatin chemotherapeutic effects in subcutaneous xenograft models of nude mice by inhibiting the p-ATR expression and blocking DNA damage repair pathway.

Conclusions: The p-ATR expression increased in head and neck squamous cell carcinoma cisplatinresistant cells. VE-822 significantly enhanced the therapeutic effect in cisplatin resistant head and neck squamous cell carcinoma by inhibiting p-ATR expression in vivo and in vitro.

Graphical Abstract

[1]
Daniel, E.J.; Barbara, B.C.; René, L.; Vivian, W.Y.L.; Julie, E.B.; Jennifer, R.G. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers, 2020, 6(1), 92.
[http://dx.doi.org/10.1038/s41572-020-00224-3]
[2]
Colevas, A.D.; Yom, S.S.; Pfister, D.G.; Spencer, S.; Adelstein, D.; Adkins, D.; Brizel, D.M.; Burtness, B.; Busse, P.M.; Caudell, J.J.; Cmelak, A.J.; Eisele, D.W.; Fenton, M.; Foote, R.L.; Gilbert, J.; Gillison, M.L.; Haddad, R.I.; Hicks, W.L., Jr; Hitchcock, Y.J.; Jimeno, A.; Leizman, D.; Maghami, E.; Mell, L.K.; Mittal, B.B.; Pinto, H.A.; Ridge, J.A.; Rocco, J.; Rodriguez, C.P.; Shah, J.P.; Weber, R.S.; Witek, M.; Worden, F.; Zhen, W.; Burns, J.L.; Darlow, S.D. NCCN guidelines insights: Head and neck cancers, Version 1.2018. J. Natl. Compr. Canc. Netw., 2018, 16(5), 479-490.
[http://dx.doi.org/10.6004/jnccn.2018.0026] [PMID: 29752322]
[3]
Burtness, B.; Harrington, K.J.; Greil, R. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet, 2019, 394(10212), 1915-1928.
[http://dx.doi.org/10.1016/S0140-6736(19)32591-7]
[4]
Naoya, K.; Shinya, S.; Yasumasa, Y.; Eri, S.; Yasusei, K.; Tetsuya, Y. Current trends and future prospects of molecular targeted therapy in head and neck squamous cell carcinoma. Int. J. Mol. Sci., 2020, 22(1), 240.
[http://dx.doi.org/10.3390/ijms22010240]
[5]
Leemans, C.R.; Snijders, P.J.F.; Brakenhoff, R.H.; René, L.C. The molecular landscape of head and neck cancer. Nat. Rev. Cancer, 2018, 18(5), 269-282.
[http://dx.doi.org/10.1038/nrc.2018.11] [PMID: 29497144]
[6]
Tomaz, M. Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol. Oncol., 2019, 53(2), 148-158.
[http://dx.doi.org/10.2478/raon-2019-0018]
[7]
Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740(740), 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[8]
Rania, A.L.; Moustafa, F.; Hend, A.A.; Muhammad, N.; Thomas, D.; Eman, M.O. Cisplatin-induced reproductive toxicity and oxidative stress: Ameliorative effect of kinetin. Antioxidants (Basel),, 2022, 11(5), 863.
[http://dx.doi.org/10.3390/antiox11050863]
[9]
Jenny, L.M.D.; Thitinee, V.; Aneta, P.; Alan, J.D.; Veronika, S. Evaluation of cisplatin-induced injury in human kidney organoids. Am. J. Physiol. Renal Physiol., 2020, 318(4), F971-F978.
[http://dx.doi.org/10.1152/ajprenal.00597.2019]
[10]
Ana, B.G.; Lucía, A.R.; Beatriz, C.; José, L.C.C.; Ana, S.P. Mechanisms of cisplatin resistance in HPV negative head and neck squamous cell carcinomas. Cells, 2022, 11(3), 561.
[http://dx.doi.org/10.3390/cells11030561]
[11]
Shen, D.W.; Pouliot, L.M.; Hall, M.D.; Gottesman, M.M. Cisplatin resistance: A cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol. Rev., 2012, 64(3), 706-721.
[http://dx.doi.org/10.1124/pr.111.005637] [PMID: 22659329]
[12]
Waissbluth, S.; Daniel, S.J. Cisplatin-induced ototoxicity: Transporters playing a role in cisplatin toxicity. Hear. Res., 2013, 299, 37-45.
[http://dx.doi.org/10.1016/j.heares.2013.02.002] [PMID: 23467171]
[13]
Arnesano, F.; Natile, G. Interference between copper transport systems and platinum drugs. Semin. Cancer Biol., 2021, 76, 173-188.
[http://dx.doi.org/10.1016/j.semcancer.2021.05.023] [PMID: 34058339]
[14]
Wagner, D.J.; Hu, T.; Wang, J. Polyspecific organic cation transporters and their impact on drug intracellular levels and pharmacodynamics. Pharmacol. Res., 2016, 111, 237-246.
[http://dx.doi.org/10.1016/j.phrs.2016.06.002] [PMID: 27317943]
[15]
Xing, Q.; Haiyan, G.; Xiaoning, W. Exosomal miR-196a derived from cancerassociated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol., 2019, 20(1), 12.
[http://dx.doi.org/10.1186/s13059-018-1604-0]
[16]
Robert, C.K.; Fen, X.; Scarlett, A. Targeting DNA damage response and repair to enhance therapeutic index in cisplatin-based cancer treatment. Int. J. Mol. Sci., 202122(15), 8199.
[http://dx.doi.org/10.3390/ijms22158199]
[17]
Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer, 2021, 21(1), 37-50.
[http://dx.doi.org/10.1038/s41568-020-00308-y] [PMID: 33128031]
[18]
Gupta, D.; Heinen, C.D. The mismatch repair-dependent DNA damage response: Mechanisms and implications. DNA Repair (Amst.), 2019, 78, 60-69.
[http://dx.doi.org/10.1016/j.dnarep.2019.03.009] [PMID: 30959407]
[19]
James, M.C.; Andrew, J.A.; Geoffrey, I.S.; Alan, D. Biomarker-guided development of DNA repair inhibitors. Mol. Cell, 2020, 78(6), 1070-85.
[http://dx.doi.org/10.1016/j.molcel.2020.04.035]
[20]
Pilié, P.G.; Tang, C.; Mills, G.B.; Yap, T.A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol., 2019, 16(2), 81-104.
[http://dx.doi.org/10.1038/s41571-018-0114-z] [PMID: 30356138]
[21]
Leonard, B.C.; Lee, E.D.; Bhola, N.E.; Li, H.; Sogaard, K.K.; Bakkenist, C.J.; Grandis, J.R.; Johnson, D.E. ATR inhibition sensitizes HPV− and HPV+ head and neck squamous cell carcinoma to cisplatin. Oral Oncol., 2019, 95, 35-42.
[http://dx.doi.org/10.1016/j.oraloncology.2019.05.028] [PMID: 31345392]
[22]
Panagiotis, A.K.; Alexandre, A.; Doga, G. A Replication stress biomarker is associated with response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in ovarian cancer. Nat. Commun., 2021, 12(1), 5574.
[http://dx.doi.org/10.1038/s41467-021-25904-w]
[23]
Qiu, Z.; Oleinick, N.L.; Zhang, J. ATR/CHK1 inhibitors and cancer therapy. Radiother. Oncol., 2018, 126(3), 450-464.
[http://dx.doi.org/10.1016/j.radonc.2017.09.043] [PMID: 29054375]
[24]
Zhang, M.; Jiang, N.; Cui, R.; Du, S.; Ou, H.; Chen, T.; Ge, R.; Ma, D.; Zhang, J. Deregulated lncRNA expression profile in the mouse lung adenocarcinomas with KRAS‐G12D mutation and P53 knockout. J. Cell. Mol. Med., 2019, 23(10), 6978-6988.
[http://dx.doi.org/10.1111/jcmm.14584] [PMID: 31410985]
[25]
Kaidar-Person, O.; Gil, Z.; Billan, S. Precision medicine in head and neck cancer. Drug Resist. Updat., 2018, 40, 13-16.
[http://dx.doi.org/10.1016/j.drup.2018.09.001] [PMID: 30466712]
[26]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88102925
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[27]
Oing, C.; Skowron, M.A.; Bokemeyer, C.; Nettersheim, D. Epigenetic treatment combinations to effectively target cisplatin‐resistant germ cell tumors‐past, present, and future considerations. Andrology, 2019, 7(4), andr.12611.
[http://dx.doi.org/10.1111/andr.12611] [PMID: 30924611]
[28]
Kinner, A.; Wu, W.; Staudt, C.; Iliakis, G. -H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res., 2008, 36(17), 5678-5694.
[http://dx.doi.org/10.1093/nar/gkn550] [PMID: 18772227]
[29]
Siddiqui, M.S.; François, M.; Fenech, M.F.; Leifert, W.R. Persistent γH2AX: A promising molecular marker of DNA damage and aging. Mutat. Res. Rev. Mutat. Res., 2015, 766, 1-19.
[http://dx.doi.org/10.1016/j.mrrev.2015.07.001] [PMID: 26596544]
[30]
Domenic, P.; Leonard, W.S.; Stephen, P.J. Interfaces between cellular responses to DNA damage and cancer immunotherapy. Genes Dev., 2021, 35(9-10), 602-618.
[http://dx.doi.org/10.1101/gad.348314.121]
[31]
Wenlong, F.; Dylan, C.D.; Francis, J.H. ATR and p-ATR are emerging prognostic biomarkers and DNA damage response targets in ovarian cancer. Ther. Adv. Med. Oncol., 2020, 121758835920982853
[http://dx.doi.org/10.1177/1758835920982853]
[32]
Ha, K.; Fiskus, W.; Rao, R.; Balusu, R.; Venkannagari, S.; Nalabothula, N.R.; Bhalla, K.N. Hsp90 inhibitor-mediated disruption of chaperone association of ATR with hsp90 sensitizes cancer cells to DNA damage. Mol. Cancer Ther., 2011, 10(7), 1194-1206.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0094] [PMID: 21566061]
[33]
Sumanta, K.P.; Paul, H.F.; Amir, M. Effect of cisplatin and gemcitabine with or without berzosertib in patients with advanced urothelial carcinoma: A phase 2 randomized clinical trial. JAMA Oncol., 2021, 7(10), 1536-1543.
[http://dx.doi.org/10.1001/jamaoncol.2021.3441]
[34]
Plummer, R.; Dean, E.; Arkenau, H.T.; Redfern, C.; Spira, A.I.; Melear, J.M.; Chung, K.Y.; Ferrer-Playan, J.; Goddemeier, T.; Locatelli, G.; Dong, J.; Fleuranceau-Morel, P.; Diaz-Padilla, I.; Shapiro, G.I. A phase 1b study evaluating the safety and preliminary efficacy of berzosertib in combination with gemcitabine in patients with advanced non-small cell lung cancer. Lung Cancer, 2022, 163, 19-26.
[http://dx.doi.org/10.1016/j.lungcan.2021.11.011] [PMID: 34894455]
[35]
Melinda, L.T.; Sara, M.T.; Geoffrey, I.S. Phase 1b study of berzosertib and cisplatin in patients with advanced triple-negative breast cancer. NPJ Breast Cancer, 2022, 8(1), 45.
[http://dx.doi.org/10.1038/s41523-022-00406-0]
[36]
Shapiro, G.I.; Wesolowski, R.; Devoe, C.; Lord, S.; Pollard, J.; Hendriks, B.S.; Falk, M.; Diaz-Padilla, I.; Plummer, R.; Yap, T.A. Phase 1 study of the ATR inhibitor berzosertib in combination with cisplatin in patients with advanced solid tumours. Br. J. Cancer, 2021, 125(4), 520-527.
[http://dx.doi.org/10.1038/s41416-021-01406-w] [PMID: 34040174]
[37]
Timothy, A.Y. Phase I trial of first-in-class ATR inhibitor M6620 (VX-970) as monotherapy or in combination with carboplatin in patients with advanced solid tumors. J. Clin. Oncol., 2020, 38(27), 3195-3204.
[http://dx.doi.org/10.1200/JCO.19.02404]
[38]
Anna, S.; Gero, K.; Daniela, W.; Sven, P. ATM deficiency is associated with sensitivity to PARP1- and ATR inhibitors in lung adenocarcinoma. Cancer Res., 2017, 77(11), 3040-3056.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3398]
[39]
Iain, M.; Mingwei, M.; Chen, Y. Ki-67 is a graded rather than a binary marker of proliferation versus quiescence. Cell Rep., 2018, 24(5), 1105-12.e5.
[http://dx.doi.org/10.1016/j.celrep.2018.06.110]
[40]
Adam, Z.S.; Emmanouil, Z.; Denis, E.R.; Thomas, P.G.; Evripidis, G. Eltrombopag directly inhibits BAX and prevents cell death. Nat. Commun., 2021, 12(1), 1134.
[http://dx.doi.org/10.1038/s41467-021-21224-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy