Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Pesticide Exposure and Alzheimer’s Disease: A Case-control Study

Author(s): Zohreh Kiani, Gholamreza Asadikaram*, Sanaz Faramarz, Fouzieh Salimi and Hosseinali Ebrahimi

Volume 19, Issue 13, 2022

Published on: 13 February, 2023

Page: [892 - 903] Pages: 12

DOI: 10.2174/1567205020666230206142738

Price: $65

Abstract

Aim / Objective: This study aimed to investigate the levels of organochlorine pesticides (OCPs) in the serum of Alzheimer's disease (AD) patients.

Methods: 63 AD patients and 50 healthy individuals participated, and the levels of some OCPs derivatives (including; α-HCH, β-HCH, γ-HCH, 2,4-DDT, 4,4-DDT, 2,4-DDE, and 4,4-DDE), total antioxidant capacity (TAC), protein carbonyl (PC), malondialdehyde (MDA), Nitric oxide (NO) along with the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), paraoxonase 1(PON1), and acetylcholinesterase (AChE) were measured.

Results: The mean OCP level of OCPs in AD patients was significantly higher than in the control group. However, the patients' mean levels of TAC, PC, MDA and activity of SOD, GPx, PON1 and AChE were significantly lower than controls. A significant positive correlation was also observed between 2,4-DDE and MDA and between γ-HCH and PC in AD patients. These findings showed that pesticide exposure is associated with an increased risk of AD. Furthermore, the mean levels of oxidative stress markers, which may result from pesticide exposure, were significantly lower in AD patients compared to healthy individuals.

Conclusion: Therefore, it may conclude that pesticides, at least in part, contribute to AD development through several mechanisms, including the induction of oxidative stress.

« Previous
[1]
Arslan A, Tüzün FA, Arslan H, et al. The relationship between serum paraoxonase levels and carotid atherosclerotic plaque formation in Alzheimer’s patients. Neurol Neurochir Pol 2016; 50(6): 403-9.
[http://dx.doi.org/10.1016/j.pjnns.2016.07.002] [PMID: 27546893]
[2]
Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: A Delphi consensus study. Lancet 2005; 366(9503): 2112-7.
[http://dx.doi.org/10.1016/S0140-6736(05)67889-0] [PMID: 16360788]
[3]
Thies W, Bleiler L. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 2013; 9(2): 208-45.
[http://dx.doi.org/10.1016/j.jalz.2013.02.003] [PMID: 23507120]
[4]
Sabayan B, Bonneux L. Dementia in Iran: How soon it becomes late! Arch Iran Med 2011; 14(4): 290-1.
[PMID: 21726108]
[5]
Sattler C, Kächele H, Verch G. Assessing the intensity of pesticide use in agriculture. Agric Ecosyst Environ 2007; 119(3-4): 299-304.
[http://dx.doi.org/10.1016/j.agee.2006.07.017]
[6]
Damari B, Ahmadi PM, Abdollahi Z. Policy brief for reducing contaminants and residual pesticides in Iran's agricultural crops. J Community Health 2015; 2(4): 256-65.
[7]
Heys KA, Shore RF, Pereira MG, Martin FL. Levels of organochlorine pesticides are associated with amyloid aggregation in apex avian brains. Environ Sci Technol 2017; 51(15): 8672-81.
[http://dx.doi.org/10.1021/acs.est.7b00840] [PMID: 28636345]
[8]
Singh NK, Chhillar N, Banerjee BD, Bala K, Basu M, Mustafa M. Organochlorine pesticide levels and risk of Alzheimer’s disease in North Indian population. Hum Exp Toxicol 2013; 32(1): 24-30.
[http://dx.doi.org/10.1177/0960327112456315] [PMID: 22899726]
[9]
Kim KS, Lee YM, Lee HW, Jacobs DR Jr, Lee DH. Associations between organochlorine pesticides and cognition in U.S. elders: National health and nutrition examination survey 1999–2002. Environ Int 2015; 75: 87-92.
[http://dx.doi.org/10.1016/j.envint.2014.11.003] [PMID: 25461417]
[10]
Abbasi-Jorjandi M, Asadikaram G, Abolhassani M, et al. Pesticide exposure and related health problems among family members of farmworkers in Southeast Iran. A case-control study. Environ Pollut 2020; 267: 115424.
[http://dx.doi.org/10.1016/j.envpol.2020.115424] [PMID: 32866869]
[11]
Lionetto MG, Caricato R, Calisi A, Giordano ME, Schettino T. Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. Biomed Res Int 2013; 2013: 321213.
[http://dx.doi.org/10.1155/2013/321213]
[12]
Menini T, Gugliucci A. Paraoxonase 1 in neurological disorders. Redox Rep 2014; 19(2): 49-58.
[http://dx.doi.org/10.1179/1351000213Y.0000000071] [PMID: 24225313]
[13]
Salazar JG, Marsillach J, Reverte I, et al. Paraoxonase-1 and -3 protein expression in the brain of the Tg2576 mouse model of Alzheimer’s Disease. Antioxidants 2021; 10(3): 339.
[http://dx.doi.org/10.3390/antiox10030339] [PMID: 33668379]
[14]
Shayeghi M, Shayeghi S. Effects of Malathion insecticides on the function of cholinesterase enzyme among the agricultural sprayers. Armaghan Danesh 2003; 28(7): 31-6.
[15]
Medehouenou TCM, Ayotte P, Carmichael PH, et al. Exposure to polychlorinated biphenyls and organochlorine pesticides and risk of dementia, Alzheimer’s disease and cognitive decline in an older population: a prospective analysis from the Canadian Study of Health and Aging. Environ Health 2019; 18(1): 57.
[http://dx.doi.org/10.1186/s12940-019-0494-2] [PMID: 31200706]
[16]
Zumbado M, Goethals M, Álvarez-León EE, et al. Inadvertent exposure to organochlorine pesticides DDT and derivatives in people from the Canary Islands (Spain). Sci Total Environ 2005; 339(1-3): 49-62.
[http://dx.doi.org/10.1016/j.scitotenv.2004.07.022] [PMID: 15740757]
[17]
Bobin-Dubigeon C, Jaffré I, Joalland MP, et al. Paraoxonase 1 (PON1) as a marker of short term death in breast cancer recurrence. Clin Biochem 2012; 45(16-17): 1503-5.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.05.021] [PMID: 22659076]
[18]
Worek F, Mast U, Kiderlen D, Diepold C, Eyer P. Improved determination of acetylcholinesterase activity in human whole blood. Clin Chim Acta 1999; 288(1-2): 73-90.
[http://dx.doi.org/10.1016/S0009-8981(99)00144-8] [PMID: 10529460]
[19]
Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 1996; 239(1): 70-6.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[20]
Magnani L, Gaydou EM, Hubaud JC. Spectrophotometric measurement of antioxidant properties of flavones and flavonols against superoxide anion. Anal Chim Acta 2000; 411(1-2): 209-16.
[http://dx.doi.org/10.1016/S0003-2670(00)00717-0]
[21]
Wendel A. Glutathione peroxidase. Acad Press 1980; 1: 333-53.
[http://dx.doi.org/10.1016/B978-0-12-380001-5.50022-0]
[22]
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep 2016; 4(5): 519-22.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[23]
Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell Adhes Migr 2009; 3(1): 88-93.
[http://dx.doi.org/10.4161/cam.3.1.7402] [PMID: 19372765]
[24]
Sharma A, Weber D, Raupbach J, et al. Advanced glycation end products and protein carbonyl levels in plasma reveal sex-specific differences in Parkinson’s and Alzheimer’s disease. Redox Biol 2020; 34: 101546.
[http://dx.doi.org/10.1016/j.redox.2020.101546] [PMID: 32460130]
[25]
Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 2001; 103(2): 373-83.
[http://dx.doi.org/10.1016/S0306-4522(00)00580-7] [PMID: 11246152]
[26]
Korolainen MA, Nyman TA, Nyyssönen P, Hartikainen ES, Pirttilä T. Multiplexed proteomic analysis of oxidation and concentrations of cerebrospinal fluid proteins in Alzheimer disease. Clin Chem 2007; 53(4): 657-65.
[http://dx.doi.org/10.1373/clinchem.2006.078014] [PMID: 17289803]
[27]
Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 2010; 469(1): 6-10.
[http://dx.doi.org/10.1016/j.neulet.2009.11.033] [PMID: 19914330]
[28]
Pathak R, Suke SG, Ahmed T, et al. Organochlorine pesticide residue levels and oxidative stress in preterm delivery cases. Hum Exp Toxicol 2010; 29(5): 351-8.
[http://dx.doi.org/10.1177/0748233710363334] [PMID: 20385707]
[29]
Balendra V, Singh SK. Therapeutic potential of astaxanthin and superoxide dismutase in Alzheimer’s disease. Open Biol 2021; 11(6): 210013.
[http://dx.doi.org/10.1098/rsob.210013] [PMID: 34186009]
[30]
Kharrazi H, Vaisi-Raygani A, Rahimi Z, Tavilani H, Aminian M, Pourmotabbed T. Association between enzymatic and non-enzymatic antioxidant defense mechanism with apolipoprotein E genotypes in Alzheimer disease. Clin Biochem 2008; 41(12): 932-6.
[http://dx.doi.org/10.1016/j.clinbiochem.2008.05.001] [PMID: 18505684]
[31]
Paragh G, Balla P, Katona E, Seres I, Égerházi A, Degrell I. Serum paraoxonase activity changes in patients with Alzheimer’s disease and vascular dementia. Eur Arch Psychiatry Clin Neurosci 2002; 252(2): 63-7.
[http://dx.doi.org/10.1007/s004060200013] [PMID: 12111338]
[32]
Romani A, Trentini A, van der Flier WM, et al. Arylesterase activity of paraoxonase-1 in serum and cerebrospinal fluid of patients with Alzheimer’s disease and vascular dementia. Antioxidants 2020; 9(5): 456.
[http://dx.doi.org/10.3390/antiox9050456] [PMID: 32466344]
[33]
Talesa VN. Acetylcholinesterase in Alzheimer’s disease. Mech Ageing Dev 2001; 122(16): 1961-9.
[http://dx.doi.org/10.1016/S0047-6374(01)00309-8] [PMID: 11589914]
[34]
Inestrosa NC, Alarcón R, Arriagada J, Donoso A, Alvarez J, Campos EO. Blood markers in Alzheimer disease: Subnormal acetylcholinesterase and butyrylcholinesterase in lymphocytes and erythrocytes. J Neurol Sci 1994; 122(1): 1-5.
[http://dx.doi.org/10.1016/0022-510X(94)90044-2] [PMID: 8195795]
[35]
Carvajal FJ, Inestrosa NC. Interactions of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosci 2011; 4: 19.
[http://dx.doi.org/10.3389/fnmol.2011.00019] [PMID: 21949501]
[36]
Yan D, Zhang Y, Liu L, Yan H. Pesticide exposure and risk of Alzheimer’s disease: A systematic review and meta-analysis. Sci Rep 2016; 6(1): 32222.
[http://dx.doi.org/10.1038/srep32222] [PMID: 27581992]
[37]
Bosma H, van Boxtel MPJ, Ponds RWHM, Houx PJ, Jolles J. Pesticide exposure and risk of mild cognitive dysfunction. Lancet 2000; 356(9233): 912-3.
[http://dx.doi.org/10.1016/S0140-6736(00)02685-4] [PMID: 11036900]
[38]
Baldi I, Gruber A, Rondeau V, Lebailly P, Brochard P, Fabrigoule C. Neurobehavioral effects of long-term exposure to pesticides: Results from the 4-year follow-up of the PHYTONER Study. Occup Environ Med 2011; 68(2): 108-15.
[http://dx.doi.org/10.1136/oem.2009.047811] [PMID: 21097948]
[39]
Hayden KM, Norton MC, Darcey D, et al. Occupational exposure to pesticides increases the risk of incident AD: The cache county study. Neurology 2010; 74(19): 1524-30.
[http://dx.doi.org/10.1212/WNL.0b013e3181dd4423] [PMID: 20458069]
[40]
Hébert R, Lindsay J, Verreault R, Rockwood K, Hill G, Dubois MF. Vascular dementia. Stroke 2000; 31(7): 1487-93.
[http://dx.doi.org/10.1161/01.STR.31.7.1487] [PMID: 10884442]
[41]
Baldi I, Lebailly P, Mohammed-Brahim B, Letenneur L, Dartigues J-F, Brochard P. Neurodegenerative diseases and exposure to pesticides in the elderly. Am J Epidemiol 2003; 157(5): 409-14.
[http://dx.doi.org/10.1093/aje/kwf216] [PMID: 12615605]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy