Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Inhibiting Effect of Cationic Procyanidin Nanoparticles on Drug-Resistant Oral Squamous Cell Carcinoma Cell Lines

Author(s): Xuewei Yuan, Kunshan Li, Feifei Lv, Na Li, Liru Zhang, Shuangling Zhao, Yanhao Duan* and Yongle Qiu*

Volume 21, Issue 4, 2024

Published on: 13 February, 2023

Page: [782 - 789] Pages: 8

DOI: 10.2174/1570180820666230206125313

Price: $65

Abstract

Background: Multidrug resistance (MDR) is one of the primary causes of tumor chemotherapy failure. Therefore, it is essential to uncover new drug treatment protocols. In the current study, employing chitosan (CS) and sodium tripolyphosphate (TPP) as carriers and cross-linking agents, the proanthocyanidins (PHL)/poly (lactic-co-glycolic acid) (PLGA) were encapsulated by emulsion solvent evaporation, through which the cationic CS-PLGA-PHL nanosystem was obtained. The effectiveness of CS-PLGAPHL on the invasion and migration of human oral squamous cell carcinoma cells was discussed, as were their potential mechanisms.

Materials and Methods: A CS-PLGA-PHL nanosystem was constructed by emulsion-solvent evaporation. The size distribution, dispersion, and morphology were characterised by the laser particle size analyser and transmission electron microscope. Human oral squamous cell carcinoma drug-resistant cell lines SCC131/R and SCC-15/DDP were cultured in vitro. The two cell types were induced at different concentrations by CS-PLGA-PHL, after which a CCK⁃8 experiment was performed to determine the effect of CS-PLGA-PHL on the proliferation of the two cell lines. The 50% inhibitory concentration (IC50) of CSPLGA- PHL was calculated at different time points. The transwell chamber experiment was performed to identify the effects of CS-PLGA-PHL on the migration and invasion of OSCC cells. The expression levels of MMP-2 and MMP-9 were detected by Western blot and q-PCR.

Results: CS-PLGA-PHL is well dispersed. The PDI appeared to be lowest when the mass ratio of chitosan to PLGA equaled 1:15. CS-PLGA-PHL exhibited a marked effect in inhibiting the proliferation of SCC- 131/R and SCC-15/DDP as well as the invasion and migration. CS-PLGA-PHL was able to downregulate the expression of MMP-2 and MMP-9 genes and proteins significantly in drug-resistant cell lines.

Conclusion: CS-PLGA-PHL for oral squamous cell carcinoma has been successfully prepared to exert significant inhibition on the proliferation, invasion, and migration of OSCC cells. The mechanism involved was possibly related to the down-regulation of MMP-2 and MMP-9 expression by CS-PLGA-PHL.

Graphical Abstract

[1]
Manikandan, M.; Deva Magendhra, R.A.K.; Arunkumar, G.; Manickavasagam, M.; Rajkumar, K.S.; Rajaraman, R.; Munirajan, A.K. Oral squamous cell carcinoma: MicroRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Mol. Cancer, 2016, 15(1), 28.
[http://dx.doi.org/10.1186/s12943-016-0512-8] [PMID: 27056547]
[2]
Tandon, P.; Dadhich, A.; Saluja, H. The prevalence of squamous cell carcinoma in different sites of oral cavity at our Rural Health Care Centre in Loni, Maharashtra–a retrospective 10-year study. Contemp. Oncol., 2017, 21(2), 178-183.
[3]
Mascitti, M.; Orsini, G.; Tosco, V.; Monterubbianesi, R.; Balercia, A.; Putignano, A.; Procaccini, M.; Santarelli, A. An overview on current non-invasive diagnostic devices in oral oncology. Front. Physiol., 2018, 9, 1510.
[http://dx.doi.org/10.3389/fphys.2018.01510] [PMID: 30410451]
[4]
Yin, Q.; Shen, J.; Zhang, Z.; Yu, H.; Li, Y. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1699-1715.
[http://dx.doi.org/10.1016/j.addr.2013.04.011] [PMID: 23611952]
[5]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[6]
Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients, 2014, 6(12), 6020-6047.
[http://dx.doi.org/10.3390/nu6126020] [PMID: 25533011]
[7]
George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: Role in genome stability. J. Nutr. Biochem., 2017, 45, 1-14.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.007] [PMID: 27951449]
[8]
Zhao, Y.; Hu, X.; Zuo, X.; Wang, M. Chemopreventive effects of some popular phytochemicals on human colon cancer: A review. Food Funct., 2018, 9(9), 4548-4568.
[http://dx.doi.org/10.1039/C8FO00850G] [PMID: 30118121]
[9]
Doleyres, Y. Temporal and spatial nanobiomaterials for tissue engineering and drug delivery. Dissertations and Theses Ph.D. and Master’s; University of Michigan: USA, 2020.
[10]
Wen, H.; Jung, H.; Li, X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J., 2015, 17(6), 1327-1340.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[11]
Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci., 2014, 15(3), 3640-3659.
[http://dx.doi.org/10.3390/ijms15033640] [PMID: 24590126]
[12]
Cao, S.; Xu, S.; Wang, H.; Ling, Y.; Dong, J.; Xia, R.; Sun, X. Nanoparticles: Oral delivery for protein and peptide drugs. AAPS PharmSciTech, 2019, 20(5), 190.
[http://dx.doi.org/10.1208/s12249-019-1325-z] [PMID: 31111296]
[13]
Mahé, O.; Brière, J.F.; Dez, I. Chitosan: An upgraded polysaccharide waste for organocatalysis. Eur. J. Org. Chem., 2015, 2015(12), 2559-2578.
[http://dx.doi.org/10.1002/ejoc.201403396]
[14]
Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers, 2018, 10(4), 462.
[http://dx.doi.org/10.3390/polym10040462] [PMID: 30966497]
[15]
de Sousa Victor, R.; Marcelo da Cunha Santos, A.; Viana de Sousa, B.; de Araújo Neves, G.; Navarro de Lima, S.L.; Rodrigues, M.R. A review on Chitosan’s uses as biomaterial: Tissue engineering, drug delivery systems and cancer treatment. Materials, 2020, 13(21), 4995.
[http://dx.doi.org/10.3390/ma13214995] [PMID: 33171898]
[16]
Nagpal, K.; Singh, S.K.; Mishra, D.N. Chitosan nanoparticles: A promising system in novel drug delivery. Chem. Pharm. Bull., 2010, 58(11), 1423-1430.
[http://dx.doi.org/10.1248/cpb.58.1423] [PMID: 21048331]
[17]
Khan, M.I.H.; An, X.; Dai, L.; Li, H.; Khan, A.; Ni, Y. Chitosan-based polymer matrix for pharmaceutical excipients and drug delivery. Curr. Med. Chem., 2019, 26(14), 2502-2513.
[http://dx.doi.org/10.2174/0929867325666180927100817] [PMID: 30259805]
[18]
Ghaffari, A.; Navaee, K.; Oskoui, M.; Bayati, K.; Rafiee-Tehrani, M. Preparation and characterization of free mixed-film of pectin/chitosan/Eudragit® RS intended for sigmoidal drug delivery. Eur. J. Pharm. Biopharm., 2007, 67(1), 175-186.
[http://dx.doi.org/10.1016/j.ejpb.2007.01.013] [PMID: 17346954]
[19]
Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop. J. Pharm. Res., 2013, 12(2), 255-264.
[20]
Feller, L.; Lemmer, J. Oral squamous cell carcinoma: Epidemiology, clinical presentation and treatment. J. Cancer Ther., 2012, 3(4), 263-268.
[21]
Cristaldi, M.; Mauceri, R.; Di Fede, O.; Giuliana, G.; Campisi, G.; Panzarella, V. Salivary biomarkers for oral squamous cell carcinoma diagnosis and follow-up: Current status and perspectives. Front. Physiol., 2019, 10, 1476.
[http://dx.doi.org/10.3389/fphys.2019.01476] [PMID: 31920689]
[22]
Li, G.; Li, Y.; Wang, J.; Gao, X.; Zhong, Q.; He, L.; Li, C.; Liu, M.; Liu, Y.; Ma, M.; Wang, H.; Wang, X.; Zhu, H. Guidelines for radiotherapy of prostate cancer (2020 ed.). Precis. Radiat. Oncol., 2021, 5(3), 160-182.
[http://dx.doi.org/10.1002/pro6.1129]
[23]
Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine, 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[24]
Chen, S.H.; Chang, J.Y. New insights into mechanisms of cisplatin resistance: From tumor cell to microenvironment. Int. J. Mol. Sci., 2019, 20(17), 4136.
[http://dx.doi.org/10.3390/ijms20174136] [PMID: 31450627]
[25]
Ying, J.; Zhang, M.; Qiu, X.; Lu, Y. The potential of herb medicines in the treatment of esophageal cancer. Biomed. Pharmacother., 2018, 103, 381-390.
[http://dx.doi.org/10.1016/j.biopha.2018.04.088] [PMID: 29674273]
[26]
Cohen, I.; Tagliaferri, M.; Tripathy, D. Traditional Chinese medicine in the treatment of breast cancer. Semin. Oncol., 2002, 29(6), 563-574.
[27]
Hu, E.; Wang, D.; Chen, J.; Tao, X. Novel cyclotides from Hedyotis diffusa induce apoptosis and inhibit proliferation and migration of prostate cancer cells. Int. J. Clin. Exp. Med., 2015, 8(3), 4059-4065.
[PMID: 26064310]
[28]
Yu, F.; Liu, W.; Gong, X.R.; Zhou, Y.B.; Lin, Y. Procyanidins enhance the chemotherapeutic sensitivity of laryngeal carcinoma cells to cisplatin through autophagy pathway. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2018, 32(6), 447-456.
[PMID: 29737742]
[29]
Wang, J.; Yu, H. Effects of combination therapy with cisplatin and grape seed proanthocyanidins on human cervical cancer cells C33A. Int. J. Sci., 2016, 2(3), 101-106.
[http://dx.doi.org/10.18483/ijSci.973]
[30]
Lin, Y.S.; Chen, S.F.; Liu, C.L.; Nieh, S. The chemoadjuvant potential of grape seed procyanidins on p53-related cell death in oral cancer cells. J. Oral Pathol. Med., 2012, 41(4), 322-331.
[http://dx.doi.org/10.1111/j.1600-0714.2011.01103.x] [PMID: 22103929]
[31]
Hua, K.F.; Liao, P.C.; Fang, Z.; Yang, F.L.; Yang, Y.L.; Chen, Y.L.; Chiu, Y.C.; Liu, M.L.; Lam, Y.; Wu, S.H. Generation of reactive oxygen species by polyenylpyrroles derivatives causes DNA damage leading to G2/M arrest and apoptosis in human oral squamous cell carcinoma cells. PLoS One, 2013, 8(6), e67603.
[http://dx.doi.org/10.1371/journal.pone.0067603] [PMID: 23840748]
[32]
Kylli, P.; Nohynek, L.; Puupponen-Pimiä, R.; Westerlund-Wikström, B.; Leppänen, T.; Welling, J.; Moilanen, E.; Heinonen, M. Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) proanthocyanidins: Isolation, identification, and bioactivities. J. Agric. Food Chem., 2011, 59(7), 3373-3384.
[http://dx.doi.org/10.1021/jf104621e] [PMID: 21370878]
[33]
Wang, J.; Zhang, W.; Tang, C.; Xiao, J.; Xie, B.; Sun, Z. Synergistic effect of B-type oligomeric procyanidins from lotus seedpod in combination with water-soluble Poria cocos polysaccharides against E. coli and mechanism. J. Funct. Foods, 2018, 48, 134-143.
[http://dx.doi.org/10.1016/j.jff.2018.07.015]
[34]
Jerjes, W.; Upile, T.; Petrie, A.; Riskalla, A.; Hamdoon, Z.; Vourvachis, M.; Karavidas, K.; Jay, A.; Sandison, A.; Thomas, G.J.; Kalavrezos, N.; Hopper, C. Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1-T2 oral squamous cell carcinoma patients. Head Neck Oncol., 2010, 2(1), 9.
[http://dx.doi.org/10.1186/1758-3284-2-9] [PMID: 20406474]
[35]
Jun, H.; Chuan-Xi, L.; Chun-Long, X.; Wei-Xiong, L.; Jun-Jian, Y.; Lozano, A. Decision-making system and verification of pavement diseases treatment scheme for highway reconstruction and extension. Appl. Math. Nonlinear Sci., 2021, 6(1), 151-162.
[http://dx.doi.org/10.2478/amns.2021.1.00032]
[36]
Trejos, D.Y.; Valverde, J.C.; Venturino, E. Dynamics of infectious diseases: A review of the main biological aspects and their mathematical translation. Appl. Math. Nonlinear Sci., 2022, 7(1), 1-26.
[http://dx.doi.org/10.2478/amns.2021.1.00012]
[37]
Pulukuri, S.M.K.; Rao, J.S. Matrix metalloproteinase-1 promotes prostate tumor growth and metastasis. Int. J. Oncol., 2008, 32(4), 757-765.
[PMID: 18360703]
[38]
Klein, G.; Vellenga, E.; Fraaije, M.W.; Kamps, W.A.; de Bont, E.S.J.M. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit. Rev. Oncol. Hematol., 2004, 50(2), 87-100.
[http://dx.doi.org/10.1016/j.critrevonc.2003.09.001] [PMID: 15157658]
[39]
Akgül, B.; Pfefferle, R.; Marcuzzi, G.P.; Zigrino, P.; Krieg, T.; Pfister, H.; Mauch, C. Expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MT1-MMP in skin tumors of human papillomavirus type 8 transgenic mice. Exp. Dermatol., 2006, 15(1), 35-42.
[http://dx.doi.org/10.1111/j.0906-6705.2005.00387.x] [PMID: 16364029]
[40]
Liabakk, N.B.; Talbot, I.; Smith, R.A.; Wilkinson, K.; Balkwill, F. Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res., 1996, 56(1), 190-196.
[PMID: 8548762]
[41]
Huang, H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances. Sensors, 2018, 18(10), 3249.
[http://dx.doi.org/10.3390/s18103249] [PMID: 30262739]

© 2025 Bentham Science Publishers | Privacy Policy