Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Biogenic Nanoparticles: Synthesis, Characterization, and Biological Potential of Gold Nanoparticles Synthesized using Lasiosiphon eriocephalus Decne Plant Extract

Author(s): Kailas D. Datkhile*, Pratik P. Durgawale, Shuvronil Chakraborty, Nilam J. Jagdale, Ashwini L. More and Satish R. Patil

Volume 11, Issue 3, 2023

Published on: 09 March, 2023

Page: [303 - 314] Pages: 12

DOI: 10.2174/2211738511666230206112537

Price: $65

Abstract

Introduction: Recent advancements in biomedicine have revolutionized nanomedicine as a therapeutic moderator in the management of both infectious and noninfectious diseases.

Purpose: In the current study we demonstrated biosynthesis of gold nanoparticles using aqueous leaf extract of Lasiosiphon eriocephalus as a capping and reducing agent and evaluation of their antioxidant, antibacterial, and anticancer properties.

Methods: The biosynthesized LE-AuNPs were characterized by UV-Vis spectrophotometry, SEM, TEM, XRD, FTIR, DLS, and Zeta potential analysis. The antibacterial activity was checked by a minimum inhibitory concentration assay. The anticancer potential of biogenic LE-AuNPs was checked by cytotoxicity and genotoxicity assay against HeLa and HCT-15 cells.

Results: The characteristic surface plasmon resonance peak of the colloidal solution at 538 nm by UV-Vis spectrum confirmed the formation of LE-AuNPs in the solution. The SEM, TEM, and XRD revealed 20-60 sized hexagonal and crystalline LE-AuNPs. The LE-AuNPs displayed significant inhibition potential against DPPH and ABTS radicals in vitro. The LE-AuNPs demonstrated significant antibacterial potential. The results of cytotoxicity interpreted that biogenic gold nanoparticles exhibited strong dose and time-dependent cytotoxicity effect against selected cancer cell lines where IC50 of LE-AuNPs required to inhibit the growth of HeLa cells after 24 h and 48 h exposure were 5.65± 0.69 μg/mL and 4.37±0.23 μg/mL respectively and that of HCT- 15 cells was 6.46 ± 0.69 μg/mL and 5.27 ± 0.34 μg/mL, 24h and 48h post-exposure respectively.

Conclusions: Findings from this study revealed that gold nanoparticles synthesized using L. eriocephalus, showed remarkable antioxidant, antimicrobial, and extensive cytotoxicity and genotoxicity activities.

« Previous
Graphical Abstract

[1]
Rathore B, Sunwoo K, Jangili P, et al. Nanomaterial designing strategies related to cell lysosome and their biomedical applications: A review. Biomaterials 2019; 211: 25-47.
[http://dx.doi.org/10.1016/j.biomaterials.2019.05.002] [PMID: 31078050]
[2]
Yaqoob SB, Adnan R, Rameez Khan RM, Rashid M. Gold, silver, and palladium nanoparticles: A chemical tool for biomedical applications. Front Chem 2020; 8: 376.
[http://dx.doi.org/10.3389/fchem.2020.00376] [PMID: 32582621]
[3]
Lee S, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 2019; 20(4): 865.
[http://dx.doi.org/10.3390/ijms20040865] [PMID: 30781560]
[4]
Lee KX, Shameli K, Yew YP, et al. Recent developments in the facile biosynthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine 2020; 15: 275-300.
[http://dx.doi.org/10.2147/IJN.S233789] [PMID: 32021180]
[5]
Noah N. Green synthesis, characterization and applications of nanoparticles. Micro Nano Technol 2019; pp. 111-35.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00006-X]
[6]
Menon S. S R, S VK. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technol 2017; 3(4): 516-27.
[http://dx.doi.org/10.1016/j.reffit.2017.08.002]
[7]
Boomi P, Ganesan R, Prabu Poorani G, et al. Phyto-Engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions. Int J Nanomedicine 2020; 15: 7553-68.
[http://dx.doi.org/10.2147/IJN.S257499] [PMID: 33116487]
[8]
Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional Gold Nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol 2020; 8: 990.
[http://dx.doi.org/10.3389/fbioe.2020.00990] [PMID: 32903562]
[9]
Nadeem M, Abbasi BH, Younas M, Ahmad W, Khan T. A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem Lett Rev 2017; 10(4): 216-27.
[http://dx.doi.org/10.1080/17518253.2017.1349192]
[10]
Singh P, Garg A, Pandit S, Mokkapati V, Mijakovic I. Antimicrobial effects of biogenic nanoparticles. Nanomaterials (Basel) 2018; 8(12): 1009.
[http://dx.doi.org/10.3390/nano8121009] [PMID: 30563095]
[11]
Folorunso A, Akintelu S, Oyebamiji AK, et al. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J Nanostructure Chem 2019; 9(2): 111-7.
[http://dx.doi.org/10.1007/s40097-019-0301-1]
[12]
Rao PV, Nallappan D, Madhavi K, Rahman S, Wei LJ, Gan SH. Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid Med Cell Longev 2016; 2016: 3685671.
[http://dx.doi.org/10.1155/2016/3685671]
[13]
Sun B, Hu N, Han L, Pi Y, Gao Y, Chen K. Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif Cells Nanomed Biotechnol 2019; 47(1): 4012-9.
[http://dx.doi.org/10.1080/21691401.2019.1575844] [PMID: 31591910]
[14]
Patil MP, Kim GD. Gold Nanoparticles: Biogenic synthesis and anticancer application. Green Synthesis of Nanoparticles: Applications Prospects 2020; 199-222.
[http://dx.doi.org/10.1007/978-981-15-5179-6_9]
[15]
Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol 2019; 47(1): 844-51.
[http://dx.doi.org/10.1080/21691401.2019.1577878] [PMID: 30879351]
[16]
Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J Chem 2019; 12(8): 3576-600.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.002]
[17]
Datkhile KD, Durgavale PP, Patil MN. Biogenic silver nanoparticles from Nothapodytesfoetida kill human cancer cells in vitro through inhibition of cell proliferation and induction of apoptosis. J Bionanosci 2017; 11(5): 416-27.
[http://dx.doi.org/10.1166/jbns.2017.1465]
[18]
Datkhile KD, Patil SR, Durgavale PP, Patil MN, Jagdale NJ, Deshmukh VN. Studies on antioxidant and antimicrobial potential of biogenic silver nanoparticles synthesized using Nothapodytes foetida leaf extract (Wight) sleumer. Biomed Pharmacol J 2020; 13(1): 441-8.
[http://dx.doi.org/10.13005/bpj/1904]
[19]
Datkhile KD, Durgavale PP, Patil MN, Jagdale NJ, Deshmukh VN. Biosynthesis characterization and evaluation of biological properties of biogenic gold nanoparticles synthesized using Nothapodytesfoetida leaf extract. Nanosci Nanotechnol Asia 2021; 11(1): 84-96. a
[http://dx.doi.org/10.2174/2210681210666200225112002]
[20]
Datkhile KD, Durgawale PP, Patil MN, Joshi SA, Korabu KS. Studies on phytoconstituents, in vitro antioxidant, antibacterial, antiparasitic, antimicrobial, and anticancer potential of medicinal plant Lasiosiphon eriocephalus decne (Family: Thymelaeaceae). J Nat Sci Biol Med 2019; 10(1): 38-47.
[http://dx.doi.org/10.4103/jnsbm.JNSBM_183_18]
[21]
Datkhile KD, Patil SR, Durgawale PP, et al. Biogenic synthesis of gold nanoparticles using Argemone mexicana L. and their cytotoxic and genotoxic effects on human colon cancer cell line (HCT-15). J Genet Eng Biotechnol 2021; 19(1): 9. b
[http://dx.doi.org/10.1186/s43141-020-00113-y] [PMID: 33443619]
[22]
Hunyadi A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med Res Rev 2019; 39(6): 2505-33.
[http://dx.doi.org/10.1002/med.21592] [PMID: 31074028]
[23]
Nakkala JR, Mata R, Bhagat E, Sadras SR. Green synthesis of silver and gold nanoparticles from Gymnema sylvestre leaf extract: study of antioxidant and anticancer activities. J Nanopart Res 2015; 17(3): 151.
[http://dx.doi.org/10.1007/s11051-015-2957-x]
[24]
Balashanmugam P. MosaChristas K, Kowsalya E. In vitro cytotoxicity and antioxidant evaluation of biogenic synthesized gold nanoparticles from Marselia quadrifolia on lung and ovarian cancer cells. Int J Appl Pharmac 2018; 10(5): 153-8.
[http://dx.doi.org/10.22159/ijap.2018v10i5.27999]
[25]
Chen J, Li Y, Fang G, et al. Green synthesis, characterization, cytotoxicity, antioxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arab J Chem 2021; 14(3): 103000.
[http://dx.doi.org/10.1016/j.arabjc.2021.103000]
[26]
Hosny M, Fawzy M. Instantaneous phytosynthesis of gold nanoparticles via Persicaria salicifolia leaf extract, and their medical applications. Adv Powder Technol 2021; 32(8): 2891-904.
[http://dx.doi.org/10.1016/j.apt.2021.06.004]
[27]
Bernardos A, Piacenza E, Sancenón F, et al. Mesoporous silica based materials with bactericidal properties. Small 2019; 15(24): 1900669.
[http://dx.doi.org/10.1002/smll.201900669] [PMID: 31033214]
[28]
Lin A, Liu Y, Zhu X, et al. Bacteria-Responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition. ACS Nano 2019; 13(12): 13965-84.
[http://dx.doi.org/10.1021/acsnano.9b05766] [PMID: 31730327]
[29]
Zhang J, Hurren C, Lu Z, Wang D. pH-sensitive alginate hydrogel for synergistic anti-infection. Int J Biol Macromol 2022; 222(Pt B): 1723-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.234] [PMID: 36220410]
[30]
Moore JH, Honrado C, Stagnaro V, Kolling G, Warren CA, Swami NS. Rapid in vitro assessment of Clostridioides difficile inhibition by probiotics using dielectrophoresis to quantify cell structure alterations. ACS Infect Dis 2020; 6(5): 1000-7.
[http://dx.doi.org/10.1021/acsinfecdis.9b00415] [PMID: 32239920]
[31]
Harimoto T, Hahn J, Chen YY, et al. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat Biotechnol 2022; 40(8): 1259-69.
[http://dx.doi.org/10.1038/s41587-022-01244-y] [PMID: 35301496]
[32]
Lu Z, Zhang H, Hu X, Lu J, Wang D. Probiotic-Free microfiber membrane for promoting infected wound healing by regulating wound flora balance. ACS Materials Letters 2022; 4(12): 2547-54.
[http://dx.doi.org/10.1021/acsmaterialslett.2c00652]
[33]
Veziant J, Bonnet M, Occean BV, Dziri C, Pereira B, Slim K. Probiotics/Synbiotics to reduce infectious complications after colorectal surgery: A systematic review and Meta-Analysis of randomised controlled trials. Nutrients 2022; 14(15): 3066.
[http://dx.doi.org/10.3390/nu14153066] [PMID: 35893922]
[34]
Annamalai A, Christina VLP, Sudha D, Kalpana M, Lakshmi PTV. Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf B Biointerfaces 2013; 108: 60-5.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.012] [PMID: 23528605]
[35]
Rahaman Mollick MM, Bhowmick B, Mondal D, et al. Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route. RSC Advances 2014; 4(71): 37838-48.
[http://dx.doi.org/10.1039/C4RA07285E]
[36]
Donga S, Bhadu GR, Chanda S. Antimicrobial, antioxidant and anticancer activities of gold nanoparticles green synthesized using Mangifera indica seed aqueous extract. Artif Cells Nanomed Biotechnol 2020; 48(1): 1315-25.
[http://dx.doi.org/10.1080/21691401.2020.1843470] [PMID: 33226851]
[37]
Dube P, Meyer S, Madiehe A, Meyer M. Antibacterial activity of biogenic silver and gold nanoparticles synthesized from Salvia africana-lutea and Sutherlandia frutescens. Nanotechnology 2020; 31(50): 505607.
[http://dx.doi.org/10.1088/1361-6528/abb6a8] [PMID: 33021215]
[38]
Sathiyaraj S, Suriyakala G, Dhanesh Gandhi A, et al. Biosynthesis, characterization, and antibacterial activity of gold nanoparticles. J Infect Public Health 2021; 14(12): 1842-7.
[http://dx.doi.org/10.1016/j.jiph.2021.10.007] [PMID: 34690096]
[39]
Ismail E, Saqer A, Assirey E, Naqvi A, Okasha R. Successful green synthesis of gold nanoparticles using a Corchorus olitorius extract and their antiproliferative effect in cancer Cells. Int J Mol Sci 2018; 19(9): 2612.
[http://dx.doi.org/10.3390/ijms19092612] [PMID: 30177647]
[40]
Wang L, Xu J, Yan Y, Liu H, Karunakaran T, Li F. Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC‐1). Artif Cells Nanomed Biotechnol 2019; 47(1): 1617-27.
[http://dx.doi.org/10.1080/21691401.2019.1594862] [PMID: 31014134]
[41]
Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine 2018; 14(1): 1-12.
[http://dx.doi.org/10.1016/j.nano.2017.08.011] [PMID: 28882675]
[42]
Kus-Liśkiewicz M, Fickers P, Ben Tahar I. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations. Int J Mol Sci 2021; 22(20): 10952.
[http://dx.doi.org/10.3390/ijms222010952] [PMID: 34681612]
[43]
Arvindganth R, Kathiravan G. Biogenic synthesis of gold nanoparticle from Enicostema axillare and their in vitro cytotoxicity study against MCF-7 cell line. Bionanoscience 2019; 9(4): 839-47.
[http://dx.doi.org/10.1007/s12668-019-00656-6]
[44]
Majoumouo MS, Sharma JR, Sibuyi NRS, Tincho MB, Boyom FF, Meyer M. Synthesis of biogenic gold nanoparticles from Terminalia mantaly extracts and the evaluation of their in vitro cytotoxic effects in cancer cells. Molecules 2020; 25(19): 4469.
[http://dx.doi.org/10.3390/molecules25194469] [PMID: 33003351]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy