Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Therapeutic Potential of Thiophene Compounds: A Mini-Review

Author(s): Shivani Chawla, Shweta Sharma, Sarfraj Kashid, Prabhakar Kumar Verma* and Ashu Sapra

Volume 23, Issue 15, 2023

Published on: 08 March, 2023

Page: [1514 - 1534] Pages: 21

DOI: 10.2174/1389557523666230206104257

Price: $65

Abstract

A rising number of researchers are interested in thiophene-based analogs as they have wide possibilities of biological potential in the largely developing chemical world of the heterocyclic moiety. It also occupies a central position in synthetic organic chemistry and is of the highest theoretical and practical importance. It became an important moiety for researchers to discover combinatorial libraries and implement the efforts in search of the lead entity. Moreover, it helps medicinal chemists to improve sophisticated molecules with a broad range of pharmacological activities. Thiophene and its synthetic derivatives are a prominent heterocyclic compound class with intriguing uses in medical chemistry. It has been manifesting to be an effective drug in current respective diseases scenario. It has been discovered that thiophene had an extensive spectrum of pharmacological potential with numerous applications in academic interest, in the pharmaceutical industry, material science, and medicinal chemistry. Antimitotic, antimicrobial, anti-inflammatory, anticonvulsant, antipsychotic, antiarrhythmic, anti-anxiety, antifungal, antioxidant, estrogen receptor regulating, and anti-cancer are one of the pharmacological and physiological activities of thiophene moiety. However, there are some marketed formulations available such as Thiophenfurin, Teniposide, Cefoxitin, Ticaconazole, Sertaconazole, Suprofen, ketotifen, Brinzolamide, Dorzolamide, Tiotropium which contain thiophene nucleus. Thus, in brief, gathering recent data is necessary to comprehend the present scenario of thiophene moiety for scientific research purposes and highlights a broad view of the biological potential of compounds having a thiophene nucleus.

Graphical Abstract

[1]
Keri, R.S.; Chand, K.; Budagumpi, S.; Balappa Somappa, S.; Patil, S.A.; Nagaraja, B.M. An overview of benzo [b] thiophene-based medicinal chemistry. Eur. J. Med. Chem., 2017, 138, 1002-1033.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.038] [PMID: 28759875]
[2]
Demir, Y.; Köksal, Z. The inhibition effects of some sulfonamides on human serum paraoxonase-1 (hPON1). Pharmacol. Rep., 2019, 71(3), 545-549.
[http://dx.doi.org/10.1016/j.pharep.2019.02.012] [PMID: 31109643]
[3]
da Cruz, R.M.D.; Mendonça-Junior, F.J.B.; de Mélo, N.B.; Scotti, L.; de Araújo, R.S.A.; de Almeida, R.N.; de Moura, R.O. Thiophene-based compounds with potential anti-inflammatory activity. Pharmaceuticals, 2021, 14(7), 692.
[http://dx.doi.org/10.3390/ph14070692] [PMID: 34358118]
[4]
Sever, B.; Altıntop, M.D.; Demir, Y.; Yılmaz, N.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem. Biol. Interact., 2021, 345, 109576.
[http://dx.doi.org/10.1016/j.cbi.2021.109576] [PMID: 34252406]
[5]
Irfan, A.; Batool, F.; Zahra Naqvi, S.A.; Islam, A.; Osman, S.M.; Nocentini, A.; Alissa, S.A.; Supuran, C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 265-279.
[http://dx.doi.org/10.1080/14756366.2019.1698036] [PMID: 31790602]
[6]
Tehranchian, S.; Akbarzadeh, T.; Fazeli, M.R.; Jamalifar, H.; Shafiee, A. Synthesis and antibacterial activity of 1-[1,2,4-triazol-3-yl] and 1-[1,3,4-thiadiazol-2-yl]-3-methylthio-6,7-dihydrobenzo[c]th-iophen-4(5H)ones. Bioorg. Med. Chem. Lett., 2005, 15(4), 1023-1025.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.039] [PMID: 15686905]
[7]
Cai, J.; Sun, M.; Wu, X.; Chen, J.; Wang, P.; Zong, X.; Ji, M. Design and synthesis of novel 4-benzothiazole amino quinazolines Dasatinib derivatives as potential anti-tumor agents. Eur. J. Med. Chem., 2013, 63, 702-712.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.013] [PMID: 23567960]
[8]
Venkatesh, P.; Pandeya, S.N. Synthesis, characterization and anti-inflammatory activity of some 2-amino benzothiazole derivatives. Int. J. Inn.Tech. Exp. Eng., 2009, 1(4), 1354-1358.
[9]
Abdel-Aziem, A.; El-Gendy, M.S.; Abdelhamid, A.O. Synthesis and antimicrobial activities of pyrido[2,3-d]pyrimidine, pyridotriazolopyrimidine, triazolopyrimidine, and pyrido[2,3-d:6,5d’]dipyrimidine derivatives. Eur. J. Chem., 2012, 3(4), 455-460.
[http://dx.doi.org/10.5155/eurjchem.3.4.455-460.683]
[10]
Jadeja, J.; Jatiya, J.; Savant, M. Synthesis and characterization of novel highly functionalized thiophene heterocycles; Easy Chair Preorint, 2022. (7639)
[11]
Wang, P.; Batt, S.M.; Wang, B.; Fu, L.; Qin, R.; Lu, Y.; Li, G.; Besra, G.S.; Huang, H. Discovery of novel thiophene-arylamide derivatives as DprE1 inhibitors with potent antimycobacterial activities. J. Med. Chem., 2021, 64(9), 6241-6261.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00263] [PMID: 33852302]
[12]
Abedinifar, F.; Babazadeh Rezaei, E.; Biglar, M.; Larijani, B.; Hamedifar, H.; Ansari, S.; Mahdavi, M. Recent strategies in the synthesis of thiophene derivatives: Highlights from the 2012–2020 literature. Mol. Divers., 2021, 25(4), 2571-2604.
[http://dx.doi.org/10.1007/s11030-020-10128-9] [PMID: 32734589]
[13]
Mishra, R.; Jha, K.K.; Kumar, S.; Tomer, I. Thiophene: The molecule of diverse medicinal importance. J. Pharm. Res., 2012, 5(1), 560-566.
[14]
Shah, R.; Verma, P.K. Therapeutic importance of synthetic thiophene. Chem. Cent. J., 2018, 12(1), 137.
[http://dx.doi.org/10.1186/s13065-018-0511-5] [PMID: 30564984]
[15]
Chaudhary, A.; Jha, K.K.; Kumar, S. Biological diversity of thiophene: A review. Int. J. Adv. Sci. Res., 2012, 3(3), 3-10.
[16]
Mishra, R.; Jha, K.K.; Kumar, S.; Tomer, I. Synthesis, properties and biological activity of thiophene: A review. Pharma Chem., 2011, 3, 38-54.
[17]
Mishra, R.; Sharma, P.K. A review on synthesis and medicinal importance of thiophene. Int. J. Eng. Sci., 2015, 1(1), 46-59.
[18]
Puterová, Z.; Krutošíková, A.; Végh, D. Gewald reaction: synthesis, properties and applications of substituted 2-aminothiophenes. Arkivoc, 2010, 1(209), 209-246.
[19]
Huang, Y.; Dömling, A. The Gewald multicomponent reaction. Mol. Divers., 2011, 15(1), 3-33.
[http://dx.doi.org/10.1007/s11030-010-9229-6] [PMID: 20191319]
[20]
Priyanka, S.N.K.; Jha, K.K. Benzothiazole: The molecule of diverse biological activities. Int. J. Curr. Pharm. Res., 2010, 2, 1-06.
[21]
Shah, R.; Verma, P.K. Synthesis of thiophene derivatives and their anti-microbial, antioxidant, anticorrosion and anticancer activity. BMC Chem., 2019, 13(1), 54.
[http://dx.doi.org/10.1186/s13065-019-0569-8] [PMID: 31384802]
[22]
Asiri, Y.I.; Muhsinah, A.B.; Alsayari, A.; Venkatesan, K.; Al-Ghorbani, M.; Mabkhot, Y.N. Design, synthesis and antimicrobial activity of novel 2-aminothiophene containing cyclic and heterocyclic moieties. Bioorg. Med. Chem. Lett., 2021, 44, 128117.
[http://dx.doi.org/10.1016/j.bmcl.2021.128117] [PMID: 34015500]
[23]
Mabkhot, Y.N.; Kaal, N.A.; Alterary, S.; Mubarak, M.S.; Alsayari, A.; Bin Muhsinah, A. New thiophene derivatives as antimicrobial agents. J. Heterocycl. Chem., 2019, 56(10), 2845-2953.
[http://dx.doi.org/10.1002/jhet.3688]
[24]
Vikram, V.; Karteek, R.A.; Umadevi, P. One -pot synthesis of N-benzyl substituted 2- aminothiophene-3-carboxylic Acid Scaffold and their Antibacterial Activity. Int. J. Inn. Tech. Expl. Eng., 2019, 8(12), 2546-2549.
[http://dx.doi.org/10.35940/ijitee.K1567.1081219]
[25]
Mabkhot, Y.N.; Kheder, N.A.; Barakat, A.; Choudhary, M.I.; Yousuf, S.; Frey, W. Synthesis, antimicrobial, anti-cancer and molecular docking of two novel hitherto unreported thiophenes. RSC Advances, 2016, 6(68), 63724-63729.
[http://dx.doi.org/10.1039/C6RA09883E]
[26]
Bindu, P.J.; Mahadevan, K.M.; Ravikumar Naik, T.R. An efficient one-pot synthesis and photoinduced DNA cleavage studies of 2-chloro-3-(5-aryl-4,5-dihydroisoxazol-3-yl)quinolines. Bioorg. Med. Chem. Lett., 2012, 22(19), 6095-6098.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.034] [PMID: 22959207]
[27]
Al-Dosari, M.S.; Ghorab, M.M.; AlSaid, M.S.; Nissan, Y.M.; Ahmed, A.B. Synthesis and anticancer activity of some novel trifluoromethylquinolines carrying a biologically active benzenesulfonamide moiety. Eur. J. Med. Chem., 2013, 69, 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.048] [PMID: 24077528]
[28]
Mohareb, R.M.; Abdallah, A.E.M.; Helal, M.H.E.; Shaloof, S.M.H. Synthesis and structure elucidation of some novel thiophene and benzothiophene derivatives as cytotoxic agents. Acta Pharm., 2016, 66(1), 53-68.
[http://dx.doi.org/10.1515/acph-2016-0005] [PMID: 26959543]
[29]
Romagnoli, R.; Preti, D.; Hamel, E.; Bortolozzi, R.; Viola, G.; Brancale, A.; Ferla, S.; Morciano, G.; Pinton, P. Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzo[b] thiophene derivatives as potent apoptosis-inducing agents. Bioorg. Chem., 2021, 112, 104919.
[http://dx.doi.org/10.1016/j.bioorg.2021.104919] [PMID: 33957538]
[30]
Sroor, F.M.; Aboelenin, M.M.; Mahrous, K.F.; Mahmoud, K.; Elwahy, A.H.M.; Abdelhamid, I.A.; Ahmed-Elwahy, H.M.; Abdelhamid, I.A. Novel 2‐cyanoacrylamido‐4,5,6,7‐tetrahydrobenzo[b] thiophene derivatives as potent anticancer agents. Arch. Pharm., 2020, 353(10), 2000069.
[http://dx.doi.org/10.1002/ardp.202000069]
[31]
Al- Ghorafi, A.H.M.; Mohammed, K.A.; Abdullah, J.H.; Ahmed, T.A.; Yassin, S.YH. Design, synthesis, molecular docking, and biological evaluation of some new thiophene derivatives as anti-cancer agents. Eur. J. Pharm. Med. Res., 2019, 6(12), 160-167.
[32]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[33]
Gulipalli, K.C.; Ravula, P.; Bodige, S.; Endoori, S.; Cherukumalli, P.K.R.; Narendra, S.C.J.N.; Seelam, N. Synthesis and anticancer activity of thiophene-2-carboxamide derivatives and in silico docking studies. Russ. J. Gen. Chem., 2019, 89(7), 1502-1512.
[http://dx.doi.org/10.1134/S1070363219070211]
[34]
Demir, Y. The behaviour of some antihypertension drugs on human serum paraoxonase-1: An important protector enzyme against atherosclerosis. J. Pharm. Pharmacol., 2019, 71(10), 1576-1583.
[http://dx.doi.org/10.1111/jphp.13144] [PMID: 31347707]
[35]
Durgun, M.; Türkeş, C.; Işık, M.; Demir, Y.; Saklı, A.; Kuru, A.; Güzel, A.; Beydemir, Ş.; Akocak, S.; Osman, S.M.; AlOthman, Z.; Supuran, C.T. Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 950-962.
[http://dx.doi.org/10.1080/14756366.2020.1746784] [PMID: 32249705]
[36]
Mishra, R.; Kumar, N.; Sachan, N. Synthesis and pharmacological study of thiophene derivatives. Int. J. Pharm. Qual. Assur., 2021, 12(3), 282-291.
[37]
Rosada, B.; Bekier, A.; Cytarska, J.; Płaziński, W.; Zavyalova, O.; Sikora, A.; Dzitko, K.; Łączkowski, K.Z. Benzo[b] thiophene-thiazoles as potent anti-Toxoplasma gondii agents: Design, synthesis, tyrosinase/tyrosine hydroxylase inhibitors, molecular docking study, and antioxidant activity. Eur. J. Med. Chem., 2019, 184, 111765.
[http://dx.doi.org/10.1016/j.ejmech.2019.111765] [PMID: 31629163]
[38]
Chaudhari, P.S.; Chitlange, S.S.; Nanda, R.K. Synthesis and biological evaluation of novel 2-(4-acetyl-3-methyl- 5-(arylamino) thiophen-2-yl)-3-arylquinazolin-4(3h)-one derivatives as potential anti-inflammatory and antioxidant agents. Antiinflamm. Antiallergy Agents Med. Chem., 2018, 17(2), 102-114.
[http://dx.doi.org/10.2174/1871523017666180910105609] [PMID: 30198442]
[39]
Abed, N.A.; Hammouda, M.M.; Ismail, M.A.; Abdel-Latif, E. Synthesis of new heterocycles festooned with thiophene and evaluating their antioxidant activity. J. Heterocycl. Chem., 2020, 57(12), 4153-4163.
[http://dx.doi.org/10.1002/jhet.4122]
[40]
Nayak, S.G.; Poojary, B.; Kamat, V. Novel pyrazole‐clubbed thiophene derivatives via Gewald synthesis as antibacterial and anti‐inflammatory agents. Arch. Pharm., 2020, 353(12), 2000103.
[http://dx.doi.org/10.1002/ardp.202000103] [PMID: 32893908]
[41]
More, G.; Bootwala, S.; Shenoy, S.; Mascarenhas, J.; Aruna, K. Synthesis, characterization and in vitro antitubercular and antimicrobial activities of new aminothiophene schiff bases and their Co (II), Ni (II), Cu (II) and Zn (II) metal complexes. Orient. J. Chem., 2018, 34(2), 800-812.
[http://dx.doi.org/10.13005/ojc/340225]
[42]
Mahajan, P.S.; Nikam, M.D.; Nawale, L.U.; Khedkar, V.M.; Sarkar, D.; Gill, C.H. Synthesis and antitubercular activity of new benzo [b] thiophenes. ACS Med. Chem. Lett., 2016, 7(8), 751-756.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00077] [PMID: 27563398]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy