Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Exploring the Mechanism of Buyang Huanwu Decoction Alleviating Restenosis by Regulating VSMC Phenotype Switching and Proliferation by Network Pharmacology and Molecular Docking

Author(s): Xueqin Chen, Jingyue Yu, Huan Lei, Lei Li, Xupin Liu, Bo Liu, Yanfei Xie and Haihong Fang*

Volume 19, Issue 6, 2023

Published on: 27 February, 2023

Page: [451 - 464] Pages: 14

DOI: 10.2174/1573409919666230203144207

Price: $65

Abstract

Background: Buyang Huanwu Decoction (BHD) is used to regulate blood circulation and clear collaterals and is widely used in coronary heart disease. However, the active compounds and the mechanism of BHD used to treat restenosis are less understood.

Objective: The study aimed to explore the potential mechanism of Buyang Huanwu decoction BHD for the treatment of restenosis using network pharmacology and molecular docking experiments.

Methods: The bioactive components of BHD and their corresponding targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Encyclopaedia of Traditional Chinese Medicine (ETCM) databases as well as literature. Restenosisassociated therapeutic genes were identified from the OMIM, Drugbank, GEO, and Dis- GeNET databases. Genes related to the vascular smooth muscle cell (VSMC) phenotype were obtained from the gene ontology (GO) database and literature. The core target genes for the drug-disease-VSMC phenotype were identified using the Venn tool and Cytoscape software. Moreover, the “drug-component-target-pathway” network was constructed and analyzed, and pathway enrichment analysis was performed. The connection between the main active components and core targets was analyzed using the AutoDock tool, and PyMOL was used to visualize the results.

Results: The “compound-target-disease” network included 80 active ingredients and 599 overlapping targets. Among the bioactive components, quercetin, ligustrazine, ligustilide, hydroxysafflor yellow A, and dihydrocapsaicin had high degree values, and the core targets included TP53, MYC, APP, UBC, JUN, EP300, TGFB1, UBB, SP1, MAPK1, SMAD2, CTNNB1, FOXO3, PIN1, EGR1, TCF4, FOS, SMAD3, and CREBBP. A total of 365 items were obtained from the GO functional enrichment analysis (p < 0.05), whereas the enrichment analysis of the KEGG pathway identified 30 signaling pathways (p < 0.05), which involved the TGF-β signaling pathway, Wnt signaling pathway, TRAF6-mediated induction of NF-κB and MAPK pathway, TLR7/8 cascade, and others. The molecular docking results revealed quercetin, luteolin, and ligustilide to have good affinity with the core targets MYC and TP53.

Conclusion: The active ingredients in BHD might act on TP53, MYC, APP, UBC, JUN, and other targets through its active components (such as quercetin, ligustrazine, ligustilide, hydroxysafflor yellow A, and dihydrocapsaicin). This action of BHD may be transmitted via the involvement of multiple signaling pathways, including the TGF-β signaling pathway, Wnt signaling pathway, TRAF6-mediated induction of NF-κB and MAPK pathway, and TLR7/8 cascade, to treat restenosis by inhibiting the phenotype switching and proliferation of VSMC.

Graphical Abstract

[1]
Hajar, R. Coronary heart disease: From mummies to 21st century. Heart views, 2017, 18(2), 68-74.
[2]
Siontis, G.C.M.; Piccolo, R.; Praz, F.; Valgimigli, M.; Räber, L.; Mavridis, D.; Jüni, P.; Windecker, S. Percutaneous coronary interventions for the treatment of stenoses in small coronary arteries. JACC Cardiovasc. Interv., 2016, 9(13), 1324-1334.
[http://dx.doi.org/10.1016/j.jcin.2016.03.025] [PMID: 27318845]
[3]
Zheng, D.; Mingyue, Z.; Wei, S.; Min, L.; Wanhong, C.; Qiliang, D.; Yongjun, J.; Xinfeng, L. The incidence and risk factors of instent restenosis for vertebrobasilar artery stenting. World Neurosurg., 2018, 110, e937-e941.
[http://dx.doi.org/10.1016/j.wneu.2017.11.112 ] [PMID: 29191532]
[4]
Zhang, J.; Gao, F.; Ni, T.; Lu, W.; Lin, N.; Zhang, C.; Sun, Z.; Guo, H.; Chi, J. Linc-POU3F3 is overexpressed in in-stent restenosis patients and induces VSMC phenotypic transformation via POU3F3/miR-449a/KLF4 signaling pathway. Am. J. Transl. Res., 2019, 11(7), 4481-4490.
[PMID: 31396351]
[5]
Qi, Y.; Dai, F.; Gu, J.; Yao, W. Biomarkers in VSMC phenotypic modulation and vascular remodeling. Pharmazie, 2019, 74(12), 711-714.
[PMID: 31907108]
[6]
Liu, S.; Yang, Y.; Jiang, S.; Tang, N.; Tian, J.; Ponnusamy, M.; Tariq, M.A.; Lian, Z.; Xin, H.; Yu, T. Understanding the role of non-coding RNA (ncRNA) in stent restenosis. Atherosclerosis, 2018, 272, 153-161.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.03.036] [PMID: 29609130]
[7]
Ammann, K.R.; DeCook, K.J.; Li, M.; Slepian, M.J. Migration versus proliferation as contributor to in vitro wound healing of vascular endothelial and smooth muscle cells. Exp. Cell Res., 2019, 376(1), 58-66.
[http://dx.doi.org/10.1016/j.yexcr.2019.01.011] [PMID: 30660619]
[8]
Miano, J.M.; Fisher, E.A.; Majesky, M.W. Fate and state of vascular smooth muscle cells in atherosclerosis. Circulation, 2021, 143(21), 2110-2116.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.049922] [PMID: 34029141]
[9]
Pahk, K.; Joung, C.; Kim, S.; Kim, W.K. f-18 fdg pet/ct can be used as an imaging biomarker for reflecting synthetic vascular smooth muscle cell activity in the animal model of vascular remodeling disorder. J. Hypertens., 2021, 39(Suppl. 1), e46.
[http://dx.doi.org/10.1097/01.hjh.0000744844.48116.d1]
[10]
Min, J.; Mao, B.; Jiang, H-L.; Fan, T.; Zhou, W. (Effects of “reinforcing Qi and activating blood” on stable chronic obstructive pulmonary disease (Qi deficiency and blood stasis syndrome). Sichuan Da Xue Xue Bao Yi Xue Ban, 2014, 45(4), 601-605.
[PMID: 25286684]
[11]
Ding, F.; Zhang, Q.R.; Hu, Y.J.; Wang, Y.T. Mechanism study on preventive and curative effects of buyang huanwu decoction in Qi deficiency and blood stasis diseases based on network analysis. Zhongguo Zhongyao Zazhi, 2014, 39(22), 4418-4425.
[PMID: 25850278]
[12]
Chen, R.; Xiao, Y.; Chen, M.; He, J.; Huang, M.; Hong, X.; Liu, X.; Fu, T.; Zhang, J.; Chen, L. A traditional Chinese medicine therapy for coronary heart disease after percutaneous coronary intervention: A meta-analysis of randomized, double-blind, placebo-controlled trials. Biosci. Rep., 2018, 38(5), BSR20180973.
[http://dx.doi.org/10.1042/BSR20180973] [PMID: 30143584]
[13]
Xu, D.P.; Wu, H.L.; Lan, T.H.; Wang, X.; Sheng, X.G.; Lin, Y.; Li, S.; Zheng, C.Y. Effect of Shenzhu Guanxin recipe on patients with angina pectoris after percutaneous coronary intervention: A prospective, randomized controlled trial. Chin. J. Integr. Med., 2015, 21(6), 408-416.
[http://dx.doi.org/10.1007/s11655-015-2040-6] [PMID: 26063318]
[14]
Zheng, X-W.; Shan, C-S.; Xu, Q-Q.; Wang, Y.; Shi, Y-H.; Wang, Y.; Zheng, G-Q. Buyang Huanwu decoction targets SIR T1N/VEGF pathway to promote angiogenesis after cerebral lschemia/reperfusion injury. Front. Neurosci., 2018, 12.
[15]
Chen, X.; Zhang, Y.; Hou, W. Clinical research progress of buyang huanwu decoction in treating cerebral hemorrhage. J. Contemp. Med. Sci., 2022, 2(4), 4063315.
[16]
Han, X.; Zhang, G.; Chen, G.; Wu, Y.; Xu, T.; Xu, H.; Liu, B.; Zhou, Y. Buyang Huanwu decoction promotes angiogenesis in myocardial infarction through suppression of PTEN and activation of the PI3K/Akt signalling pathway. J. Ethnopharmacol., 2022, 287, 114929-114929.
[http://dx.doi.org/10.1016/j.jep.2021.114929] [PMID: 34952189]
[17]
Lee, Y.S.; Woo, S.C.; Kim, S.Y.; Park, J.Y. Understanding the multi-herbal composition of Buyang Huanwu Decoction: A review for better clinical use. J. Ethnopharmacol., 2020, 255112765.
[http://dx.doi.org/10.1016/j.jep.2020.112765] [PMID: 32171896]
[18]
Hsu, W.H.; Shen, Y.C.; Shiao, Y.J.; Kuo, C.H.; Lu, C.K.; Lin, T.Y.; Ku, W.C.; Lin, Y.L. Combined proteomic and metabolomic analyses of cerebrospinal fluid from mice with ischemic stroke reveals the effects of a Buyang Huanwu decoction in neurodegenerative disease. PLoS One, 2019, 14(1), e0209184.
[http://dx.doi.org/10.1371/journal.pone.0209184] [PMID: 30645580]
[19]
Chen, S.; Wang, Y.; Liang, C.; Li, J.; Li, Y.; Wu, Q.; Liu, Z.; Pang, X.; Chang, Y. Buyang Huanwu decoction ameliorates atherosclerosis by regulating TGF-β/Smad2 pathway to promote the differentiation of regulatory T cells. J. Ethnopharmacol., 2021, 269113724.
[http://dx.doi.org/10.1016/j.jep.2020.113724] [PMID: 33359003]
[20]
Liu, B.; Song, Z.; Yu, J.; Li, P.; Tang, Y.; Ge, J. The atherosclerosis-ameliorating effects and molecular mechanisms of BuYangHuanWu decoction. Biomed. Pharmacother., 2020, 123, 109664.
[http://dx.doi.org/10.1016/j.biopha.2019.109664] [PMID: 31887542]
[21]
Jiagang, D.; Li, C.; Wang, H.; Hao, E.; Du, Z.; Bao, C.; Lv, J.; Wang, Y. Amygdalin mediates relieved atherosclerosis in apolipoprotein E deficient mice through the induction of regulatory T cells. Biochem. Biophys. Res. Commun., 2011, 411(3), 523-529.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.162] [PMID: 21756879]
[22]
Li, H.; Jiao, Y.; Xie, M. Paeoniflorin ameliorates atherosclerosis by suppressing TLR4-mediated NF-κB activation. Inflammation, 2017, 40(6), 2042-2051.
[http://dx.doi.org/10.1007/s10753-017-0644-z] [PMID: 28791506]
[23]
Sun, B.; Rui, R.; Pan, H.; Zhang, L.; Wang, X. Effect of combined use of astragaloside IV (AsIV) and atorvastatin (AV) on expression of PPAR-γ and inflammation-associated cytokines in atherosclerosis rats. Med. Sci. Monit., 2018, 24, 6229-6236.
[http://dx.doi.org/10.12659/MSM.908480] [PMID: 30190450]
[24]
Yan, H.; Peng, X.; Xu, H.; Zhu, J.; Deng, C. Inhibition of aortic intimal hyperplasia and vascular smooth muscle proliferation and extracellular matrix protein expressions by Astragalus-Angelica combination. Evid. Based Complementary Altern. Med, 2018, 2018
[http://dx.doi.org/10.1155/2018/1508637]
[25]
Cao, L.; Deng, C-Q. (Effects of glycosides components and combinations of Buyang Huanwu decoction on vascular smooth muscle cells proliferation and related signaling pathway). Zhongguo Zhongyao Zazhi, 2016, 41(10), 1889-1897.
[PMID: 28895339]
[26]
Chen, H.; Song, H.; Liu, X.; Tian, J.; Tang, W.; Cao, T.; Zhao, P.; Zhang, C.; Guo, W.; Xu, M.; Lu, R. Buyang huanwu decoction alleviated pressure overload induced cardiac remodeling by suppressing Tgf-β/Smads and MAPKs signaling activated fibrosis. Biomed. Pharmacother., 2017, 95, 461-468.
[http://dx.doi.org/10.1016/j.biopha.2017.08.102] [PMID: 28865366]
[27]
Qin, L.; Chen, H.; Ding, X.; Guo, M.; Lang, H.; Liu, J.; Li, L.; Liao, J.; Liao, J. Utilizing network pharmacology to explore potential mechanisms of Yi Sui Nong Jian formula in treating myelodysplastic syndrome. Bioengineered, 2021, 12(1), 2238-2252.
[http://dx.doi.org/10.1080/21655979.2021.1933867] [PMID: 34098848]
[28]
Wei, J.; Ma, L.; Liu, W.; Wang, Y.; Shen, C.; Zhao, X.; Zhao, C. Identification of the molecular targets and mechanisms of compound mylabris capsules for hepatocellular carcinoma treatment through network pharmacology and bioinformatics analysis. J. Ethnopharmacol., 2021, 276114174.
[http://dx.doi.org/10.1016/j.jep.2021.114174] [PMID: 33932512]
[29]
Zhang, W. Network pharmacology of medicinal attributes and functions of Chinese herbal medicines: (I) Basic statistics of medicinal attributes and functions for more than 1100 Chinese herbal medicines. Network Pharmacology, 2017, 2
[30]
Zhang, R.; Yu, S.; Bai, H.; Ning, K. TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations. Sci. Rep., 2017, 7(1), 2821.
[http://dx.doi.org/10.1038/s41598-017-03039-7] [PMID: 28588237]
[31]
Li, P.C.; Tien, Y.C.; Day, C.H.; Pai, P.; Kuo, W.W.; Chen, T.S.; Kuo, C.H.; Tsai, C.H.; Ju, D.T.; Huang, C.Y. Impact of LPS-induced cardiomyoblast cell apoptosis inhibited by earthworm extracts. Cardiovasc. Toxicol., 2015, 15(2), 172-179.
[http://dx.doi.org/10.1007/s12012-014-9281-z] [PMID: 25249212]
[32]
Tong, H.; Yu, M.; Fei, C.; Ji, D.; Dong, J.; Su, L.; Gu, W.; Mao, C.; Li, L.; Bian, Z.; Lu, T.; Hao, M.; Zeng, B. Bioactive constituents and the molecular mechanism of Curcumae rhizoma in the treatment of primary dysmenorrhea based on network pharmacology and molecular docking. Phytomedicine, 2021, 86, 153558.
[http://dx.doi.org/10.1016/j.phymed.2021.153558] [PMID: 33866197]
[33]
Zhang, Y.; Shi, G.; Luo, Z.; Wang, J.; Wu, S.; Zhang, X.; Zhao, Y. Activity components from Gynostemma pentaphyllum for preventing hepatic fibrosis and of its molecular targets by network pharmacology approach. Molecules, 2021, 26(10), 3006.
[http://dx.doi.org/10.3390/molecules26103006] [PMID: 34070150]
[34]
Liang, B.; Gao, L.; Wang, F.; Li, Z.; Li, Y.; Tan, S.; Chen, A.; Shao, J.; Zhang, Z.; Sun, L.; Zhang, F.; Zheng, S. The mechanism research on the anti-liver fibrosis of emodin based on network pharmacology. IUBMB Life, 2021, 73(9), 1166-1179.
[http://dx.doi.org/10.1002/iub.2523] [PMID: 34173707]
[35]
Mao, C.; Ma, Z.; Jia, Y.; Li, W.; Xie, N.; Zhao, G.; Ma, B.; Yu, F.; Sun, J.; Zhou, Y.; Cui, Q.; Fu, Y.; Kong, W. Nidogen-2 maintains the contractile phenotype of vascular smooth muscle cells and prevents neointima formation via bridging jagged1-notch3 signaling. Circulation, 2021, 144(15), 1244-1261.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.053361] [PMID: 34315224]
[36]
Dai, S.; Zhang, G.; Zhao, F.; Shu, Q. Study on the molecular mechanism of the herbal couple sparganii rhizoma-curcumae rhizoma in the treatment of lung cancer based on network pharmacology Evid. Based Complementary Altern. Med., 2021, 2021.
[37]
Niu, K.; Li, Q.; Liu, Y.; Qiao, Y.; Li, B.; Wei, C.; Wang, K.; Cui, L.a.; Zheng, C.; Wang, R.; Zhang, L.; Zhang, H.; Sun, B.; Yu, B. Molecular targets and mechanisms of scutellariae radix-coptidis rhizoma drug pair for the treatment of ulcerative colitis based on network pharmacology and molecular docking. Evid. Based Complementary Altern. Med, 2021, 2021
[http://dx.doi.org/10.1155/2021/9929093]
[38]
Xu, Y.; Hang, W-L.; Zhou, X-M.; Wu, Q. Exploring the mechanism whereby sinensetin delays the progression of pulmonary fibrosis based on network pharmacology and pulmonary fibrosis models. Front. Pharmacol., 2021, 12.
[39]
Liu, F.; Li, Y.; Yang, Y.; Li, M.; Du, Y.; Zhang, Y.; Wang, J.; Shi, Y. Study on mechanism of matrine in treatment of COVID-19 combined with liver injury by network pharmacology and molecular docking technology. Drug Deliv., 2021, 28(1), 325-342.
[http://dx.doi.org/10.1080/10717544.2021.1879313] [PMID: 33517789]
[40]
Ji, Y.; Liu, Y.; Hu, J.; Cheng, C.; Xing, J.; Zhu, L.; Shen, H. Exploring the molecular mechanism of astragali radix-curcumae rhizoma against gastric intraepithelial neoplasia by network pharmacology and molecular docking. Evid. Based Complementary Altern. Med., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/8578615]
[41]
Yang, X.; Li, Y.; Qian, H. Study on the selection of the targets of esophageal carcinoma and interventions of ginsenosides based on network pharmacology and bioinformatics. Evid. Based Complementary Altern. Med., 2020, 2020, 4821056.
[42]
Liu, M.; Fan, G.; Zhang, D.; Zhu, M.; Zhang, H. Study on mechanism of Jiawei Chaiqin Wendan decoction in treatment of vestibular migraine based on network pharmacology and molecular docking technology. Evid. Based Complementary Altern. Med., 2021, 2021, 5528403.
[43]
Dong, R.; Huang, R.; Shi, X.; Xu, Z.; Mang, J. Exploration of the mechanism of luteolin against ischemic stroke based on network pharmacology, molecular docking and experimental verification. Bioengineered, 2021, 12(2), 12274-12293.
[http://dx.doi.org/10.1080/21655979.2021.2006966] [PMID: 34898370]
[44]
Jiang, D.; Wang, X.; Tian, L.; Zhang, Y. Network pharmacology strategy to investigate the pharmacological mechanism of siwu decoction on primary dysmenorrhea and molecular docking verification.Evid. Based Complementary Altern. Med., , 2021, 2021
[45]
Buchanan, K.D.; Torguson, R.; Rogers, T.; Xu, L.; Gai, J.; Ben-Dor, I.; Suddath, W.O.; Satler, L.F.; Waksman, R. In-stent restenosis of drug-eluting stents compared with a matched group of patients with de novo coronary artery stenosis. Am. J. Cardiol., 2018, 121(12), 1512-1518.
[http://dx.doi.org/10.1016/j.amjcard.2018.02.033] [PMID: 29627111]
[46]
Gori, T. Endothelial function: A short guide for the interventional cardiologist. Int. J. Mol. Sci., 2018, 19(12), 3838.
[http://dx.doi.org/10.3390/ijms19123838] [PMID: 30513819]
[47]
Piccolo, R.; Stefanini, G.G.; Franzone, A.; Spitzer, E.; Blöchlinger, S.; Heg, D.; Jüni, P.; Windecker, S. Safety and efficacy of resolute zotarolimus-eluting stents compared with everolimus-eluting stents: A meta-analysis. Circ. Cardiovasc. Interv., 2015, 8(4), e002223.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.114.002223] [PMID: 25858975]
[48]
Chekalina, N.; Burmak, Y.; Petrov, Y.; Borisova, Z.; Manusha, Y.; Kazakov, Y.; Kaidashev, I. Quercetin reduces the transcriptional activity of NF-kB in stable coronary artery disease. Indian Heart J., 2018, 70(5), 593-597.
[http://dx.doi.org/10.1016/j.ihj.2018.04.006] [PMID: 30392493]
[49]
Chen, L.; Pang, S.; Hao, C.; Xie, A.; Zhu, K.; He, Y.; Zhang, X.; Lu, W.; Ma, G.; Chen, Z. Prevention of neointimal formation after angioplasty using tetramethylpyrazine-coated balloon catheters in a rabbit iliac artery model. Cardiovasc. Diagn. Ther., 2019, 9(5), 472-480.
[http://dx.doi.org/10.21037/cdt.2019.09.04] [PMID: 31737518]
[50]
Bai, X.; Wang, W.X.; Fu, R.J.; Yue, S.J.; Gao, H.; Chen, Y.Y.; Tang, Y.P. Therapeutic potential of hydroxysafflor yellow a on cardio-cerebrovascular diseases. Front. Pharmacol., 2020, 11, 01265.
[http://dx.doi.org/10.3389/fphar.2020.01265] [PMID: 33117148]
[51]
Khandelwal, A.R.; Hebert, V.Y.; Kleinedler, J.J.; Rogers, L.K.; Ullevig, S.L.; Asmis, R.; Shi, R.; Dugas, T.R. Resveratrol and quercetin interact to inhibit neointimal hyperplasia in mice with a carotid injury. J. Nutr., 2012, 142(8), 1487-1494.
[http://dx.doi.org/10.3945/jn.112.162628] [PMID: 22718033]
[52]
Song, Y.; Long, L.; Zhang, N.; Liu, Y. Inhibitory effects of hydroxysafflor yellow A on PDGF-BB-induced proliferation and migration of vascular smooth muscle cells via mediating Akt signaling. Mol. Med. Rep., 2014, 10(3), 1555-1560.
[http://dx.doi.org/10.3892/mmr.2014.2336] [PMID: 24939805]
[53]
Chakraborty, R.; Chatterjee, P.; Dave, J. M.; Ostriker, A. C.; Greif, D. M.; Rzucidlo, E. M.; Martin, K. A. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS-vascular science,, 2021, 2, 79-94.
[54]
Worssam, M.D.; Jørgensen, H.F. Mechanisms of vascular smooth muscle cell investment and phenotypic diversification in vascular diseases. Biochem. Soc. Trans., 2021, 49(5), 2101-2111.
[http://dx.doi.org/10.1042/BST20210138] [PMID: 34495326]
[55]
Zee, R.Y.L.; Cook, N.R.; Kim, C.A.; Fernandez-Cruz, A.; Lindpaintner, K. TP53 haplotype-based analysis and incidence of post-angioplasty restenosis. Hum. Genet., 2004, 114(4), 386-390.
[http://dx.doi.org/10.1007/s00439-003-1080-8] [PMID: 14740296]
[56]
Tan, Z.; Li, J.; Zhang, X.; Yang, X.; Zhang, Z.; Yin, K.J.; Huang, H. P53 promotes retinoid acid-induced smooth muscle cell differentiation by targeting myocardin. Stem Cells Dev., 2018, 27(8), 534-544.
[http://dx.doi.org/10.1089/scd.2017.0244] [PMID: 29482449]
[57]
Tu, Q.M.; Wang, Z.W. Study on mechanism of c-Myc in restenosis after coronary artery bypass grafting. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(11), 2363-2367.
[PMID: 27338063]
[58]
Wang, J.; Liu, K.; Shen, L.; Wu, H.; Jing, H. Small interfering RNA to c-myc inhibits vein graft restenosis in a rat vein graft model. J. Surg. Res., 2011, 169(1), e85-e91.
[http://dx.doi.org/10.1016/j.jss.2011.03.060] [PMID: 21571310]
[59]
Murrell, M.; Khachigian, L.; Ward, M.R. The role of c-jun in PDTC-sensitive flow-dependent restenosis after angioplasty and stenting. Atherosclerosis, 2007, 194(2), 364-371.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.11.016] [PMID: 17194461]
[60]
Khachigian, L.M.; Fahmy, R.G.; Zhang, G.; Bobryshev, Y.V.; Kaniaros, A. c-Jun regulates vascular smooth muscle cell growth and neointima formation after arterial injury. Inhibition by a novel DNA enzyme targeting c-Jun. J. Biol. Chem., 2002, 277(25), 22985-22991.
[http://dx.doi.org/10.1074/jbc.M200977200] [PMID: 11891228]
[61]
Xue, Q.; Wang, X.; Deng, X.; Huang, Y.; Tian, W. CEMIP regulates the proliferation and migration of vascular smooth muscle cells in atherosclerosis through the WNT-beta-catenin signaling pathway. Biochem. Cell Biol., 2020, 98(2), 249-257.
[http://dx.doi.org/10.1139/bcb-2019-0249] [PMID: 32207314]
[62]
Pang, S.; Peng, L.; Zhang, J.; Wang, Y.; Jia, H.; Bi, L.; Chen, M. Bushenkangshuai tablet reduces atherosclerotic lesion by improving blood lipids metabolism and inhibiting inflammatory response via TLR4 and NF-kB signaling pathway. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/1758383] [PMID: 29619063]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy