Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Activity of Aurone and Indanone Derivatives

Author(s): Heng Wu, Haiqing Zhao, Tong Lu, Baoxing Xie, Chao Niu* and Haji Akber Aisa*

Volume 19, Issue 7, 2023

Published on: 22 February, 2023

Page: [686 - 703] Pages: 18

DOI: 10.2174/1573406419666230203105246

Price: $65

Abstract

Introduction: Based on bioactive group splicing, classical bioisosterism, and the rule of alkene insertion, forty-eight aurone, and indanone derivatives were designed and synthesized. They were evaluated for inhibitory activity against C. albicans, E. coli, and S. aureus. Among them, thirty compounds exhibited moderate to excellent antibacterial activity.

Methods: The maximum circle of inhibition was 18 mm (compounds B15, B16, and E7), and the minimum values of MIC and MBC were respectively 15.625 μM (compounds A5 and D2) and 62.5 μM (compounds A6, A8, and E7).

Results: The SAR showed that aurone and indanone derivatives could strongly inhibit the growth of Gram-positive bacteria. The introduction of electron-withdrawing groups or hydroxyl is beneficial to the activity. It was exciting that the 3-phenylallylbenzofuranone and 3-allylindanone skeletons with antimicrobial activity were first reported in this study. Compounds A5 and E7 were selected for molecular docking studies with targets MetRS (PBD: 7WPI) and PBP (PDB: 6C3K) to determine the binding interactions at the active site.

Conclusion: On this basis, the physicochemical and pharmacological properties of the compounds were predicted and analyzed. The influence of these properties on antimicrobial activity and their implications for subsequent work were discussed. The ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) predictions showed that most of the compounds had good pharmacokinetic profiles and high safety profiles.

Graphical Abstract

[1]
Olleik, H.; Yahiaoui, S.; Roulier, B.; Courvoisier-Dezord, E.; Perrier, J.; Pérès, B.; Hijazi, A.; Baydoun, E.; Raymond, J.; Boumendjel, A.; Maresca, M.; Haudecoeur, R. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. Eur. J. Med. Chem., 2019, 165, 133-141.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.022] [PMID: 30665143]
[2]
Shrestha, A.; Shrestha, R.; Lee, S.; Park, P.H.; Lee, E.S. 6‐hydroxy ‐benzofuran‐3‐( 2 H )‐ones as potential anti‐inflammatory agents: synthesis and inhibitory activity of lps ‐stimulated ros production in raw 264.7 macrophage. Bull. Korean Chem. Soc., 2021, 42(3), 372-375.
[http://dx.doi.org/10.1002/bkcs.12215]
[3]
Du, R.; Zhou, X.; Yang, D.; Zhou, H.; Lin, F.; Li, Q. (Z)-7,4′-Dimethoxy-6-hydroxy-aurone- 4-O-β-glucopyranoside alleviates cerebral ischemia-reperfusion injury in rats associating with the regulation of JAK1/STAT1 signaling pathway. Hum. Exp. Toxicol., 2020, 39(11), 1507-1517.
[http://dx.doi.org/10.1177/0960327120927439] [PMID: 32515232]
[4]
Pan, G.; Li, X.; Zhao, L.; Wu, M.; Su, C.; Li, X.; Zhang, Y.; Yu, P.; Teng, Y.; Lu, K. Synthesis and anti-oxidant activity evaluation of (±)-Anastatins A, B and their analogs. Eur. J. Med. Chem., 2017, 138, 577-589.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.054] [PMID: 28704760]
[5]
Lee, C.Y.; Chew, E.H.; Go, M.L. Functionalized aurones as inducers of NAD(P)H:quinone oxidoreductase 1 that activate AhR/XRE and Nrf2/ARE signaling pathways: Synthesis, evaluation and SAR. Eur. J. Med. Chem., 2010, 45(7), 2957-2971.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.023] [PMID: 20392544]
[6]
Alsayari, A.; Muhsinah, A.B.; Hassan, M.Z.; Ahsan, M.J.; Alshehri, J.A.; Begum, N. Aurone: A biologically attractive scaffold as anti-cancer agent. Eur. J. Med. Chem., 2019, 166, 417-431.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.078] [PMID: 30739824]
[7]
Takao, K.U.S.; Kamauchi, H.; Sugita, Y. Design, synthesis and evaluation of 2-(indolylmethylidene)-2,3-dihydro-1-benzofuran-3-one and 2-(indolyl)-4H-chromen-4-one derivatives as novel monoamine oxidases inhibitors. Bioorg. Chem., 2019, 87, 594-600.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.042] [PMID: 30933784]
[8]
Pereira, V.R.D.; da Silveira, L.S.; Mengarda, A.C.; Alves Júnior, I.J.; da Silva, O.O.Z.; Miguel, F.B.; Silva, M.P.; Almeida, A.C.; Torres, D.S.; Pinto, P.F.; Coimbra, E.S.; de Moraes, J.; Couri, M.R.C.; da Silva Filho, A.A. Antischistosomal properties of aurone derivatives against juvenile and adult worms of Schistosoma mansoni. Acta Trop., 2021, 213, 105741.
[http://dx.doi.org/10.1016/j.actatropica.2020.105741] [PMID: 33159900]
[9]
Meguellati, A.; Ahmed-Belkacem, A.; Nurisso, A.; Yi, W.; Brillet, R.; Berqouch, N.; Chavoutier, L.; Fortuné, A.; Pawlotsky, J.M.; Bou-mendjel, A.; Peuchmaur, M. New Pseudodimeric aurones as palm pocket inhibitors of Hepatitis C virus RNA-dependent RNA polymerase. Eur. J. Med. Chem., 2016, 115, 217-229.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.005] [PMID: 27017550]
[10]
Liew, K.F.; Lee, E.H.C.; Chan, K.L.; Lee, C.Y. Multi-targeting aurones with monoamine oxidase and amyloid-beta inhibitory activities: Structure-activity relationship and translating multi-potency to neuroprotection. Biomed. Pharmacother., 2019, 110, 118-128.
[http://dx.doi.org/10.1016/j.biopha.2018.11.054] [PMID: 30466001]
[11]
Li, Y.; Qiang, X.; Luo, L.; Yang, X.; Xiao, G.; Liu, Q.; Ai, J.; Tan, Z.; Deng, Y. Aurone Mannich base derivatives as promising multifunctional agents with acetylcholinesterase inhibition, anti-β-amyloid aggragation and neuroprotective properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 126, 762-775.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.009] [PMID: 27951485]
[12]
Wang, S.; Xu, L.; Lu, Y.T.; Liu, Y.F.; Han, B.; Liu, T.; Tang, J.; Li, J.; Wu, J.; Li, J.Y.; Yu, L.F.; Yang, F. Discovery of benzofuran-3(2 H )-one derivatives as novel DRAK2 inhibitors that protect islet β-cells from apoptosis. Eur. J. Med. Chem., 2017, 130, 195-208.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.048] [PMID: 28249207]
[13]
Haudecoeur, R.; Boumendjel, A. Recent advances in the medicinal chemistry of aurones. Curr. Med. Chem., 2012, 19(18), 2861-2875.
[http://dx.doi.org/10.2174/092986712800672085] [PMID: 22519399]
[14]
Boucherle, B.; Peuchmaur, M.; Boumendjel, A.; Haudecoeur, R. Occurrences, biosynthesis and properties of aurones as high-end evolutionary products. Phytochemistry, 2017, 142, 92-111.
[http://dx.doi.org/10.1016/j.phytochem.2017.06.017] [PMID: 28704688]
[15]
Hsueh, P.R. World Health Day 2011--antimicrobial resistance: no action today, no cure tomorrow. J. Formos. Med. Assoc., 2011, 110(4), 213-214.
[http://dx.doi.org/10.1016/S0929-6646(11)60032-6] [PMID: 21540002]
[16]
Hadj-esfandiari, N.; Navidpour, L.; Shadnia, H.; Amini, M.; Samadi, N.; Faramarzi, M.A.; Shafiee, A. Synthesis, antibacterial activity, and quantitative structure–activity relationships of new (Z)-2-(nitroimidazolylmethylene)-3()-benzofuranone derivatives. Bioorg. Med. Chem. Lett., 2007, 17(22), 6354-6363.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.062] [PMID: 17919903]
[17]
Bandgar, B.P.; Patil, S.A.; Korbad, B.L.; Biradar, S.C.; Nile, S.N.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of 2,2-bisaminomethylated aurone analogues as anti-inflammatory and antimicrobial agents. Eur. J. Med. Chem., 2010, 45(7), 3223-3227.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.045] [PMID: 20430485]
[18]
Sui, G.; Li, T.; Zhang, B.; Wang, R.; Hao, H.; Zhou, W. Recent advances on synthesis and biological activities of aurones. Bioorg. Med. Chem., 2021, 29, 115895.
[http://dx.doi.org/10.1016/j.bmc.2020.115895] [PMID: 33271454]
[19]
Campaniço, A.; Carrasco, M.P.; Njoroge, M.; Seldon, R.; Chibale, K.; Perdigão, J.; Portugal, I.; Warner, D.F.; Moreira, R.; Lopes, F. Azaaurones as potent antimycobacterial agents active against MDR‐ and XDR‐TB. ChemMedChem, 2019, 14(16), 1537-1546.
[http://dx.doi.org/10.1002/cmdc.201900289] [PMID: 31294529]
[20]
Sutton, C.L.; Taylor, Z.E.; Farone, M.B.; Handy, S.T. Antifungal activity of substituted aurones. Bioorg. Med. Chem. Lett., 2017, 27(4), 901-903.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.012] [PMID: 28094180]
[21]
Pires, J.R.; Saito, C.; Gomes, S.L.; Giesbrecht, A.M.; Amaral, A.T. Investigation of 5-nitrofuran derivatives: synthesis, antibacterial activity, and quantitative structure-activity relationships. J. Med. Chem., 2001, 44(22), 3673-3681.
[http://dx.doi.org/10.1021/jm0101693] [PMID: 11606132]
[22]
Patel, V.M.; Bhatt, N.D.; Bhatt, P.V.; Joshi, H.D. Novel derivatives of 5,6-dimethoxy-1-indanone coupled with substituted pyridine as potential antimicrobial agents. Arab. J. Chem., 2018, 11(1), 137-142.
[http://dx.doi.org/10.1016/j.arabjc.2014.07.014]
[23]
Patil, S.A.; Patil, R.; Patil, S.A. Recent developments in biological activities of indanones. Eur. J. Med. Chem., 2017, 138, 182-198.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.032] [PMID: 28667874]
[24]
Xie, Y.; Kril, L.M.; Yu, T.; Zhang, W.; Frasinyuk, M.S.; Bondarenko, S.P.; Kondratyuk, K.M.; Hausman, E.; Martin, Z.M.; Wyrebek, P.P.; Liu, X.; Deaciuc, A.; Dwoskin, L.P.; Chen, J.; Zhu, H.; Zhan, C.G.; Sviripa, V.M.; Blackburn, J.; Watt, D.S.; Liu, C. Semisynthetic aurones inhibit tubulin polymerization at the colchicine-binding site and repress PC-3 tumor xenografts in nude mice and myc-induced T-ALL in zebrafish. Sci. Rep., 2019, 9(1), 6439.
[http://dx.doi.org/10.1038/s41598-019-42917-0] [PMID: 31015569]
[25]
Yi, J.; Cai, Z.; Qiu, H.; Lu, F.; Luo, Z.; Chen, B.; Gu, Q.; Xu, J.; Zhou, H. Fragment screening and structural analyses highlight the ATP-assisted ligand binding for inhibitor discovery against type 1 methionyl-tRNA synthetase. Nucleic Acids Res., 2022, 50(8), 4755-4768.
[http://dx.doi.org/10.1093/nar/gkac285] [PMID: 35474479]
[26]
Alexander, J.A.N.; Chatterjee, S.S.; Hamilton, S.M.; Eltis, L.D.; Chambers, H.F.; Strynadka, N.C.J. Structural and kinetic analyses of penicillin-binding protein 4 (PBP4)-mediated antibiotic resistance in Staphylococcus aureus. J. Biol. Chem., 2018, 293(51), 19854-19865.
[http://dx.doi.org/10.1074/jbc.RA118.004952] [PMID: 30366985]
[27]
Zoete, V.; Cuendet, M.A.; Grosdidier, A.; Michielin, O. SwissParam: A fast force field generation tool for small organic molecules. J. Comput. Chem., 2011, 32(11), 2359-2368.
[http://dx.doi.org/10.1002/jcc.21816] [PMID: 21541964]
[28]
Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33(5), 580-592.
[http://dx.doi.org/10.1002/jcc.22885] [PMID: 22162017]
[29]
Lu, T. Simple, reliable, and universal metrics of molecular planarity. J. Mol. Model., 2021, 27(9), 263.
[http://dx.doi.org/10.1007/s00894-021-04884-0] [PMID: 34435265]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy