Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Nucleic Acid Nanomaterials-based Therapy for Osteoarthritis: Progress and Prospects

Author(s): Yangxue Yao, Maobin Yang* and Sirong Shi*

Volume 24, Issue 5, 2023

Published on: 15 February, 2023

Page: [338 - 352] Pages: 15

DOI: 10.2174/1389200224666230202155414

Price: $65

Abstract

Osteoarthritis (OA) involves lesions of the entire joint and remains one of the health problems plaguing the world. The pathological mechanism of OA is complex and involves multiple signaling pathways. Over 300 million people worldwide are living with OA, which imposes a huge burden on society. Nucleic acid nanomaterials are of interest to the biomedical field due to their small dimension, ideal biocompatibility, and structure editability. Various nucleic acids have been used as therapeutic drugs to regulate the pathogenesis and development of OA. Among them, some can enter the cell by themselves and others with the aid of vectors. Apart from high therapeutic efficiency, nucleic acid nanomaterials also act as carriers for transporting drugs. This paper reviews recent advances in nucleic acid nanomaterials in OA therapy, suggesting that nucleic acid nanomaterials-based therapy has good prospects for development.

Graphical Abstract

[1]
Hawker, G.A.; Stewart, L.; French, M.R.; Cibere, J.; Jordan, J.M.; March, L.; Suarez-Almazor, M.; Gooberman-Hill, R. Understanding the pain experience in hip and knee osteoarthritis-an OARSI/OMERACT initiative. Osteoarthritis Cartilage, 2008, 16(4), 415-422.
[http://dx.doi.org/10.1016/j.joca.2007.12.017] [PMID: 18296075]
[2]
Abramoff, B.; Caldera, F.E. Osteoarthritis. Med. Clin. North Am., 2020, 104(2), 293-311.
[http://dx.doi.org/10.1016/j.mcna.2019.10.007] [PMID: 32035570]
[3]
Vos, T.; Barber, R.M.; Bell, B.; Bertozzi-Villa, A.; Biryukov, S.; Bolliger, I.; Charlson, F.; Davis, A.; Degenhardt, L.; Dicker, D.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 388(10053), 1545-1602.
[http://dx.doi.org/10.1016/S0140-6736(16)31678-6]
[4]
Hunter, D.J.; Schofield, D.; Callander, E. The individual and socioeconomic impact of osteoarthritis. Nat. Rev. Rheumatol., 2014, 10(7), 437-441.
[http://dx.doi.org/10.1038/nrrheum.2014.44] [PMID: 24662640]
[5]
Schofield, D.J.; Shrestha, R.N.; Percival, R.; Passey, M.E.; Callander, E.J.; Kelly, S.J. The personal and national costs of lost labour force participation due to arthritis: An economic study. BMC Public Health, 2013, 13(1), 188.
[http://dx.doi.org/10.1186/1471-2458-13-188] [PMID: 23452565]
[6]
Schofield, D.; Cunich, M.; Shrestha, R.N.; Tanton, R.; Veerman, L.; Kelly, S.; Passey, M.E. The long-term economic impacts of arthritis through lost productive life years: results from an Australian microsimulation model. BMC Public Health, 2018, 18(1), 654.
[http://dx.doi.org/10.1186/s12889-018-5509-3] [PMID: 29793478]
[7]
Prieto-Alhambra, D.; Judge, A.; Javaid, M.K.; Cooper, C.; Diez-Perez, A.; Arden, N.K. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann. Rheum. Dis., 2014, 73(9), 1659-1664.
[http://dx.doi.org/10.1136/annrheumdis-2013-203355] [PMID: 23744977]
[8]
Bierma-Zeinstra, S.M.A.; Waarsing, J.H. The role of atherosclerosis in osteoarthritis. Best Pract. Res. Clin. Rheumatol., 2017, 31(5), 613-633.
[http://dx.doi.org/10.1016/j.berh.2018.08.006] [PMID: 30509409]
[9]
Finnilä, M.A.J.; Thevenot, J.; Aho, O.M.; Tiitu, V.; Rautiainen, J.; Kauppinen, S.; Nieminen, M.T.; Pritzker, K.; Valkealahti, M.; Lehenkari, P.; Saarakkala, S. Association between subchondral bone structure and osteoarthritis histopathological grade. J. Orthop. Res., 2017, 35(4), 785-792.
[http://dx.doi.org/10.1002/jor.23312] [PMID: 27227565]
[10]
Wang, H.; Bai, J.; He, B.; Hu, X.; Liu, D. Osteoarthritis and the risk of cardiovascular disease: A meta-analysis of observational studies. Sci. Rep., 2016, 6(1), 39672.
[http://dx.doi.org/10.1038/srep39672] [PMID: 28004796]
[11]
Veronese, N.; Cereda, E.; Maggi, S.; Luchini, C.; Solmi, M.; Smith, T.; Denkinger, M.; Hurley, M.; Thompson, T.; Manzato, E.; Sergi, G.; Stubbs, B. Osteoarthritis and mortality: A prospective cohort study and systematic review with meta-analysis. Semin. Arthritis Rheum., 2016, 46(2), 160-167.
[http://dx.doi.org/10.1016/j.semarthrit.2016.04.002] [PMID: 27179749]
[12]
Makris, E.A.; Hadidi, P.; Athanasiou, K.A. The knee meniscus: Structure–function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials, 2011, 32(30), 7411-7431.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.037] [PMID: 21764438]
[13]
Brandt, K.D.; Radin, E.L.; Dieppe, P.A.; Putte, L.J.A.o.t.R.D. Yet more evidence that osteoarthritis is not a cartilage disease. Ann. Rheum. Dis., 2006, 65(10), 1261-1264.
[http://dx.doi.org/10.1136/ard.2006.058347]
[14]
Fu, K.; Robbins, S.R.; McDougall, J.J. Osteoarthritis: The genesis of pain. Rheumatology, 2018, 57(S4), iv43-iv50.
[http://dx.doi.org/10.1093/rheumatology/kex419] [PMID: 29267879]
[15]
Dougados, M. Symptomatic slow-acting drugs for osteoarthritis: What are the facts? Joint Bone Spine, 2006, 73(6), 606-609.
[http://dx.doi.org/10.1016/j.jbspin.2006.09.008] [PMID: 17126058]
[16]
Michael, J.W.P.; Schlüter-Brust, K.U.; Eysel, P. The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee. Dtsch. Arztebl. Int., 2010, 107(9), 152-162.
[http://dx.doi.org/10.3238/arztebl.2010.0152] [PMID: 20305774]
[17]
Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage, 2013, 21(1), 16-21.
[http://dx.doi.org/10.1016/j.joca.2012.11.012] [PMID: 23194896]
[18]
Goldring, M.B. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther. Adv. Musculoskelet. Dis., 2012, 4(4), 269-285.
[http://dx.doi.org/10.1177/1759720X12448454] [PMID: 22859926]
[19]
Sandell, L.J. Etiology of osteoarthritis: genetics and synovial joint development. Nat. Rev. Rheumatol., 2012, 8(2), 77-89.
[http://dx.doi.org/10.1038/nrrheum.2011.199] [PMID: 22231237]
[20]
van Meurs, J.B.J. Osteoarthritis year in review 2016: Genetics, genomics and epigenetics. Osteoarthritis Cartilage, 2017, 25(2), 181-189.
[http://dx.doi.org/10.1016/j.joca.2016.11.011] [PMID: 28100422]
[21]
Neogi, T.; Zhang, Y. Epidemiology of osteoarthritis. Rheum. Dis. Clin. North Am., 2013, 39(1), 1-19.
[http://dx.doi.org/10.1016/j.rdc.2012.10.004] [PMID: 23312408]
[22]
Lotz, M.; Loeser, R.F. Effects of aging on articular cartilage homeostasis. Bone, 2012, 51(2), 241-248.
[http://dx.doi.org/10.1016/j.bone.2012.03.023] [PMID: 22487298]
[23]
Guilak, F. Biomechanical factors in osteoarthritis. Best Pract. Res. Clin. Rheumatol., 2011, 25(6), 815-823.
[http://dx.doi.org/10.1016/j.berh.2011.11.013] [PMID: 22265263]
[24]
Sacitharan, P.K. Ageing and osteoarthritis. Subcell. Biochem., 2019, 91, 123-159.
[http://dx.doi.org/10.1007/978-981-13-3681-2_6] [PMID: 30888652]
[25]
Felson, D.T.; Zhang, Y.; Hannan, M.T.; Naimark, A.; Weissman, B.N.; Aliabadi, P.; Levy, D. The incidence and natural history of knee osteoarthritis in the elderly, the framingham osteoarthritis study. Arthritis Rheum., 1995, 38(10), 1500-1505.
[http://dx.doi.org/10.1002/art.1780381017] [PMID: 7575700]
[26]
Brown, T.D.; Johnston, R.C.; Saltzman, C.L.; Marsh, J.L.; Buckwalter, J.A. Posttraumatic osteoarthritis: A first estimate of incidence, prevalence, and burden of disease. J. Orthop. Trauma, 2006, 20(10), 739-744.
[http://dx.doi.org/10.1097/01.bot.0000246468.80635.ef]
[27]
Szwedowski, D.; Szczepanek, J.; Paczesny, Ł.; Zabrzyński, J.; Gagat, M.; Mobasheri, A.; Jeka, S. The effect of platelet-rich plasma on the intra-articular microenvironment in knee osteoarthritis. Int. J. Mol. Sci., 2021, 22(11), 5492.
[http://dx.doi.org/10.3390/ijms22115492] [PMID: 34071037]
[28]
Latourte, A.; Kloppenburg, M.; Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol., 2020, 16(12), 673-688.
[http://dx.doi.org/10.1038/s41584-020-00518-6] [PMID: 33122845]
[29]
Bennell, K.L.; Hunter, D.J.; Hinman, R.S. Management of osteoarthritis of the knee. BMJ, 2012, 345(jul30 2), e4934.
[http://dx.doi.org/10.1136/bmj.e4934] [PMID: 22846469]
[30]
Raynauld, J.P.; Buckland-Wright, C.; Ward, R.; Choquette, D.; Haraoui, B.; Martel-Pelletier, J.; Uthman, I.; Khy, V.; Tremblay, J.L.; Bertrand, C.; Pelletier, J.P. Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee: A randomized, double-blind, placebo-controlled trial. Arthritis Rheum., 2003, 48(2), 370-377.
[http://dx.doi.org/10.1002/art.10777] [PMID: 12571845]
[31]
Dai, L.; Zhang, X.; Hu, X.; Liu, Q.; Man, Z.; Huang, H.; Meng, Q.; Zhou, C.; Ao, Y. Silencing of miR-101 prevents cartilage degradation by regulating extracellular matrix–related genes in a rat model of osteoarthritis. Mol. Ther., 2015, 23(8), 1331-1340.
[http://dx.doi.org/10.1038/mt.2015.61] [PMID: 25921548]
[32]
Wang, L.; Liu, X.; Zhang, Q.; Zhang, C.; Liu, Y.; Tu, K.; Tu, J. Selection of DNA aptamers that bind to four organophosphorus pesticides. Biotechnol. Lett., 2012, 34(5), 869-874.
[http://dx.doi.org/10.1007/s10529-012-0850-6] [PMID: 22261866]
[33]
Joyce, F. RNA cleavage by the 10-23 DNA Enzyme. Methods Enzymol., 2001, 341, 503-517.
[34]
Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082), 297-302.
[http://dx.doi.org/10.1038/nature04586] [PMID: 16541064]
[35]
Hu, Y.; Ren, J.; Lu, C.H.; Willner, I. Programmed pH-driven reversible association and dissociation of interconnected circular dna dimer nanostructures. Nano Lett., 2016, 16(7), 4590-4594.
[http://dx.doi.org/10.1021/acs.nanolett.6b01891] [PMID: 27225955]
[36]
Chen, R.; Wen, D.; Fu, W.; Xing, L.; Ma, L.; Liu, Y.; Li, H.; You, C.; Lin, Y. Treatment effect of DNA framework nucleic acids on diffuse microvascular endothelial cell injury after subarachnoid hemorrhage. Cell Prolif., 2022, 55(4)e13206
[http://dx.doi.org/10.1111/cpr.13206] [PMID: 35187748]
[37]
Xu, J.; Wei, C. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation. Biosens. Bioelectron., 2017, 87, 422-427.
[http://dx.doi.org/10.1016/j.bios.2016.08.079] [PMID: 27589406]
[38]
Zhou, Z.; Du, Y.; Dong, S. Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor. Anal. Chem., 2011, 83(13), 5122-5127.
[http://dx.doi.org/10.1021/ac200120g] [PMID: 21612269]
[39]
Wang, H.; Yang, R.; Yang, L.; Tan, W. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano, 2009, 3(9), 2451-2460.
[http://dx.doi.org/10.1021/nn9006303] [PMID: 19658387]
[40]
Scholz, C.; Wagner, E. Therapeutic plasmid DNA versus siRNA delivery: Common and different tasks for synthetic carriers. J. Control. Release, 2012, 161(2), 554-565.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.014] [PMID: 22123560]
[41]
Smith, D.M.; Schüller, V.; Forthmann, C.; Schreiber, R.; Tinnefeld, P.; Liedl, T. A structurally variable hinged tetrahedron framework from DNA origami. J. Nucleic Acids, 2011, 2011, 1-9.
[http://dx.doi.org/10.4061/2011/360954] [PMID: 21941629]
[42]
Zhang, T.; Cui, W.; Tian, T.; Shi, S.; Lin, Y. Progress in biomedical applications of tetrahedral framework nucleic acid-based functional systems. ACS Appl. Mater. Interfaces, 2020, 12(42), 47115-47126.
[http://dx.doi.org/10.1021/acsami.0c13806] [PMID: 32975109]
[43]
Zhang, B.; Tian, T.; Xiao, D.; Gao, S.; Cai, X.; Lin, Y. Facilitating in situ tumor imaging with a tetrahedral DNA framework-enhanced hybridization chain reaction probe. Adv. Funct. Mater., 2022, 32(16)2109728
[http://dx.doi.org/10.1002/adfm.202109728]
[44]
Shi, S.; Tian, T.; Li, Y.; Xiao, D.; Zhang, T.; Gong, P.; Lin, Y. Tetrahedral framework nucleic acid inhibits chondrocyte apoptosis and oxidative stress through activation of autophagy. ACS Appl. Mater. Interfaces, 2020, 12(51), 56782-56791.
[http://dx.doi.org/10.1021/acsami.0c17307] [PMID: 33289541]
[45]
Shi, S.; Lin, S.; Shao, X.; Li, Q.; Tao, Z.; Lin, Y. Modulation of chondrocyte motility by tetrahedral DNA nanostructures. Cell Prolif., 2017, 50(5)e12368
[http://dx.doi.org/10.1111/cpr.12368] [PMID: 28792637]
[46]
Endisha, H.; Datta, P.; Sharma, A.; Nakamura, S.; Rossomacha, E.; Younan, C.; Ali, S.A.; Tavallaee, G.; Lively, S.; Potla, P.; Shestopaloff, K.; Rockel, J.S.; Krawetz, R.; Mahomed, N.N.; Jurisica, I.; Gandhi, R.; Kapoor, M. MicroRNA-34a-5p promotes joint destruction during osteoarthritis. Arthritis Rheumatol., 2021, 73(3), 426-439.
[http://dx.doi.org/10.1002/art.41552] [PMID: 33034147]
[47]
Cai, Y.; López-Ruiz, E.; Wengel, J.; Creemers, L.B.; Howard, K.A. A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and gapmer oligonucleotide release for modulation of gene expression in osteoarthritis. J. Control. Release, 2017, 253, 153-159.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.004] [PMID: 28274742]
[48]
Zhou, M.; Gao, S.; Zhang, X.; Zhang, T.; Cai, X.J.B.M. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions. Bioact. Mater., 2021, 6(6), 1676-1688.
[http://dx.doi.org/10.1016/j.bioactmat.2020.11.018]
[49]
Wang, Y.; Li, Y.; Gao, S.; Yu, X.; Chen, Y.; Lin, Y. Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice. Nano Lett., 2022, 22(4), 1759-1768.
[http://dx.doi.org/10.1021/acs.nanolett.1c05003] [PMID: 35138113]
[50]
Zhu, J.; Yang, Y.; Ma, W.; Wang, Y.; Chen, L.; Xiong, H.; Yin, C.; He, Z.; Fu, W.; Xu, R.; Lin, Y. Antiepilepticus effects of tetrahedral framework nucleic acid via inhibition of gliosis-induced downregulation of glutamine synthetase and increased ampar internalization in the postsynaptic membrane. Nano Lett., 2022, 22(6), 2381-2390.
[http://dx.doi.org/10.1021/acs.nanolett.2c00025] [PMID: 35266400]
[51]
Zhou, M.; Zhang, T.; Zhang, B.; Zhang, X.; Gao, S.; Zhang, T.; Li, S.; Cai, X.; Lin, Y. A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting toll-like receptor 2 signaling pathway in acute ischemic stroke. ACS Nano, 2022, 16(1), 1456-1470.
[http://dx.doi.org/10.1021/acsnano.1c09626] [PMID: 34967217]
[52]
Chen, X.; Cui, W.; Liu, Z.; Ma, W.; Yang, X.; Tian, T.; Yang, Y.; Xie, Y.; Liu, Y.; Lin, Y. Positive neuroplastic effect of DNA framework nucleic acids on neuropsychiatric diseases. ACS Materials Letters, 2022, 4(4), 665-674.
[http://dx.doi.org/10.1021/acsmaterialslett.2c00021]
[53]
Ma, W.; Yang, Y.; Zhu, J.; Jia, W.; Zhang, T.; Liu, Z.; Chen, X.; Lin, Y. Biomimetic nanoerythrosome-coated aptamer–dna tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer. Adv. Mater., 2022, 34(46)2109609
[http://dx.doi.org/10.1002/adma.202109609] [PMID: 35064993]
[54]
Zhang, T.; Tian, T.; Lin, Y. Functionalizing framework nucleic-acid-based nanostructures for biomedical application. Adv. Mater., 2021, 34(46)e2107820
[http://dx.doi.org/10.1002/adma.202107820]
[55]
Li, J.; Mingxin, L.; Chen, X.; Mi, Z.; Wenzhao, W.; Jiajie, L.; Weitong, C.; Geru, Z.; Kefeng, W.; Lei, L.; Yunfeng, L. Repair of infected bone defect with clindamycin-tetrahedral dna nanostructure. Chem. Eng. J., 2022, 435(1)134855
[http://dx.doi.org/10.1016/j.cej.2022.134855]
[56]
Zhao, D.; Xiao, D.; Liu, M.; Li, J.; Peng, S.; He, Q.; Sun, Y.; Xiao, J.; Lin, Y. Tetrahedral framework nucleic acid carrying angiogenic peptide prevents bisphosphonate-related osteonecrosis of the jaw by promoting angiogenesis. Int. J. Oral Sci., 2022, 14(1), 23.
[http://dx.doi.org/10.1038/s41368-022-00171-7] [PMID: 35477924]
[57]
Jiang, Y.; Li, S.; Zhang, T.; Zhang, M.; Chen, Y.; Wu, Y.; Liu, Y.; Liu, Z.; Lin, Y. Tetrahedral framework nucleic acids inhibit skin fibrosis via the pyroptosis pathway. ACS Appl. Mater. Interfaces, 2022, 14(13), 15069-15079.
[http://dx.doi.org/10.1021/acsami.2c02877] [PMID: 35319864]
[58]
Chen, Y.; Shi, S.; Li, B.; Lan, T.; Yuan, K.; Yuan, J.; Zhou, Y.; Song, J.; Lv, T.; Shi, Y.; Xiang, B.; Tian, T.; Zhang, T.; Yang, J.; Lin, Y. Therapeutic effects of self-assembled tetrahedral framework nucleic acids on liver regeneration in acute liver failure. ACS Appl. Mater. Interfaces, 2022, 14(11), 13136-13146.
[http://dx.doi.org/10.1021/acsami.2c02523] [PMID: 35285610]
[59]
Liang, L.; Li, J.; Li, Q.; Huang, Q.; Shi, J.; Yan, H.; Fan, C. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed., 2014, 53(30), 7745-7750.
[http://dx.doi.org/10.1002/anie.201403236] [PMID: 24827912]
[60]
Ma, W.; Shao, X.; Zhao, D.; Li, Q.; Liu, M.; Zhou, T.; Xie, X.; Mao, C.; Zhang, Y.; Lin, Y. Self-assembled tetrahedral dna nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl. Mater. Interfaces, 2018, 10(9), 7892-7900.
[http://dx.doi.org/10.1021/acsami.8b00833] [PMID: 29424522]
[61]
Shao, X.; Lin, S.; Peng, Q.; Shi, S.; Wei, X.; Zhang, T.; Lin, Y.; Tetrahedral, D.N.A. Tetrahedral DNA nanostructure: A potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small, 2017, 13(12)1602770
[http://dx.doi.org/10.1002/smll.201602770] [PMID: 28112870]
[62]
Zhou, M.; Liu, N.; Zhang, Q.; Tian, T.; Ma, Q.; Zhang, T.; Cai, X. Effect of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif., 2019, 52(3)e12566
[http://dx.doi.org/10.1111/cpr.12566] [PMID: 30883969]
[63]
Liu, N.; Zhang, X.; Li, N.; Zhou, M.; Zhang, T.; Li, S.; Cai, X.; Ji, P.; Lin, Y. Tetrahedral framework nucleic acids promote corneal epithelial wound healing in vitro and in vivo. Small, 2019, 15(31)1901907
[http://dx.doi.org/10.1002/smll.201901907] [PMID: 31192537]
[64]
Qin, X.; Li, N.; Zhang, M.; Lin, S.; Zhu, J.; Xiao, D.; Cui, W.; Zhang, T.; Lin, Y.; Cai, X. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. Nanoscale, 2019, 11(43), 20667-20675.
[http://dx.doi.org/10.1039/C9NR07171G] [PMID: 31642452]
[65]
Zhang, Q.; Lin, S.; Wang, L.; Peng, S.; Tian, T.; Li, S.; Xiao, J.; Lin, Y. Tetrahedral framework nucleic acids act as antioxidants in acute kidney injury treatment. Chem. Eng. J., 2021, 413127426
[http://dx.doi.org/10.1016/j.cej.2020.127426]
[66]
Zhao, D.; Cui, W.; Liu, M.; Li, J.; Sun, Y.; Shi, S.; Lin, S.; Lin, Y. Tetrahedral framework nucleic acid promotes the treatment of bisphosphonate-related osteonecrosis of the jaws by promoting angiogenesis and m2 polarization. ACS Appl. Mater. Interfaces, 2020, 12(40), 44508-44522.
[http://dx.doi.org/10.1021/acsami.0c13839] [PMID: 32924430]
[67]
Zhang, M.; Zhang, X.; Tian, T.; Zhang, Q.; Wen, Y.; Zhu, J.; Xiao, D.; Cui, W.; Lin, Y. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater., 2021, 8(8), 368-380.
[PMID: 34541407]
[68]
Shi, S.; Lin, S.; Li, Y.; Zhang, T.; Shao, X.; Tian, T.; Zhou, T.; Li, Q.; Lin, Y. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chem. Commun., 2018, 54(11), 1327-1330.
[http://dx.doi.org/10.1039/C7CC09397G] [PMID: 29349457]
[69]
Sirong, S.; Yang, C.; Taoran, T.; Songhang, L.; Shiyu, L.; Yuxin, Z.; Xiaoru, S.; Tao, Z.; Yunfeng, L.; Xiaoxiao, C. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res., 2020, 8(1), 6.
[http://dx.doi.org/10.1038/s41413-019-0077-4] [PMID: 32047705]
[70]
Tian, T.; Zhang, C.; Li, J.; Liu, Y.; Wang, Y.; Ke, X.; Fan, C.; Lei, H.; Hao, P.; Li, Q. Proteomic exploration of endocytosis of framework nucleic acids. Small, 2021, 17(23)2100837
[http://dx.doi.org/10.1002/smll.202100837] [PMID: 33893713]
[71]
Yao, Y.; Wen, Y.; Li, Y.; Zhu, J.; Tian, T.; Zhang, Q.; Xiao, D.; Gao, Y.; Lin, Y.; Wei, W.; Cai, X. Tetrahedral framework nucleic acids facilitate neurorestoration of facial nerves by activating the NGF/PI3K/AKT pathway. Nanoscale, 2021, 13(37), 15598-15610.
[http://dx.doi.org/10.1039/D1NR04619E] [PMID: 34529749]
[72]
Zhang, Q.; Lin, S.; Shi, S.; Zhang, T.; Ma, Q.; Tian, T.; Zhou, T.; Cai, X.; Lin, Y. Anti-inflammatory and antioxidative effects of tetrahedral dna nanostructures via the modulation of macrophage responses. ACS Appl. Mater. Interfaces, 2018, 10(4), 3421-3430.
[http://dx.doi.org/10.1021/acsami.7b17928] [PMID: 29300456]
[73]
Tian, T.; Zhang, T.; Zhou, T.; Lin, S.; Shi, S.; Lin, Y. Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle. Nanoscale, 2017, 9(46), 18402-18412.
[http://dx.doi.org/10.1039/C7NR07130B] [PMID: 29147695]
[74]
Shi, S.; Li, Y.; Zhang, T.; Xiao, D.; Tian, T.; Chen, T.; Zhang, Y.; Li, X.; Lin, Y. Biological effect of differently sized tetrahedral framework nucleic acids: Endocytosis, proliferation, migration, and biodistribution. ACS Appl. Mater. Interfaces, 2021, 13(48), 57067-57074.
[http://dx.doi.org/10.1021/acsami.1c20657] [PMID: 34802237]
[75]
Koller, E.; Vincent, T.M.; Chappell, A.; De, S.; Manoharan, M.; Bennett, C.F. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res., 2011, 39(11), 4795-4807.
[http://dx.doi.org/10.1093/nar/gkr089] [PMID: 21345934]
[76]
Butler, M.; Stecker, K.; Bennett, C.F. Cellular distribution of phosphorothioate oligodeoxynucleotides in normal rodent tissues. Lab. Invest., 1997, 77(4), 379-388.
[PMID: 9354772]
[77]
Wahane, A.; Waghmode, A.; Kapphahn, A.; Dhuri, K.; Gupta, A.; Bahal, R. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules, 2020, 25(12), 2866.
[http://dx.doi.org/10.3390/molecules25122866] [PMID: 32580326]
[78]
Song, J.; Kim, D.; Chun, C.H.; Jin, E.J.J.C.C. Signaling, MicroRNA-9 regulates survival of chondroblasts and cartilage integrity by targeting protogenin. Cell Commun. Signal., 2013, 11(1), 66.
[http://dx.doi.org/10.1186/1478-811X-11-66] [PMID: 24007463]
[79]
Vester, B.; Wengel, J. LNA (locked nucleic acid): High-affinity targeting of complementary RNA and DNA. Biochemistry, 2004, 43(42), 13233-13241.
[http://dx.doi.org/10.1021/bi0485732] [PMID: 15491130]
[80]
Nakamura, A.; Rampersaud, Y.R.; Nakamura, S.; Sharma, A.; Zeng, F.; Rossomacha, E.; Ali, S.A.; Krawetz, R.; Haroon, N.; Perruccio, A.V. MicroRNA-181a-5p antisense oligonucleotides attenuate osteoarthritis in facet and knee joints. BMJ, 2018, 78(1), 111-121.
[http://dx.doi.org/10.1136/annrheumdis-2018-213629]
[81]
Baek, D.; Lee, K.M.; Park, K.W.; Suh, J.W.; Choi, S.M.; Park, K.H.; Lee, J.W.; Kim, S.H. Inhibition of miR-449a promotes cartilage regeneration and prevents progression of osteoarthritis in in vivo rat models. Mol. Ther. Nucleic Acids, 2018, 13, 322-333.
[http://dx.doi.org/10.1016/j.omtn.2018.09.015] [PMID: 30326428]
[82]
Zrioual, S.; Toh, M.L.; Tournadre, A.; Zhou, Y.; Cazalis, M.A.; Pachot, A.; Miossec, V.; Miossec, P.J.J.O.I. IL-17RA and IL-17RC receptors are essential for il-17a-induced elr+cxc chemokine expression in synoviocytes and are overexpressed in rheumatoid blood. J. Immunol., 2008, 180(1), 655-663.
[http://dx.doi.org/10.4049/jimmunol.180.1.655] [PMID: 18097068]
[83]
Maitra, A.; Fang, S.; Hanel, W.; Mossman, K.; Tocker, J.; Swart, D.; Gaffen, S.L. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc. Natl. Acad. Sci. USA, 2007, 104(18), 7506-7511.
[http://dx.doi.org/10.1073/pnas.0611589104]
[84]
Chen, L.; Li, D.Q.; Zhong, J.; Wu, X.L.; Chen, Q.; Peng, H.; Liu, S.Q. IL-17RA aptamer-mediated repression of IL-6 inhibits synovium inflammation in a murine model of osteoarthritis. Osteoarthritis Cartilage, 2011, 19(6), 711-718.
[http://dx.doi.org/10.1016/j.joca.2011.01.018] [PMID: 21310253]
[85]
McMahon, J.M.; Conroy, S.; Lyons, M.; Greiser, U.; O’shea, C.; Strappe, P.; Howard, L.; Murphy, M.; Barry, F.; O’Brien, T. Gene transfer into rat mesenchymal stem cells: a comparative study of viral and nonviral vectors. Stem Cells Dev., 2006, 15(1), 87-96.
[http://dx.doi.org/10.1089/scd.2006.15.87] [PMID: 16522166]
[86]
Cheng, M.; Wang, Y. Downregulation of HMGB1 by miR-103a-3p promotes cell proliferation, alleviates apoptosis and inflammation in a cell model of osteoarthritis. Iran. J. Biotechnol., 2020, 18(1)e2255
[PMID: 32884953]
[87]
Wu, Y.H.; Liu, W.; Zhang, L.; Liu, X.Y.; Wang, Y.; Xue, B.; Liu, B.; Duan, R.; Zhang, B.; Ji, Y. Retracted: Effects of microRNA-24 targeting C-myc on apoptosis, proliferation, and cytokine expressions in chondrocytes of rats with osteoarthritis via MAPK signaling pathway. J. Cell. Biochem., 2018, 119(10), 7944-7958.
[http://dx.doi.org/10.1002/jcb.26514] [PMID: 29143973]
[88]
Zhong, J.H.; Li, J.; Liu, C.F.; Liu, N.; Bian, R.X.; Zhao, S.M.; Yan, S.Y.; Zhang, Y.B. Effects of microRNA-146a on the proliferation and apoptosis of human osteoarthritis chondrocytes by targeting TRAF6 through the NF-κB signalling pathway. Biosci. Rep., 2017, 37(2)BSR20160578
[http://dx.doi.org/10.1042/BSR20160578] [PMID: 28314786]
[89]
Zhao, Z.; Dai, X.S.; Wang, Z.Y.; Bao, Z.Q.; Guan, J.Z. MicroRNA-26a reduces synovial inflammation and cartilage injury in osteoarthritis of knee joints through impairing the NF-κB signaling pathway. Biosci. Rep., 2019, 39(4)BSR20182025
[http://dx.doi.org/10.1042/BSR20182025] [PMID: 30872407]
[90]
Tian, Y.; Guo, R.; Shi, B.; Chen, L.; Yang, L.; Fu, Q. MicroRNA-30a promotes chondrogenic differentiation of mesenchymal stem cells through inhibiting Delta-like 4 expression. Life Sci., 2016, 148, 220-228.
[http://dx.doi.org/10.1016/j.lfs.2016.02.031] [PMID: 26872979]
[91]
Ding, Y.; Wang, L.; Zhao, Q.; Wu, Z.; Kong, L. MicroRNA 93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NF κB signaling pathway. Int. J. Mol. Med., 2019, 43(2), 779-790.
[PMID: 30569118]
[92]
Gao, S.; Liu, L.; Zhu, S.; Wang, D.; Wu, Q.; Ning, G.; Feng, S. MicroRNA-197 regulates chondrocyte proliferation, migration, and inflammation in pathogenesis of osteoarthritis by targeting EIF4G2. Biosci. Rep., 2020, 40(9)BSR20192095
[http://dx.doi.org/10.1042/BSR20192095] [PMID: 32880393]
[93]
Ma, S.; Zhang, A.; Li, X.; Zhang, S.; Liu, S.; Zhao, H.; Wu, S.; Chen, L.; Ma, C.; Zhao, H. MiR-21-5p regulates extracellular matrix degradation and angiogenesis in TMJOA by targeting Spry1. Arthritis Res. Ther., 2020, 22(1), 99.
[http://dx.doi.org/10.1186/s13075-020-2145-y] [PMID: 32357909]
[94]
Wang, W.F.; Liu, S.Y.; Qi, Z.F.; Lv, Z.H.; Ding, H.R.; Zhou, W.J. MiR-145 targeting BNIP3 reduces apoptosis of chondrocytes in osteoarthritis through Notch signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(16), 8263-8272.
[PMID: 32894532]
[95]
Zhang, H.; Zheng, W.; Li, D.; Zheng, J. miR-146a-5p promotes chondrocyte apoptosis and inhibits autophagy of osteoarthritis by targeting NUMB. Cartilage, 2021, 13(2-suppl Suppl.), 1467S-1477S.
[http://dx.doi.org/10.1177/19476035211023550] [PMID: 34315248]
[96]
He, X.; Deng, L. miR-204-5p inhibits inflammation of synovial fibroblasts in osteoarthritis by suppressing FOXC1. J. Orthop. Sci., 2021, 27(4), 921-928.
[http://dx.doi.org/10.1016/j.jos.2021.03.014] [PMID: 34045139]
[97]
Jin, F.; Liao, L.; Zhu, Y. MiR-467b alleviates lipopolysaccharide-induced inflammation through targeting STAT1 in chondrogenic ATDC5 cells. Int. J. Immunogenet., 2021, 48(5), 435-442.
[http://dx.doi.org/10.1111/iji.12534] [PMID: 33650224]
[98]
Lu, J.; Zhou, Z.; Sun, B.; Han, B.; Fu, Q.; Han, Y.; Yuan, W.; Xu, Z.; Chen, A. MiR-520d-5p modulates chondrogenesis and chondrocyte metabolism through targeting HDAC1. Aging, 2020, 12(18), 18545-18560.
[http://dx.doi.org/10.18632/aging.103831] [PMID: 32950972]
[99]
Jiang, P.; Dou, X.; Li, S.; Jia, Q.; Ling, P.; Liu, H.; Han, Q.; Sun, S. miR-590-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting FGF18 in osteoarthritis. Am. J. Transl. Res., 2021, 13(8), 8728-8741.
[PMID: 34539990]
[100]
Zhu, S.; Deng, Y.; Gao, H.; Huang, K.; Nie, Z. miR-877-5p alleviates chondrocyte dysfunction in osteoarthritis models via repressing FOXM1. J. Gene Med., 2020, 22(11)e3246
[http://dx.doi.org/10.1002/jgm.3246] [PMID: 32584470]
[101]
Gao, F.; Peng, C.; Zheng, C.; Zhang, S.; Wu, M. miRNA-101 promotes chondrogenic differentiation in rat bone marrow mesenchymal stem cells. Exp. Ther. Med., 2019, 17(1), 175-180.
[PMID: 30651779]
[102]
Yang, F.; Huang, R.; Ma, H.; Zhao, X.; Wang, G. miRNA-411 regulates chondrocyte autophagy in osteoarthritis by targeting hypoxia-inducible factor 1 alpha (HIF-1α;). Med. Sci. Monit., 2020, 26e921155
[http://dx.doi.org/10.12659/MSM.921155] [PMID: 32072994]
[103]
Li, W.; Zhao, S.; Yang, H.; Zhang, C.; Kang, Q.; Deng, J.; Xu, Y.; Ding, Y.; Li, S. Potential novel prediction of TMJ-OA: MiR-140-5p regulates inflammation through SMAD/TGF-β signaling. Front. Pharmacol., 2019, 10, 15.
[http://dx.doi.org/10.3389/fphar.2019.00015] [PMID: 30728776]
[104]
Wang, R.; Xu, B. TGF-β1-modified MSC-derived exosomal miR-135b attenuates cartilage injury via promoting M2 synovial macrophage polarization by targeting MAPK6. Cell Tissue Res., 2021, 384(1), 113-127.
[http://dx.doi.org/10.1007/s00441-020-03319-1] [PMID: 33404840]
[105]
Huang, X.; Qiao, F.; Xue, P. RETRACTED ARTICLE: The protective role of microRNA-140-5p in synovial injury of rats with knee osteoarthritis via inactivating the TLR4/Myd88/NF-κB signaling pathway. Cell Cycle, 2019, 18(18), 2344-2358.
[http://dx.doi.org/10.1080/15384101.2019.1647025] [PMID: 31345099]
[106]
Liu, W.; Zha, Z.; Wang, H. Upregulation of microRNA-27a inhibits synovial angiogenesis and chondrocyte apoptosis in knee osteoarthritis rats through the inhibition of PLK2. J. Cell. Physiol., 2019, 234(12), 22972-22984.
[http://dx.doi.org/10.1002/jcp.28858] [PMID: 31134620]
[107]
Liang, Y.; Xu, X.; Li, X.; Xiong, J.; Li, B.; Duan, L.; Wang, D.; Xia, J. Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Appl. Mater. Interfaces, 2020, 12(33), 36938-36947.
[http://dx.doi.org/10.1021/acsami.0c10458] [PMID: 32814390]
[108]
Scott, K.M.; Cohen, D.J.; Hays, M.; Nielson, D.W.; Grinstaff, M.W.; Lawson, T.B.; Snyder, B.D.; Boyan, B.D.; Schwartz, Z. Regulation of inflammatory and catabolic responses to IL-1β in rat articular chondrocytes by microRNAs miR-122 and miR-451. Osteoarthritis Cartilage, 2021, 29(1), 113-123.
[http://dx.doi.org/10.1016/j.joca.2020.09.004] [PMID: 33161100]
[109]
Chen, X.; Liu, Y.; Wen, Y.; Yu, Q.; Liu, J.; Zhao, Y.; Liu, J.; Ye, G. A photothermal-triggered nitric oxide nanogenerator combined with siRNA for precise therapy of osteoarthritis by suppressing macrophage inflammation. Nanoscale, 2019, 11(14), 6693-6709.
[http://dx.doi.org/10.1039/C8NR10013F] [PMID: 30900717]
[110]
Bedingfield, S.K.; Colazo, J.M.; Di Francesco, M.; Yu, F.; Liu, D.D.; Di Francesco, V.; Himmel, L.E.; Gupta, M.K.; Cho, H.; Hasty, K.A.; Decuzzi, P.; Duvall, C.L. Top-down fabricated microplates for prolonged, intra-articular matrix metalloproteinase 13 siRNA nanocarrier delivery to reduce post-traumatic osteoarthritis. ACS Nano, 2021, 15(9), 14475-14491.
[http://dx.doi.org/10.1021/acsnano.1c04005] [PMID: 34409835]
[111]
Hoshi, H.; Akagi, R.; Yamaguchi, S.; Muramatsu, Y.; Akatsu, Y.; Yamamoto, Y.; Sasaki, T.; Takahashi, K.; Sasho, T. Effect of inhibiting MMP13 and ADAMTS5 by intra-articular injection of small interfering RNA in a surgically induced osteoarthritis model of mice. Cell Tissue Res., 2017, 368(2), 379-387.
[http://dx.doi.org/10.1007/s00441-016-2563-y] [PMID: 28120109]
[112]
Gong, Y.; Li, S.J.; Liu, R.; Zhan, J.F.; Tan, C.; Fang, Y.F.; Chen, Y.; Yu, B. Inhibition of YAP with siRNA prevents cartilage degradation and ameliorates osteoarthritis development. J. Mol. Med., 2019, 97(1), 103-114.
[http://dx.doi.org/10.1007/s00109-018-1705-y] [PMID: 30465058]
[113]
Nakagawa, R.; Akagi, R.; Yamaguchi, S.; Enomoto, T.; Sato, Y.; Kimura, S.; Ogawa, Y.; Sadamasu, A.; Ohtori, S.; Sasho, T. Single vs. repeated matrix metalloproteinase-13 knockdown with intra-articular short interfering RNA administration in a murine osteoarthritis model. Connect. Tissue Res., 2019, 60(4), 335-343.
[http://dx.doi.org/10.1080/03008207.2018.1539082] [PMID: 30345823]
[114]
Choi, M.C. MaruYama, T.; Chun, C.H.; Park, Y. Alleviation of murine osteoarthritis by cartilage-specific deletion of ikappabzeta. Arthritis Rheumatol., 2018, 70(9), 1440-1449.
[http://dx.doi.org/10.1002/art.40514] [PMID: 29604191]
[115]
Huang, W.; Cheng, C.; Shan, W.S.; Ding, Z.F.; Liu, F.E.; Lu, W.; He, W.; Xu, J.G.; Yin, Z.S. Knockdown of SGK1 alleviates the IL-1β-induced chondrocyte anabolic and catabolic imbalance by activating FoxO1-mediated autophagy in human chondrocytes. FEBS J., 2020, 287(1), 94-107.
[http://dx.doi.org/10.1111/febs.15009] [PMID: 31330080]
[116]
Wang, Z.; Ni, S.; Zhang, H.; Fan, Y.; Xia, L.; Li, N. Silencing SGK1 alleviates osteoarthritis through epigenetic regulation of CREB1 and ABCA1 expression. Life Sci., 2021, 268118733
[http://dx.doi.org/10.1016/j.lfs.2020.118733] [PMID: 33171176]
[117]
Xu, S.; Yu, J.; Wang, Z.; Ni, C.; Xia, L.; Tang, T. SOX11 promotes osteoarthritis through induction of TNF-α. Pathol. Res. Pract., 2019, 215(7)152442
[http://dx.doi.org/10.1016/j.prp.2019.152442] [PMID: 31078342]
[118]
Li, L.; Lv, G.; Wang, B.; Kuang, L. XIST/miR-376c-5p/OPN axis modulates the influence of proinflammatory M1 macrophages on osteoarthritis chondrocyte apoptosis. J. Cell. Physiol., 2020, 235(1), 281-293.
[http://dx.doi.org/10.1002/jcp.28968] [PMID: 31215024]
[119]
Zhou, X.; Jiang, L.; Fan, G.; Yang, H.; Wu, L.; Huang, Y.; Xu, N.; Li, J. Role of the ciRS-7/miR-7 axis in the regulation of proliferation, apoptosis and inflammation of chondrocytes induced by IL-1β. Int. Immunopharmacol., 2019, 71, 233-240.
[http://dx.doi.org/10.1016/j.intimp.2019.03.037] [PMID: 30925324]
[120]
Lange, C.; Madry, H.; Venkatesan, J.K.; Schmitt, G.; Speicher-Mentges, S.; Zurakowski, D.; Menger, M.D.; Laschke, M.W.; Cucchiarini, M. rAAV-Mediated sox9 overexpression improves the repair of osteochondral defects in a clinically relevant large animal model over time in vivo and reduces perifocal osteoarthritic changes. Am. J. Sports Med., 2021, 49(13), 3696-3707.
[http://dx.doi.org/10.1177/03635465211049414] [PMID: 34643471]
[121]
Ko, J.Y.; Lee, J.; Lee, J.; Ryu, Y.H. Im, G.I. SOX-6, 9 -Transfected adipose stem cells to treat surgically-induced osteoarthritis in goats. Tissue Eng. Part A, 2019, 25(13-14), 990-1000.
[http://dx.doi.org/10.1089/ten.tea.2018.0189] [PMID: 30484378]
[122]
Wu, H.; Peng, Z.; Xu, Y.; Sheng, Z.; Liu, Y.; Liao, Y.; Wang, Y.; Wen, Y.; Yi, J.; Xie, C.; Chen, X.; Hu, J.; Yan, B.; Wang, H.; Yao, X.; Fu, W.; Ouyang, H. Engineered adipose-derived stem cells with IGF-1-modified mRNA ameliorates osteoarthritis development. Stem Cell Res. Ther., 2022, 13(1), 19.
[http://dx.doi.org/10.1186/s13287-021-02695-x] [PMID: 35033199]
[123]
Wang, K.F.; Shi, Z.W.; Dong, D.M. CircATRNL1 protects against osteoarthritis by targeting miR-153-3p and KLF5. Int. Immunopharmacol., 2021, 96107704
[http://dx.doi.org/10.1016/j.intimp.2021.107704] [PMID: 33971492]
[124]
Tao, S.C.; Huang, J.Y.; Gao, Y.; Li, Z.X.; Wei, Z.Y.; Dawes, H.; Guo, S.C. Small extracellular vesicles in combination with sleep-related circRNA3503: A targeted therapeutic agent with injectable thermosensitive hydrogel to prevent osteoarthritis. Bioact. Mater., 2021, 6(12), 4455-4469.
[http://dx.doi.org/10.1016/j.bioactmat.2021.04.031] [PMID: 34027234]
[125]
Yao, T.; Yang, Y.; Xie, Z.; Xu, Y.; Huang, Y.; Gao, J.; Shen, S.; Ye, H.; Iranmanesh, Y.; Fan, S.; Ma, J. Circ0083429 regulates osteoarthritis progression via the Mir-346/SMAD3 axis. Front. Cell Dev. Biol., 2021, 8579945
[http://dx.doi.org/10.3389/fcell.2020.579945] [PMID: 33520980]
[126]
Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[127]
Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in control of gene expression: An overview of nuclear functions. Int. J. Mol. Sci., 2016, 17(10), 1712.
[http://dx.doi.org/10.3390/ijms17101712] [PMID: 27754357]
[128]
Yu, Q.; Zhao, B.; He, Q.; Zhang, Y.; Peng, X.B. microRNA-206 is required for osteoarthritis development through its effect on apoptosis and autophagy of articular chondrocytes via modulating the phosphoinositide 3-kinase/protein kinase B-mTOR pathway by targeting insulin-like growth factor-1. J. Cell. Biochem., 2019, 120(4), 5287-5303.
[http://dx.doi.org/10.1002/jcb.27803] [PMID: 30335903]
[129]
Sui, C.; Zhang, L.; Hu, Y. MicroRNA let 7a inhibition inhibits LPS induced inflammatory injury of chondrocytes by targeting IL6R. Mol. Med. Rep., 2019, 20(3), 2633-2640.
[http://dx.doi.org/10.3892/mmr.2019.10493] [PMID: 31322277]
[130]
Guo, Y.; Tian, L.; Du, X.; Deng, Z. MiR-203 regulates estrogen receptor α; and cartilage degradation in IL-1β-stimulated chondrocytes. J. Bone Miner. Metab., 2020, 38(3), 346-356.
[http://dx.doi.org/10.1007/s00774-019-01062-4] [PMID: 31894489]
[131]
Jin, Z.; Ren, J.; Qi, S. Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. Int. Immunopharmacol., 2020, 78105946
[http://dx.doi.org/10.1016/j.intimp.2019.105946] [PMID: 31784400]
[132]
Tomari, Y.; Zamore, P.D. Perspective: Machines for RNAi. Genes Dev., 2005, 19(5), 517-529.
[http://dx.doi.org/10.1101/gad.1284105] [PMID: 15741316]
[133]
Chen, K.; Yan, Y.; Li, C.; Yuan, J.; Wang, F.; Huang, P.; Qian, N.; Qi, J.; Zhou, H.; Zhou, Q.; Deng, L.; He, C.; Guo, L. Increased 15-lipoxygenase-1 expression in chondrocytes contributes to the pathogenesis of osteoarthritis. Cell Death Dis., 2017, 8(10)e3109
[http://dx.doi.org/10.1038/cddis.2017.511] [PMID: 29022900]
[134]
Xu, L.; Sun, C.; Zhang, S.; Xu, X.; Zhai, L.; Wang, Y.; Wang, S.; Liu, Z.; Cheng, H.; Xiao, M.; Tao, R.; Zhang, D. Sam68 promotes NF-κB activation and apoptosis signaling in articular chondrocytes during osteoarthritis. Inflamm. Res., 2015, 64(11), 895-902.
[http://dx.doi.org/10.1007/s00011-015-0872-3] [PMID: 26350037]
[135]
Weber, C.; Armbruster, N.; Scheller, C.; Kreppel, F.; Kochanek, S.; Rethwilm, A.; Steinert, A.F. Foamy virus-adenovirus hybrid vectors for gene therapy of the arthritides. J. Gene Med., 2013, 15(3-4), 155-167.
[http://dx.doi.org/10.1002/jgm.2705] [PMID: 23554302]
[136]
Chen, L.X.; Lin, L.; Wang, H.J.; Wei, X.L.; Fu, X.; Zhang, J.Y.; Yu, C.L. Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vector-mediated NF-κBp65-specific siRNA. Osteoarthritis Cartilage, 2008, 16(2), 174-184.
[http://dx.doi.org/10.1016/j.joca.2007.06.006] [PMID: 17686636]
[137]
Huang, M.; Wang, L.; Zheng, X.; Zhang, Z.; Yan, B.; Chen, T.; Bai, X.; Jin, D. Intra-articular lentivirus-mediated insertion of the fat-1 gene ameliorates osteoarthritis. Med. Hypotheses, 2012, 79(5), 614-616.
[http://dx.doi.org/10.1016/j.mehy.2012.07.035] [PMID: 22939867]
[138]
Zhu, S.; Zhang, B.; Man, C.; Ma, Y.; Liu, X.; Hu, J. Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on the repair of articular cartilage defect in rabbits. Cell Transplant., 2014, 23(6), 715-727.
[http://dx.doi.org/10.3727/096368913X669770] [PMID: 24763260]
[139]
Aini, H.; Itaka, K.; Fujisawa, A.; Uchida, H.; Uchida, S.; Fukushima, S.; Kataoka, K.; Saito, T.; Chung, U.; Ohba, S. Messenger RNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment. Sci. Rep., 2016, 6(1), 18743.
[http://dx.doi.org/10.1038/srep18743] [PMID: 26728350]
[140]
Salzman, J.; Circular, R.N.A. Circular RNA expression: Its potential regulation and function. Trends Genet., 2016, 32(5), 309-316.
[http://dx.doi.org/10.1016/j.tig.2016.03.002] [PMID: 27050930]
[141]
Han, D.; Li, J.; Wang, H.; Su, X.; Hou, J.; Gu, Y.; Qian, C.; Lin, Y.; Liu, X.; Huang, M.; Li, N.; Zhou, W.; Yu, Y.; Cao, X. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology, 2017, 66(4), 1151-1164.
[http://dx.doi.org/10.1002/hep.29270] [PMID: 28520103]
[142]
Pamudurti, N.R.; Bartok, O.; Jens, M.; Ashwal-Fluss, R.; Stottmeister, C.; Ruhe, L.; Hanan, M.; Wyler, E.; Perez-Hernandez, D.; Ramberger, E.; Shenzis, S.; Samson, M.; Dittmar, G.; Landthaler, M.; Chekulaeva, M.; Rajewsky, N.; Kadener, S. Translation of CircRNAs. Mol. Cell, 2017, 66(1), 9-21.e7.
[http://dx.doi.org/10.1016/j.molcel.2017.02.021] [PMID: 28344080]
[143]
Bao, J.; Lin, C.; Zhou, X.; Ma, D.; Ge, L.; Xu, K.; Moqbel, S.A.A.; He, Y.; Ma, C.; Ran, J.; Wu, L. circFAM160A2 promotes mitochondrial stabilization and apoptosis reduction in osteoarthritis chondrocytes by targeting miR-505-3p and SIRT3. Oxid. Med. Cell. Longev., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/5712280] [PMID: 34646424]
[144]
Shen, S.; Yang, Y.; Shen, P.; Ma, J.; Fang, B.; Wang, Q.; Wang, K.; Shi, P.; Fan, S.; Fang, X. circPDE4B prevents articular cartilage degeneration and promotes repair by acting as a scaffold for RIC8A and MID1. Ann. Rheum. Dis., 2021, 80(9), 1209-1219.
[http://dx.doi.org/10.1136/annrheumdis-2021-219969] [PMID: 34039624]
[145]
Shen, S.; Wu, Y.; Chen, J.; Xie, Z.; Huang, K.; Wang, G.; Yang, Y.; Ni, W.; Chen, Z.; Shi, P.; Ma, Y.; Fan, S. CircSERPINE2 protects against osteoarthritis by targeting miR-1271 and ETS-related gene. Ann. Rheum. Dis., 2019, 78(6), 826-836.
[http://dx.doi.org/10.1136/annrheumdis-2018-214786] [PMID: 30923232]
[146]
Li, W.; Szoka, F.C., Jr Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res., 2007, 24(3), 438-449.
[http://dx.doi.org/10.1007/s11095-006-9180-5] [PMID: 17252188]
[147]
Somani, S.; Blatchford, D.R.; Millington, O.; Stevenson, M.L.; Dufès, C. Transferrin-bearing polypropylenimine dendrimer for targeted gene delivery to the brain. J. Control. Release, 2014, 188, 78-86.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.006] [PMID: 24933602]
[148]
Tang, M.; Dong, H.; Cai, X.; Zhu, H.; Ren, T.; Li, Y. Disulfide-bridged cleavable pegylation of poly-l-lysine for SiRNA delivery. Methods Mol. Biol., 2016, 1364, 49-61.
[http://dx.doi.org/10.1007/978-1-4939-3112-5_5] [PMID: 26472441]
[149]
Fischer, R.; Fotin-Mleczek, M.; Hufnagel, H.; Brock, R. Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides. ChemBioChem, 2005, 6(12), 2126-2142.
[http://dx.doi.org/10.1002/cbic.200500044] [PMID: 16254940]
[150]
Smith, G.P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228(4705), 1315-1317.
[http://dx.doi.org/10.1126/science.4001944] [PMID: 4001944]
[151]
Conde, J.; Oliva, N.; Artzi, N. Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance. Proc. Natl. Acad. Sci., 2015, 112(11), E1278-E1287.
[http://dx.doi.org/10.1073/pnas.1421229112] [PMID: 25733851]
[152]
Li, J.; Xue, S.; Mao, Z.W. Nanoparticle delivery systems for siRNA-based therapeutics. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(41), 6620-6639.
[http://dx.doi.org/10.1039/C6TB01462C] [PMID: 32263517]
[153]
Uzieliene, I.; Kalvaityte, U.; Bernotiene, E.; Mobasheri, A. Non-viral gene therapy for osteoarthritis. Front. Bioeng. Biotechnol., 2021, 8618399
[http://dx.doi.org/10.3389/fbioe.2020.618399] [PMID: 33520968]
[154]
Lu, H.; Dai, Y.; Lv, L.; Zhao, H. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS One, 2014, 9(1)e84703
[http://dx.doi.org/10.1371/journal.pone.0084703] [PMID: 24392152]
[155]
Clanchy, F.I.L.; Williams, R.O. Plasmid DNA as a safe gene delivery vehicle for treatment of chronic inflammatory disease. Expert Opin. Biol. Ther., 2008, 8(10), 1507-1519.
[http://dx.doi.org/10.1517/14712598.8.10.1507] [PMID: 18774919]
[156]
Zhang, Y.; Lai, B.; Juhas, M. Recent advances in aptamer discovery and applications. Molecules, 2019, 24(5), 941.
[http://dx.doi.org/10.3390/molecules24050941] [PMID: 30866536]
[157]
Qin, X.; Xiao, L.; Li, N.; Hou, C.; Li, W.; Li, J.; Yan, N.; Lin, Y. Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages. Bioact. Mater., 2022, 14, 134-144.
[http://dx.doi.org/10.1016/j.bioactmat.2021.11.031] [PMID: 35310341]
[158]
Kim, Y.; Liu, C.; Tan, W.J.B.M. Aptamers generated by Cell SELEX for biomarker discovery. Biomarkers Med., 2009, 3(2), 193-202.
[http://dx.doi.org/10.2217/bmm.09.5]
[159]
Covarrubias, A.; Byles, V.; Horng, T. ROS sets the stage for macrophage differentiation. Cell Res., 2013, 23(8), 984-985.
[http://dx.doi.org/10.1038/cr.2013.88] [PMID: 23835480]
[160]
Xiao, S.; Chen, L. The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. J. Control. Release, 2020, 328, 817-833.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.007] [PMID: 33176171]
[161]
Opalinska, J.B.; Gewirtz, A.M. Nucleic-acid therapeutics: Basic principles and recent applications. Nat. Rev. Drug Discov., 2002, 1(7), 503-514.
[http://dx.doi.org/10.1038/nrd837] [PMID: 12120257]
[162]
Gomes-da-Silva, L.C.; Fonseca, N.A.; Moura, V.; Pedroso de Lima, M.C.; Simões, S.; Moreira, J.N. Lipid-based nanoparticles for siRNA delivery in cancer therapy: Paradigms and challenges. Acc. Chem. Res., 2012, 45(7), 1163-1171.
[http://dx.doi.org/10.1021/ar300048p] [PMID: 22568781]
[163]
Liu, M.; Ma, W.; Zhao, D.; Li, J.; Li, Q.; Liu, Y.; Hao, L.; Lin, Y. Enhanced penetrability of a tetrahedral framework nucleic acid by modification with iRGD for DOX-targeted delivery to triple-negative breast cancer. ACS Appl. Mater. Interfaces, 2021, 13(22), 25825-25835.
[http://dx.doi.org/10.1021/acsami.1c07297] [PMID: 34038071]
[164]
Liu, Z.; Chen, X.; Ma, W.; Gao, Y.; Yao, Y.; Li, J.; Zhang, T.; Qin, X.; Ge, Y.; Jiang, Y.; Lin, Y. Suppression of lipopolysaccharide-induced sepsis by tetrahedral framework nucleic acid loaded with quercetin. Adv. Funct. Mater., 2022, 32(43)2204587
[http://dx.doi.org/10.1002/adfm.202204587]
[165]
Ge, Y.; Tian, T.; Shao, X.; Lin, S.; Zhang, T.; Lin, Y.; Cai, X. PEGylated protamine-based adsorbing improves the biological properties and stability of tetrahedral framework nucleic acids. ACS Appl. Mater. Interfaces, 2019, 11(31), 27588-27597.
[http://dx.doi.org/10.1021/acsami.9b09243] [PMID: 31298033]
[166]
Ma, W.; Zhan, Y.; Zhang, Y.; Shao, X.; Xie, X.; Mao, C.; Cui, W.; Li, Q.; Shi, J.; Li, J.; Fan, C.; Lin, Y. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett., 2019, 19(7), 4505-4517.
[http://dx.doi.org/10.1021/acs.nanolett.9b01320] [PMID: 31185573]
[167]
Woodell-May, J.E.; Sommerfeld, S.D. Role of inflammation and the immune system in the progression of osteoarthritis. J. Orthop. Res., 2020, 38(2), 253-257.
[http://dx.doi.org/10.1002/jor.24457] [PMID: 31469192]
[168]
Chen, Q.; Ding, F.; Zhang, S.; Li, Q.; Liu, X.; Song, H.; Zuo, X.; Fan, C.; Mou, S.; Ge, Z. Sequential therapy of acute kidney injury with a DNA nanodevice. Nano Lett., 2021, 21(10), 4394-4402.
[http://dx.doi.org/10.1021/acs.nanolett.1c01044] [PMID: 33998787]
[169]
Zhang, M.; Zhu, J.; Qin, X.; Zhou, M.; Zhang, X.; Gao, Y.; Zhang, T.; Xiao, D.; Cui, W.; Cai, X. Cardioprotection of tetrahedral dna nanostructures in myocardial ischemia-reperfusion injury. ACS Appl. Mater. Interfaces, 2019, 11(34), 30631-30639.
[http://dx.doi.org/10.1021/acsami.9b10645] [PMID: 31382735]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy