Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Comprehensive Study of In vivo and In vitro Metabolites of Cycloastragenol Based on UHPLC-Q-Exactive Orbitrap Mass Spectrometer

Author(s): Huajian Li, Shaoping Wang, Hong Wang, Haoran Li, Yanan Li, Pingping Dong, Xianming Lan, Jiayu Zhang* and Long Dai*

Volume 23, Issue 14, 2022

Published on: 10 February, 2023

Page: [1090 - 1114] Pages: 25

DOI: 10.2174/1389200224666230202150436

Price: $65

Abstract

Background: Cycloastragenol (CAG) is a sapogenin derived from the main bioactive constituents of Astragali Radix (AR). However, the current research on CAG metabolism in vivo and in vitro is still inadequate, and the metabolite cluster is incomplete due to incomplete analysis strategy.

Objective: The objective of this study was to screen and identify the metabolic behavior of CAG in vivo and in vitro.

Methods: A simple and rapid analysis strategy based on UHPLC-Q-Exactive Orbitrap mass spectrometry combined with data-mining processing technology was developed and used to screen and identify CAG metabolites in rat body fluids and tissues after oral administration.

Results: As a result, a total of 82 metabolites were fully or partially characterized based on their accurate mass, characteristic fragment ions, retention times, corresponding Clog P values, and so on. Among the metabolites, 61 were not been reported in previous reports. These metabolites (6 metabolites in vitro and 91 in vivo) were generated through reactions of hydroxylation, glucuronidation, sulfation, hydrogenation, hydroxylation, demethylation, deisopropylation, dehydroxylation, ring cleavage, and carboxyl substitution and their composite reactions, and the hydroxylation might be the main metabolic reaction of CAG. In addition, the characteristic fragmentation pathways of CAG were summarized for the subsequent metabolite identification.

Conclusion: The current study not only clarifies the metabolite cluster-based and metabolic regularity of CAG in vivo and in vitro, but also provides ideas for metabolism of other saponin compounds.

Graphical Abstract

[1]
Yeh, T.S.; Chuang, H.L.; Huang, W.C.; Chen, Y.M.; Huang, C.C.; Hsu, M.C. Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules, 2014, 19(3), 2793-2807.
[http://dx.doi.org/10.3390/molecules19032793] [PMID: 24595275]
[2]
Yang, F.X.; Wang, Y.; Xia, P.F.; Yang, R.J.; Wang, Y.X.; Zhang, J.; Fan, Q.; Zhao, L. Review of chemical constituents,pharmacological effects and clinical applications of Danggui Buxue Decoction and prediction and analysis of its Q-markers. Zhongguo Zhongyao Zazhi, 2021, 46(11), 2677-2685.
[PMID: 34296563]
[3]
Wang, J.; Wu, M.L.; Cao, S.P.; Cai, H.; Zhao, Z.M.; Song, Y.H. Cycloastragenol ameliorates experimental heart damage in rats by promoting myocardial autophagy via inhibition of AKT1-RPS6KB1 signaling. Biomed. Pharmacother., 2018, 107, 1074-1081.
[http://dx.doi.org/10.1016/j.biopha.2018.08.016] [PMID: 30257319]
[4]
Gu, M.; Zhang, S.; Zhao, Y.; Huang, J.; Wang, Y.; Li, Y.; Fan, S.; Yang, L.; Ji, G.; Tong, Q.; Huang, C. Cycloastragenol improves hepatic steatosis by activating farnesoid X receptor signalling. Pharmacol. Res., 2017, 121, 22-32.
[http://dx.doi.org/10.1016/j.phrs.2017.04.021] [PMID: 28428116]
[5]
Lee, S.Y.; Chang, W.L.; Li, Z.X.; Kirkby, N.S.; Tsai, W.C.; Huang, S.F.; Ou, C.H.; Chang, T.C. Astragaloside VI and cycloastragenol-6- O -beta-D-glucoside promote wound healing in vitro and in vivo. Phytomedicine, 2018, 38, 183-191.
[http://dx.doi.org/10.1016/j.phymed.2017.12.003] [PMID: 29425651]
[6]
Chen, C.; Ni, Y.; Jiang, B.; Yan, S.; Xu, B.; Fan, B.; Huang, H.; Chen, G. Anti-aging derivatives of cycloastragenol produced by biotransformation. Nat. Prod. Res., 2021, 35(16), 2685-2690.
[http://dx.doi.org/10.1080/14786419.2019.1662011] [PMID: 31496283]
[7]
Zhao, Y.; Li, Q.; Zhao, W.; Li, J.; Sun, Y.; Liu, K.; Liu, B.; Zhang, N. Astragaloside IV and cycloastragenol are equally effective in inhibition of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in the endothelium. J. Ethnopharmacol., 2015, 169, 210-218.
[http://dx.doi.org/10.1016/j.jep.2015.04.030] [PMID: 25922268]
[8]
Zhu, X.; Cao, Y.; Su, M.; Chen, M.; Li, C.; Yi, L.; Qin, J.; Tulake, W.; Teng, F.; Zhong, Y.; Tang, W.; Wang, S.; Dong, J. Cycloastragenol alleviates airway inflammation in asthmatic mice by inhibiting autophagy. Mol. Med. Rep., 2021, 24(5), 805.
[http://dx.doi.org/10.3892/mmr.2021.12445] [PMID: 34542166]
[9]
Wan, Y.; Xu, L.; Wang, Y.; Tuerdi, N.; Ye, M.; Qi, R. Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. Eur. J. Pharmacol., 2018, 833, 545-554.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.016] [PMID: 29913124]
[10]
Yung, L.; Lam, W.; Ho, M.; Hu, Y.; Ip, F.; Pang, H.; Chin, A.; Harley, C.; Ip, N.; Wong, Y. Astragaloside IV and cycloastragenol stimulate the phosphorylation of extracellular signal-regulated protein kinase in multiple cell types. Planta Med., 2012, 78(2), 115-121.
[http://dx.doi.org/10.1055/s-0031-1280346] [PMID: 22083896]
[11]
de Jesus, B.B.; Schneeberger, K.; Vera, E.; Tejera, A.; Harley, C.B.; Blasco, M.A. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell, 2011, 10(4), 604-621.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00700.x] [PMID: 21426483]
[12]
Hong, H.; Xiao, J.; Guo, Q.; Du, J.; Jiang, Z.; Lu, S.; Zhang, H.; Zhang, X.; Wang, X. Cycloastragenol and astragaloside IV activate telomerase and protect nucleus pulposus cells against high-glucose induced senescence and apoptosis. Exp. Ther. Med., 2021, 22(5), 1326.
[http://dx.doi.org/10.3892/etm.2021.10761] [PMID: 34630680]
[13]
Kuban, M.; Öngen, G.; Khan, I.A.; Bedir, E. Microbial transformation of cycloastragenol. Phytochemistry, 2013, 88, 99-104.
[http://dx.doi.org/10.1016/j.phytochem.2012.12.007] [PMID: 23357596]
[14]
Wu, J.; Zeng, Z.; Li, Y.; Qin, H.; Zuo, C.; Zhou, C.; Xu, D. Cycloastragenol protects against glucocorticoid induced osteogenic differentiation inhibition by activating telomerase. Phytother. Res., 2021, 35(4), 2034-2044.
[http://dx.doi.org/10.1002/ptr.6946] [PMID: 33165990]
[15]
Wilkinson, G.R. Drug metabolism and variability among patients in drug response. N. Engl. J. Med., 2005, 352(21), 2211-2221.
[http://dx.doi.org/10.1056/NEJMra032424] [PMID: 15917386]
[16]
Prasad, B.; Garg, A.; Takwani, H.; Singh, S. Metabolite identification by liquid chromatography-mass spectrometry. Trends Analyt. Chem., 2011, 30(2), 360-387.
[http://dx.doi.org/10.1016/j.trac.2010.10.014]
[17]
Ma, P.K.; Wei, B.H.; Cao, Y.L.; Miao, Q.; Chen, N.; Guo, C.E.; Chen, H.Y.; Zhang, Y.J. Pharmacokinetics, metabolism, and excretion of cycloastragenol, a potent telomerase activator in rats. Xenobiotica, 2017, 47(6), 526-537.
[http://dx.doi.org/10.1080/00498254.2016.1204568] [PMID: 27412909]
[18]
Li, H.F.; Xu, F.; Yang, P.; Liu, G.X.; Shang, M.Y.; Wang, X.; Yin, J.; Cai, S.Q. Systematic screening and characterization of prototype constituents and metabolites of total astragalosides using HPLC-ESI-ITTOF-MS n after oral administration to rats. J. Pharm. Biomed. Anal., 2017, 142, 102-112.
[http://dx.doi.org/10.1016/j.jpba.2017.05.009] [PMID: 28501748]
[19]
Marchei, E.; Ferri, M.A.; Torrens, M.; Farré, M.; Pacifici, R.; Pichini, S.; Pellegrini, M. Ultra-high performance liquid chromatography-high resolution mass spectrometry and high-sensitivity gas chromatography-mass spectrometry screening of classic drugs and new psychoactive substances and metabolites in urine of consumers. Int. J. Mol. Sci., 2021, 22(8), 4000.
[http://dx.doi.org/10.3390/ijms22084000] [PMID: 33924438]
[20]
Zhang, J.; Wang, F.; Cai, W.; Zhang, Q.; Liu, Y.; Li, Y.; Liu, R.; Cao, G. Identification of metabolites of gardenin A in rats by combination of high-performance liquid chromatography with linear ion trap-Orbitrap mass spectrometer based on multiple data processing techniques. Biomed. Chromatogr., 2015, 29(3), 379-387.
[http://dx.doi.org/10.1002/bmc.3287] [PMID: 25041995]
[21]
Li, H.; Li, H.; Jiang, S.; Xu, J.; Cui, Y.; Wang, H.; Dai, L.; Lin, Y.; Zhang, J. Study of the metabolism of myricetin in rat urine, plasma and feces by ultra-high-performance liquid chromatography. Biomed. Chromatogr., 2022, 36(3), e5281.
[http://dx.doi.org/10.1002/bmc.5281] [PMID: 34792824]
[22]
Liu, Y.; Liu, J.; Wu, K.X.; Guo, X.R.; Tang, Z.H. A rapid method for sensitive profiling of bioactive triterpene and flavonoid from Astragalus mongholicus and Astragalus membranaceus by ultra-pressure liquid chromatography with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1085, 110-118.
[http://dx.doi.org/10.1016/j.jchromb.2018.03.044] [PMID: 29649754]
[23]
Dong, P.; Shi, L.; Wang, S.; Jiang, S.; Li, H.; Dong, F.; Xu, J.; Dai, L.; Zhang, J. Rapid profiling and identification of vitexin metabolites in rat urine, plasma and faeces after oral administration using a uhplcq-exactive orbitrap mass spectrometer coupled with multiple data-mining methods. Curr. Drug Metab., 2021, 22(3), 185-197.
[http://dx.doi.org/10.2174/18755453MTEyBOTg3w] [PMID: 33397253]
[24]
Shang, Z.; Xin, Q.; Zhao, W.; Wang, Z.; Li, Q.; Zhang, J.; Cong, W. Rapid profiling and identification of puerarin metabolites in rat urine and plasma after oral administration by UHPLC-LTQ-Orbitrap mass spectrometer. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1068-1069, 180-192.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.038] [PMID: 29073480]
[25]
Liu, Z.; Wang, S.; Dong, F.; Lin, Y.; Li, H.; Shi, L.; Wang, Z.; Zhang, J. Comprehensive analysis of resveratrol metabolites in rats using ultra high performance liquid chromatography coupled with high resolution mass spectrometry. Arab. J. Chem., 2020, 13(9), 7055-7065.
[http://dx.doi.org/10.1016/j.arabjc.2020.07.011]
[26]
Zhou, R.N.; Song, Y.L.; Ruan, J.Q.; Wang, Y.T.; Yan, R. Pharmacokinetic evidence on the contribution of intestinal bacterial conversion to beneficial effects of astragaloside IV, a marker compound of astragali radix, in traditional oral use of the herb. Drug Metab. Pharmacokinet., 2012, 27(6), 586-597.
[http://dx.doi.org/10.2133/dmpk.DMPK-11-RG-160] [PMID: 22673033]
[27]
Zhu, J.; Lee, S.; Ho, M.K.C.; Hu, Y.; Pang, H.; Ip, F.C.F.; Chin, A.C.; Harley, C.B.; Ip, N.Y.; Wong, Y.H. In vitro intestinal absorption and first-pass intestinal and hepatic metabolism of cycloastragenol, a potent small molecule telomerase activator. Drug Metab. Pharmacokinet., 2010, 25(5), 477-486.
[http://dx.doi.org/10.2133/dmpk.DMPK-10-RG-037] [PMID: 20877137]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy