Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

In-vitro and In-vivo Identification, Absorbtion and Metabolism Network Analysis of Filifolium sibiricum Flavonoids Dropping Pill by UHPLC-Q-TOF-MS

Author(s): Rui-Ting Ma, Ji-Xin Han, Jun-Chan Qiao, Li-Jun Tong* and Li-Xia Chen*

Volume 23, Issue 14, 2022

Published on: 08 February, 2023

Page: [1143 - 1155] Pages: 13

DOI: 10.2174/1389200224666230202144113

Price: $65

conference banner
Abstract

Background: Filifolium sibiricum flavonoids dropping pill (FSFp), a unique Chinese Filifolii sibirici herba extract preparation, has the potential as an alternative therapy against S. aureus infection (SA) and antiinfection. However, its chemical composition and in vivo metabolism characteristics remain unknown, which limits its clinical application.

Methods: Here, we aimed to understand the in vitro and in vivo material basis of FSFp. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was used to identify chemicals in FSFp as well as its phase I and phase II reaction metabolites in plasma, urine and feces.

Results: A total of 38 chemicals were characterized in FSFp, including 22 flavonoids, 10 organic acids, 3 chromones, 1 aromatic ketone, 1 coumarin, and 1 ligan. After analysis of the drugged bio-samples, a total of 21 compounds were found in urine, and 16 of them were found in feces, but only one was found in plasma. In addition, 56 FSFp-related metabolites were characterized, of which 56 were in urine, 4 in feces, and 8 in plasma.

Conclusion: This is the first comprehensive research of FSFp on chemical constituents and metabolic profiles. It was expected that this study would offer reliable support for further investigation of FSFp.

Graphical Abstract

[1]
Zhang, Y.J.; Wang, Q.H.; Yu, X.D.; Yang, B.Y.; Kuang, H.X. Chemical constituentsof anti-infective parts from Filifolium sibiricum (L.) Kitam. (II). Acta Pharmacol. Sin., 2011, 39(3), 67-69.
[2]
Yujie, L.; Qiu-hong, W.; Hong-bin, X.; Bo, T.; Shaowa, L.; Haixue, K. A preliminary study on the pharmacological effects of total flavonoids in Filifoliumsibiricum(L.)Kitam on treating chronic bronchitis. Chin. Trad. Patent Med, 2012, 34(06), 1160-1163.
[3]
Yuan, K.; Li, X.; Lu, Q.; Zhu, Q.; Jiang, H.; Wang, T.; Huang, G.; Xu, A. Application and mechanisms of triptolide in the treatment of inflammatory diseases-a review. Front. Pharmacol., 2019, 10, 1469.
[http://dx.doi.org/10.3389/fphar.2019.01469] [PMID: 31866868]
[4]
Lemmens, K.J.A.; van de Wier, B.; Koek, G.H.; Köhler, E.; Drittij, M.J.; van der Vijgh, W.J.F.; Bast, A.; Haenen, G.R.M.M. The flavonoid monoHER promotes the adaption to oxidative stress during the onset of NAFLD. Biochem. Biophys. Res. Commun., 2015, 456(1), 179-182.
[http://dx.doi.org/10.1016/j.bbrc.2014.11.055] [PMID: 25462563]
[5]
Luo, Y.; Zhou, T. Connecting the dots: Targeting the microbiome in drug toxicity. Med. Res. Rev., 2022, 42(1), 83-111.
[http://dx.doi.org/10.1002/med.21805] [PMID: 33856076]
[6]
Li, H.; Jia, W. Cometabolism of microbes and host: Implications for drug metabolism and drug-induced toxicity. Clin. Pharmacol. Ther., 2013, 94(5), 574-581.
[http://dx.doi.org/10.1038/clpt.2013.157] [PMID: 23933971]
[7]
Spanogiannopoulos, P.; Bess, E.N.; Carmody, R.N.; Turnbaugh, P.J. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol., 2016, 14(5), 273-287.
[http://dx.doi.org/10.1038/nrmicro.2016.17] [PMID: 26972811]
[8]
Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm., 2019, 570, 118642.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118642] [PMID: 31446024]
[9]
Dvořák, Z.; Sokol, H.; Mani, S. Drug mimicry: promiscuous receptors PXR and AhR, and microbial metabolite interactions in the intestine. Trends Pharmacol. Sci., 2020, 41(12), 900-908.
[http://dx.doi.org/10.1016/j.tips.2020.09.013] [PMID: 33097284]
[10]
Dong, F.; Hao, F.; Murray, I.A.; Smith, P.B.; Koo, I.; Tindall, A.M.; Kris-Etherton, P.M.; Gowda, K.; Amin, S.G.; Patterson, A.D.; Perdew, G.H. Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity. Gut Microbes, 2020, 12(1), 1788899.
[http://dx.doi.org/10.1080/19490976.2020.1788899] [PMID: 32783770]
[11]
Zhang, J.; Zhu, S.; Ma, N.; Johnston, L.J.; Wu, C.; Ma, X. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation. Med. Res. Rev., 2021, 41(2), 1061-1088.
[http://dx.doi.org/10.1002/med.21752] [PMID: 33174230]
[12]
Agus, A.; Planchais, J.; Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe, 2018, 23(6), 716-724.
[http://dx.doi.org/10.1016/j.chom.2018.05.003] [PMID: 29902437]
[13]
Platten, M.; Nollen, E.A.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov., 2019, 18(5), 379-401.
[http://dx.doi.org/10.1038/s41573-019-0016-5] [PMID: 30760888]
[14]
Xie, C.; Zhong, D.; Yu, K.; Chen, X. Recent advances in metabolite identification and quantitative bioanalysis by LC-Q-TOF MS. Bioanalysis, 2012, 4(8), 937-959.
[http://dx.doi.org/10.4155/bio.12.43] [PMID: 22533568]
[15]
Campbell, J.L.; Le Blanc, J.C.Y. Using high-resolution quadrupole TOF technology in DMPK analyses. Bioanalysis, 2012, 4(5), 487-500.
[http://dx.doi.org/10.4155/bio.12.14] [PMID: 22409548]
[16]
Wang, D.; Li, D.; Zhang, Y.; Chen, J.; Zhang, Y.; Liao, C.; Qin, S.; Tian, Y.; Zhang, Z.; Xu, F. Functional metabolomics reveal the role of AHR/GPR35 mediated kynurenic acid gradient sensing in chemotherapy-induced intestinal damage. Acta Pharm. Sin. B, 2021, 11(3), 763-780.
[http://dx.doi.org/10.1016/j.apsb.2020.07.017] [PMID: 33777681]
[17]
Zhu, H.; Chang, W.; Zhou, C.; Xu, C.; Su, W.; Gao, F.; Tan, X.; Lu, S. Chemicalome and metabolome profiling of Chai-Gui Decoction using an integrated strategy based on UHPLC-Q-TOF-MS/MS analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1185(1185), 122979.
[http://dx.doi.org/10.1016/j.jchromb.2021.122979] [PMID: 34688199]
[18]
Lv, S.; Qiu, Q.; Wang, Q.; Kuang, H. A comprehensive review of the botany, ethnopharmacology, biochemistry, pharmacology, pharmacokinetics and toxicity of Filifolium sibiricum (L.). Kitam. Chin. Med., 2021, 16(1), 83.
[http://dx.doi.org/10.1186/s13020-021-00471-w] [PMID: 34425861]
[19]
Jakimiuk, K.; Wink, M.; Tomczyk, M. Flavonoids of the caryophyllaceae. Phytochem. Rev., 2022, 21(1), 179-218.
[http://dx.doi.org/10.1007/s11101-021-09755-3]
[20]
Gonzales, G.B.; Smagghe, G.; Grootaert, C.; Zotti, M.; Raes, K.; Camp, J.V. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab. Rev., 2015, 47(2), 175-190.
[http://dx.doi.org/10.3109/03602532.2014.1003649] [PMID: 25633078]
[21]
Lei, Z.; Sumner, B.W.; Bhatia, A.; Sarma, S.J.; Sumner, L.W. UHPLC-MS analyses of plant flavonoids. Curr. Protoc. Plant Biol., 2019, 4(1), e20085.
[http://dx.doi.org/10.1002/cppb.20085] [PMID: 30489018]
[22]
Ma, Y.L.; Li, Q.M.; Van den Heuvel, H.; Claeys, M. Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom., 1997, 11(12), 1357-1364.
[http://dx.doi.org/10.1002/(SICI)1097-0231(199708)11:12<1357::AID-RCM983>3.0.CO;2-9]
[23]
Ma, Y.L.; Heuvel, H.V.; Claeys, M. Characterization of 3-methoxyflavones using fast-atom bombardment and collision-induced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom., 1999, 13(19), 1932-1942.
[http://dx.doi.org/10.1002/(SICI)1097-0231(19991015)13:19<1932::AID-RCM735>3.0.CO;2-W] [PMID: 10487940]
[24]
Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Gómez, M.V.; Velders, A.H.; Hermosín-Gutiérrez, I. Flavonol 3-O-glycosides series of Vitis vinifera Cv. petit verdot red wine grapes. J. Agric. Food Chem., 2009, 57(1), 209-219.
[http://dx.doi.org/10.1021/jf802863g] [PMID: 19061313]
[25]
Lei, Z.; Jing, L.; Qiu, F.; Zhang, H.; Huhman, D.; Zhou, Z.; Sumner, L.W. Construction of an ultrahigh pressure liquid chromatography-tandem mass spectral library of plant natural products and comparative spectral analyses. Anal. Chem., 2015, 87(14), 7373-7381.
[http://dx.doi.org/10.1021/acs.analchem.5b01559] [PMID: 26107650]
[26]
Nurul Islam, M.; Downey, F.; Ng, C.K.Y. Comprehensive profiling of flavonoids in Scutellaria incana L. using LC-Q-TOF-MS. Acta Chromatogr., 2013, 25(3), 555-569.
[http://dx.doi.org/10.1556/AChrom.25.2013.3.11]
[27]
Park, S.Y.; Jin, M.L.; Yi, E.H.; Kim, Y.; Park, G. Neochlorogenic acid inhibits against LPS-activated inflammatory responses through up-regulation of Nrf2/HO-1 and involving AMPK pathway. Environ. Toxicol. Pharmacol., 2018, 62, 1-10.
[http://dx.doi.org/10.1016/j.etap.2018.06.001] [PMID: 29908432]
[28]
Dabeek, W.M.; Marra, M.V. dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 2019, 11(10), 2288.
[http://dx.doi.org/10.3390/nu11102288] [PMID: 31557798]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy