Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Coumarin and Piperazine Conjugates as Selective Inhibitors of the Tumor-associated Carbonic Anhydrase IX and XII Isoforms

Author(s): Aaftaab Sethi, Sharon Munagalasetty, Mohammed Arifuddin, Simone Carradori, Claudiu T. Supuran*, Ravi Alvala and Mallika Alvala*

Volume 23, Issue 10, 2023

Published on: 09 March, 2023

Page: [1184 - 1191] Pages: 8

DOI: 10.2174/1871520623666230202123535

Price: $65

Abstract

Background: Carbonic Anhydrases (CAs) are a family of metalloenzymes that catalyze the reversible interconversion of CO2 and water to bicarbonate and proton. CA isoforms I, II, IX, and XII are considered physiologically and pharmacologically relevant.

Objective: The objective of this study is to synthesize potent and selective tumor-associated CA IX and XII inhibitors.

Methods: A library of 17 coumarin derivatives clubbed with piperazine and benzyl moiety was designed, synthesized and evaluated for its inhibitory effects and selectivity profile towards physiologically and pharmacologically relevant CA isoforms I, II, IX, and XII.

Results: All the derivatives were found to be active against the tumor-associated isoforms IX and XII. The most active compound against hCA (human Carbonic Anhydrase) IX was found to possess a Ki of 229 nM, while the one against hCA XII had a Ki of 294.2 nM. Additionally, two of the compounds were found to have exquisite selectivity towards the off-target hCA I and II isoforms. Moreover, they were found to be approximately 20-fold more selective towards hCA IX than XII. The selectivity of the compounds was further investigated via molecular modeling techniques.

Conclusion: Coumarin-piperazine hybrids were identified as potent and selective CA IX and XII inhibitors. Molecular modeling techniques provided interesting cues pertaining to observed selectivity.

Graphical Abstract

[1]
Weis, V.M.; Smith, G.J.; Muscatine, L.A. “CO2 supply” mechanism in zooxanthellate cnidarians: Role of carbonic anhydrase. Mar. Biol., 1989, 100(2), 195-202.
[http://dx.doi.org/10.1007/BF00391958]
[2]
Supuran, C.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[3]
Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J., 2016, 473(14), 2023-2032.
[http://dx.doi.org/10.1042/BCJ20160115] [PMID: 27407171]
[4]
Scozzafava, A.; Mastrolorenzo, A.; Supuran, C.T. Modulation of carbonic anhydrase activity and its applications in therapy. Expert Opin. Ther. Pat., 2004, 14(5), 667-702.
[http://dx.doi.org/10.1517/13543776.14.5.667]
[5]
Supuran, C.T. Multitargeting approaches involving carbonic anhydrase inhibitors: Hybrid drugs against a variety of disorders. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1702-1714.
[http://dx.doi.org/10.1080/14756366.2021.1945049] [PMID: 34325588]
[6]
Supuran, C.T. Experimental carbonic anhydrase inhibitors for the treatment of hypoxic tumors. J. Exp. Pharmacol., 2020, 12, 603-617.
[http://dx.doi.org/10.2147/JEP.S265620] [PMID: 33364855]
[7]
Supuran, C.T.; Alterio, V.; Di Fiore, A.; D’ Ambrosio, K.; Carta, F.; Monti, S.M.; De Simone, G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Med. Res. Rev., 2018, 38(6), 1799-1836.
[http://dx.doi.org/10.1002/med.21497] [PMID: 29635752]
[8]
Sarnella, A.; Ferrara, Y.; Auletta, L.; Albanese, S.; Cerchia, L.; Alterio, V.; De Simone, G.; Supuran, C.T.; Zannetti, A. Inhibition of carbonic anhydrases IX/XII by SLC-0111 boosts cisplatin effects in hampering head and neck squamous carcinoma cell growth and invasion. J. Exp. Clin. Cancer Res., 2022, 41(1), 122.
[http://dx.doi.org/10.1186/s13046-022-02345-x] [PMID: 35365193]
[9]
Supuran, C.T. How many carbonic anhydrase inhibition mechanisms exist? J. Enzyme Inhib. Med. Chem., 2016, 31(3), 345-360.
[http://dx.doi.org/10.3109/14756366.2015.1122001] [PMID: 26619898]
[10]
Thacker, P.S.; Angeli, A.; Argulwar, O.S.; Tiwari, P.L.; Arifuddin, M.; Supuran, C.T. Design, synthesis and biological evaluation of coumarin linked 1,2,4-oxadiazoles as selective carbonic anhydrase IX and XII inhibitors. Bioorg. Chem., 2020, 98, 103739.
[http://dx.doi.org/10.1016/j.bioorg.2020.103739] [PMID: 32193032]
[11]
Mohammed, A.; Supuran, C.T.; Thacker, P.S.; Tiwari, P.L.; Goud, N.S.; Srikanth, D.; Angeli, A. Synthesis and biological evaluation of coumarin carboxamides as selective and potent inhibitors of carbonic anhydrases IX and XII. Anticancer. Agents Med. Chem., 2022, 22(14), 2647-2654.
[http://dx.doi.org/10.2174/1871520622666220304184525] [PMID: 35249507]
[12]
Sethi, A.; Sasikala, K.; Jakkula, P.; Gadde, D.; Sanam, S.; Qureshi, I.A.; Talla, V.; Alvala, M. Design, synthesis and computational studies involving Indole-Coumarin hybrids as galectin-1 inhibitors. Chem. Pap., 2021, 75(6), 2791-2805.
[http://dx.doi.org/10.1007/s11696-021-01534-w]
[13]
Komal, D.; Khushboo, J.; Aaftaab, S.; Lakshmi, S.; Mallika, A. Targeting integrase enzyme: A therapeutic approach to combat HIV resistance. Mini Rev. Med. Chem., 2020, 20(3), 219-238.
[http://dx.doi.org/10.2174/1389557519666191015124932] [PMID: 31613727]
[14]
Keri, R.S.; Sasidhar, B.S.; Nagaraja, B.M.; Santos, M.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem., 2015, 100, 257-269.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.017] [PMID: 26112067]
[15]
Gumus, A.; Bozdag, M.; Akdemir, A.; Angeli, A.; Selleri, S.; Carta, F.; Supuran, C.T. Thiosemicarbazide-substituted coumarins as selective inhibitors of the tumor associated human carbonic anhydrases IX and XII. Molecules, 2022, 27(14), 4610.
[http://dx.doi.org/10.3390/molecules27144610] [PMID: 35889480]
[16]
Onyılmaz, M.; Koca, M.; Bonardi, A.; Degirmenci, M.; Supuran, C.T. Isocoumarins: A new class of selective carbonic anhydrase IX and XII inhibitors. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 743-748.
[http://dx.doi.org/10.1080/14756366.2022.2041630] [PMID: 35188025]
[17]
Davis, R.A.; Vullo, D.; Maresca, A.; Supuran, C.T.; Poulsen, S.A. Natural product coumarins that inhibit human carbonic anhydrases. Bioorg. Med. Chem., 2013, 21(6), 1539-1543.
[http://dx.doi.org/10.1016/j.bmc.2012.07.021] [PMID: 22892213]
[18]
Carta, F.; Maresca, A.; Scozzafava, A.; Supuran, C.T. Novel coumarins and 2-thioxo-coumarins as inhibitors of the tumor-associated carbonic anhydrases IX and XII. Bioorg. Med. Chem., 2012, 20(7), 2266-2273.
[http://dx.doi.org/10.1016/j.bmc.2012.02.014] [PMID: 22377674]
[19]
Maresca, A.; Temperini, C.; Pochet, L.; Masereel, B.; Scozzafava, A.; Supuran, C.T. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J. Med. Chem., 2010, 53(1), 335-344.
[http://dx.doi.org/10.1021/jm901287j] [PMID: 19911821]
[20]
Sethi, A.; Sanam, S.; Alvala, M. Non-carbohydrate strategies to inhibit lectin proteins with special emphasis on galectins. Eur. J. Med. Chem., 2021, 222, 113561.
[http://dx.doi.org/10.1016/j.ejmech.2021.113561] [PMID: 34146913]
[21]
Havránková, E.; Csöllei, J.; Vullo, D.; Garaj, V.; Pazdera, P.; Supuran, C.T. Novel sulfonamide incorporating piperazine, aminoalcohol and 1,3,5-triazine structural motifs with carbonic anhydrase I, II and IX inhibitory action. Bioorg. Chem., 2018, 77, 25-37.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.034] [PMID: 29324250]
[22]
Manasa, K.L.; Pujitha, S.; Sethi, A.; Arifuddin, M.; Alvala, M.; Angeli, A.; Supuran, C.T. Synthesis and biological evaluation of imidazo[2,1-b]thiazole based sulfonyl piperazines as novel carbonic anhydrase ii inhibitors. Metabolites, 2020, 10(4), 136.
[http://dx.doi.org/10.3390/metabo10040136] [PMID: 32244413]
[23]
D’Ambrosio, K.; Di Fiore, A.; Buonanno, M.; Kumari, S.; Tiwari, M.; Supuran, C.T.; Mishra, C.B.; Monti, S.M.; De Simone, G. The crystal structures of 2-(4-benzhydrylpiperazin-1-yl)-N-(4-sulfamoylphenyl)acetamide in complex with human carbonic anhydrase II and VII provide insights into selective CA inhibitor development. New J. Chem., 2021, 45(1), 147-152.
[http://dx.doi.org/10.1039/D0NJ03544K]
[24]
D’Ambrosio, K.; Carradori, S.; Monti, S.M.; Buonanno, M.; Secci, D.; Vullo, D.; Supuran, C.T.; De Simone, G. Out of the active site binding pocket for carbonic anhydrase inhibitors. Chem. Commun., 2015, 51(2), 302-305.
[http://dx.doi.org/10.1039/C4CC07320G] [PMID: 25407638]
[25]
Pontecorvi, V.; Mori, M.; Picarazzi, F.; Zara, S.; Carradori, S.; Cataldi, A.; Angeli, A.; Berrino, E.; Chimenti, P.; Ciogli, A.; Secci, D.; Guglielmi, P.; Supuran, C.T. Novel insights on human carbonic anhydrase inhibitors based on coumalic acid: Design, synthesis, molecular modeling investigation, and biological studies. Int. J. Mol. Sci., 2022, 23(14), 7950.
[http://dx.doi.org/10.3390/ijms23147950] [PMID: 35887299]
[26]
Mancuso, F.; De Luca, L.; Angeli, A.; Del Prete, S.; Capasso, C.; Supuran, C.T.; Gitto, R. Synthesis, computational studies and assessment of in vitro inhibitory activity of umbelliferon-based compounds against tumour-associated carbonic anhydrase isoforms IX and XII. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1442-1449.
[http://dx.doi.org/10.1080/14756366.2020.1786821] [PMID: 32614678]
[27]
Akdemir, A.; Güzel-Akdemir, Ö.; Demir-Yazıcı, K.; Vullo, D.; Supuran, C.T. New pyridinium salt derivatives of 2-(hydrazinocarbonyl)-3-phenyl-1h-indole-5-sulfonamide as selective inhibitors of tumour-related human carbonic anhydrase isoforms IX and XII. Anticancer. Agents Med. Chem., 2022, 22(14), 2637-2646.
[http://dx.doi.org/10.2174/1871520622666220207092123] [PMID: 35135455]
[28]
Kockar, F.; Maresca, A.; Aydın, M.; Işık, S.; Turkoglu, S.; Sinan, S.; Arslan, O.; Güler, Ö.Ö.; Turan, Y.; Supuran, C.T Mutation of phe91 to asn in human carbonic anhydrase i unexpectedly enhanced both catalytic activity and affinity for sulfonamide inhibitors. Bioorg. Med. Chem., 2010, 18(15), 5498-5503.
[http://dx.doi.org/10.1016/j.bmc.2010.06.056] [PMID: 20624682]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy