Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Biological Activities of Morita-Baylis-Hillman Adducts (MBHA)

Author(s): Larissa Adilis Maria Paiva Ferreira, Louise Mangueira de Lima, Laercia Karla Diega Paiva Ferreira, Larissa Rodrigues Bernardo, Aleff Castro, Claudio Gabriel Lima Junior, Mário Luiz Araújo de Almeida Vasconcellos and Marcia Regina Piuvezam*

Volume 23, Issue 17, 2023

Published on: 01 March, 2023

Page: [1691 - 1710] Pages: 20

DOI: 10.2174/1389557523666230202103719

Price: $65

Abstract

Background: The Morita-Baylis-Hillman reaction (MBHR) is considered one of the most powerful and versatile methodologies used for carbon-carbon bond formation. The reaction is defined as the condensation between an electrophilic carbon sp² and the α position of an olefin, carrying an electron-withdrawing group, in the presence of a catalyst. The advantages of the reaction are the high atom economy and mild reaction conditions. Under ideal conditions, this reaction leads to the formation of multifunctional products, called Morita-Baylis-Hillman adducts (MBHA), a class of relevant molecules that exhibit a variety of biological activities.

Objective: Considering the importance of these compounds, this review brought together several studies regarding the biological activities of MBHA, to point out the use of these molecules as future therapeutic agents.

Methods: We searched for scientific articles available in the main databases, published between 1999 and 2022, using the descriptors: Morita-Baylis-Hillman adducts, Morita-Baylis-Hillman reaction, biological activity, and biological potentiality.

Results: Thirty-five articles showed the variety of biological activities of MBHA, including molluscicidal, antitumor, herbicidal, and fungicidal, antileishmanial, antioxidant, antimalarial, anti-tumor inflammatory, vasorelaxant, antichagasic, antimicrobial, and anti-inflammatory activities.

Conclusion: Therefore, these compounds are promising candidates to become drugs for the treatment of a variety of diseases, following further studies to understand the effective mechanisms of action of MBHA.

Graphical Abstract

[1]
Pandey, A.K.; Kang, D.; Han, S.H.; Lee, H.; Mishra, N.K.; Kim, H.S.; Jung, Y.H.; Hong, S.; Kim, I.S. Reactivity of morita–baylis–hillman adducts in C–H functionalization of (hetero)aryl nitrones: access to bridged cycles and carbazoles. Org. Lett., 2018, 20(15), 4632-4636.
[http://dx.doi.org/10.1021/acs.orglett.8b01910] [PMID: 30047738]
[2]
Basavaiah, D.; Venkateswara Rao, K.; Jannapu Reddy, R. The Baylis–Hillman reaction: A novel source of attraction, opportunities, and challenges in synthetic chemistry. Chem. Soc. Rev., 2007, 36(10), 1581.
[http://dx.doi.org/10.1039/b613741p]
[3]
Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 281-305.
[http://dx.doi.org/10.1517/17460441.2016.1135125] [PMID: 26727036]
[4]
Basavaiah, D.; Rao, A.J.; Satyanarayana, T. Recent advances in the Baylis-Hillman reaction and applications. Chem. Rev., 2003, 103(3), 811-892.
[http://dx.doi.org/10.1021/cr010043d] [PMID: 12630854]
[5]
Narendar Reddy, T.; Jayathirtha Rao, V. Importance of Baylis-Hillman adducts in modern drug discovery. Tetrahedron Lett., 2018, 59(30), 2859-2875.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.023]
[6]
Laraia, L.; Waldmann, H. Natural product inspired compound collections: Evolutionary principle, chemical synthesis, phenotypic screening, and target identification. Drug Discov. Today. Technol., 2017, 23, 75-82.
[http://dx.doi.org/10.1016/j.ddtec.2017.03.003] [PMID: 28647090]
[7]
Cantillo, D.; Kappe, C.O. A unified mechanistic view on the Morita-Baylis-Hillman reaction: computational and experimental investigations. J. Org. Chem., 2010, 75(24), 8615-8626.
[http://dx.doi.org/10.1021/jo102094h] [PMID: 21082843]
[8]
Rodrigues, T.S.; Silva, V.H.C.; Lalli, P.M.; de Oliveira, H.C.B.; da Silva, W.A.; Coelho, F.; Eberlin, M.N.; Neto, B.A.D. Morita-Baylis-Hillman reaction: ESI-MS(/MS) investigation with charge tags and ionic liquid effect origin revealed by DFT calculations. J. Org. Chem., 2014, 79(11), 5239-5248.
[http://dx.doi.org/10.1021/jo500799j] [PMID: 24815995]
[9]
Plata, R.E.; Singleton, D.A. A case study of the mechanism of alcohol-mediated Morita Baylis-Hillman reactions. The importance of experimental observations. J. Am. Chem. Soc., 2015, 137(11), 3811-3826.
[http://dx.doi.org/10.1021/ja5111392] [PMID: 25714789]
[10]
Pellissier, H. Recent developments in the asymmetric organocatalytic Morita−Baylis−Hillman reaction. Tetrahedron, 2017, 73(20), 2831-2861.
[http://dx.doi.org/10.1016/j.tet.2017.04.008]
[11]
Masson, G.; Housseman, C.; Zhu, J. The enantioselective Morita-Baylis-Hillman reaction and its aza counterpart. Angew. Chem. Int. Ed., 2007, 46(25), 4614-4628.
[http://dx.doi.org/10.1002/anie.200604366] [PMID: 17397122]
[12]
Liu, Z.; Patel, C.; Harvey, J.N.; Sunoj, R.B. Mechanism and reactivity in the Morita–Baylis–Hillman reaction: The challenge of accurate computations. Phys. Chem. Chem. Phys., 2017, 19(45), 30647-30657.
[http://dx.doi.org/10.1039/C7CP06508F] [PMID: 29116284]
[13]
Chen, Z.C.; Chen, Z.; Du, W.; Chen, Y.C. Transformations of modified morita‐baylis‐hillman adducts from isatins catalyzed by lewis bases. Chem. Rec., 2020, 20(6), 541-555.
[http://dx.doi.org/10.1002/tcr.201900058] [PMID: 31609533]
[14]
Zhong, N.J.; Wang, Y.Z.; Cheng, L.; Wang, D.; Liu, L. Recent advances in the annulation of Morita–Baylis–Hillman adducts. Org. Biomol. Chem., 2018, 16(29), 5214-5227.
[http://dx.doi.org/10.1039/C8OB00929E] [PMID: 29964282]
[15]
Xie, P.; Huang, Y. Morita–Baylis–Hillman adduct derivatives (MBHADs): versatile reactivity in Lewis base-promoted annulation. Org. Biomol. Chem., 2015, 13(32), 8578-8595.
[http://dx.doi.org/10.1039/C5OB00865D] [PMID: 26133693]
[16]
He, Q.; Zhan, G.; Du, W.; Chen, Y.C. Application of 7-azaisatins in enantioselective Morita–Baylis–Hillman reaction. Beilstein J. Org. Chem., 2016, 12, 309-313.
[http://dx.doi.org/10.3762/bjoc.12.33] [PMID: 26977190]
[17]
Santos, M.; Coelho, F.; Lima-Junior, C.; Vasconcellos, M. The Morita-baylis-hillman reaction: Advances and contributions from brazilian chemistry. Curr. Org. Synth., 2015, 12(6), 830-852.
[http://dx.doi.org/10.2174/157017941206150828114416]
[18]
Basavaiah, D.; Reddy, B.S.; Badsara, S.S. Recent contributions from the Baylis-Hillman reaction to organic chemistry. Chem. Rev., 2010, 110(9), 5447-5674.
[http://dx.doi.org/10.1021/cr900291g] [PMID: 20735052]
[19]
Majee, D.; Biswas, S.; Mobin, S.M.; Samanta, S. access to 4,6-diarylpicolinates via a domino reaction of cyclic sulfamidate imines with morita–baylis–hillman acetates of nitroolefins/nitrodienes. J. Org. Chem., 2016, 81(10), 4378-4385.
[http://dx.doi.org/10.1021/acs.joc.6b00472] [PMID: 27129356]
[20]
de Souza, R.O.M.A.; Pereira, V.L.P.; Esteves, P.M.; Vasconcellos, M.L.A.A. The morita–baylis–hillman reaction in aqueous–organic solvent system. Tetrahedron Lett., 2008, 49(41), 5902-5905.
[http://dx.doi.org/10.1016/j.tetlet.2008.07.140]
[21]
Lima-Junior, C.G.; Vasconcellos, M.L.A.A. Morita–Baylis–Hillman adducts: Biological activities and potentialities to the discovery of new cheaper drugs. Bioorg. Med. Chem., 2012, 20(13), 3954-3971.
[http://dx.doi.org/10.1016/j.bmc.2012.04.061] [PMID: 22632793]
[22]
Faheina-martins, G V; Leite, JA; Dantas, BB; Lima-júnior, CG Morita-baylis-hillman adducts display anti-inflammatory RAW264. 7 Cells, 2017, 2017
[23]
Xavier, F. J.S.; Lima Júnior C, G.; Vasconcellos M, L.A.A.; de Oliveira R, G.; Silva F, P. L.; de Castro A, C. Vasorelaxant activity of morita-baylis-hillman adducts derived from eugenol on superior mesenteric artery of normotensive rats. Rev. Virtual Química., 2019, 11(4), 1277-88.
[24]
Singh, S.; Bhat, S. Antimicrobial potential of 3-hydroxy-2-methylene-3-phenylpropionic acid derivatives. Acta Pharm., 2011, 61(4), 447-455.
[http://dx.doi.org/10.2478/v10007-011-0034-2] [PMID: 22202203]
[25]
de França, J.S.; de Sales-Neto, J.M.; Carvalho, D.C.M.; de Almeida Lima, É.; Olegário, T.R.; Mendes, R.K.S.; Lima-Junior, C.G. de Almeida Vasconcellos, M.L.A.; Rodrigues-Mascarenhas, S. Morita-Baylis-Hillman adduct 2-(3-hydroxy-2-oxoindolin-3-yl)acrylonitrile (ISACN) modulates inflammatory process in vitro and in vivo. Inflammation, 2021, 44(3), 899-907.
[http://dx.doi.org/10.1007/s10753-020-01385-9] [PMID: 33236262]
[26]
Elleuch, H.; Mihoubi, W.; Mihoubi, M.; Ketata, E.; Gargouri, A.; Rezgui, F. Potential antioxidant activity of Morita-Baylis-Hillman adducts. Bioorg. Chem., 2018, 78, 24-28.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.004] [PMID: 29529518]
[27]
Fernandes, F.S.; Santos, H.; Lima, S.R.; Conti, C.; Rodrigues, M.T., Jr; Zeoly, L.A.; Ferreira, L.L.G.; Krogh, R.; Andricopulo, A.D.; Coelho, F. Discovery of highly potent and selective antiparasitic new oxadiazole and hydroxy-oxindole small molecule hybrids. Eur. J. Med. Chem., 2020, 201, 112418.
[http://dx.doi.org/10.1016/j.ejmech.2020.112418] [PMID: 32590115]
[28]
Xavier, F.J.S.; Lira, A.B.; Verissimo, G.C.; Fernanda, F.S.; de Oliveira Filho, A.A.; de Souza-Fagundes, E.M. Morita–Baylis–Hillman adducts derived from thymol: synthesis, in silico studies and biological activity against Giardia lamblia. Mol. Divers., 2021, 2021, 1-14.
[PMID: 34482477]
[29]
de-Andrade, S.D.; Andrade, I.M.G.; Castro, A.; Montenegro, Y.M.R. das-Neves-Moreira, D.; Maia, R.A.; Martins, F-T.; Vaz, B-G.; Franco-dos-Santos, G.; Lima, E-O.; Oliveira, N-R.; Farias, B-K-S.; Lima-Junior, C-G. Deep eutectic solvent co-catalyzed synthesis and antimicrobial activity of Morita-Baylis-Hillman adducts from isatin derivatives. J. Mol. Struct., 2023, 1273, 134323.
[http://dx.doi.org/10.1016/j.molstruc.2022.134323]
[30]
Haleem, A.; Ullah, H. Synthesis and biological activity of morita baylis hillman adducts and their oximes? Pharm. Chem. J., 2022, 56(2), 185-90.
[31]
Ishfaq, S.; Ullah, H.; Rahman, T.U.; Majid, S.; Ahmad, N.; Ellahi, M.; Badshah, S.; Akram, M.; Panezai, N. Morita Baylis hillman adduct serves as ligand in the synthesis of transition metal complexes exhibiting antibacterial activity. Pharm. Chem. J., 2022, 56(7), 906-912.
[http://dx.doi.org/10.1007/s11094-022-02725-9]
[32]
Vieira, A.C.S.; da Silva Santos, M.; Leite, A.B.; da Silva, A.E.; Cavalcante-Silva, L.H.A.; de Souza Augusto Pereira, G.; Marques, S.D.G.; de Oliveira Santos, B.V.; Duarte, A.W.F.; de Queiroz, A.C.; de Luna-Freire, K.R.; Alexandre-Moreira, M.S. Leishmanicidal activity of Morita-Baylis–Hillman adducts. Parasitol. Res., 2022, 121(2), 751-762.
[http://dx.doi.org/10.1007/s00436-021-07421-3] [PMID: 34988671]
[33]
Wang, X.; Wang, X.; Han, Z.; Wang, Z.; Ding, K. Palladium-Catalyzed asymmetric allylic allylation of racemic morita-baylis-hillman adducts. Angew. Chem. Int. Ed., 2017, 56(4), 1116-1119.
[http://dx.doi.org/10.1002/anie.201609332] [PMID: 27996169]
[34]
Engels, D.; Zhou, X.N. Neglected tropical diseases: An effective global response to local poverty-related disease priorities. Infect. Dis. Poverty, 2020, 9(1), 10.
[http://dx.doi.org/10.1186/s40249-020-0630-9] [PMID: 31987053]
[35]
Hotez, P.J. Human Parasitology and Parasitic Diseases: Heading Towards 2050. Adv. Parasitol., 2018, 100, 29-38.
[http://dx.doi.org/10.1016/bs.apar.2018.03.002] [PMID: 29753341]
[36]
Zingales, B.; Miles, M.A.; Campbell, D.A.; Tibayrenc, M.; Macedo, A.M.; Teixeira, M.M.G.; Schijman, A.G.; Llewellyn, M.S.; Lages-Silva, E.; Machado, C.R.; Andrade, S.G.; Sturm, N.R. The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications. Infect. Genet. Evol., 2012, 12(2), 240-253.
[http://dx.doi.org/10.1016/j.meegid.2011.12.009] [PMID: 22226704]
[37]
Bern, C. Chagas’ Disease. N. Engl. J. Med., 2015, 373(5), 456-66.
[38]
Kratz, J.M. Drug discovery for chagas disease: A viewpoint. Acta Trop., 2019, 198, 105107.
[http://dx.doi.org/10.1016/j.actatropica.2019.105107] [PMID: 31351074]
[39]
Sandes, J.M.; Borges, A.R.; Junior, C.G.L.; Silva, F.P.L.; Carvalho, G.A.U.; Rocha, G.B.; Vasconcellos, M.L.A.A.; Figueiredo, R.C.B.Q. 3-Hydroxy-2-methylene-3-(4-nitrophenylpropanenitrile): A new highly active compound against epimastigote and trypomastigote form of Trypanosoma cruzi. Bioorg. Chem., 2010, 38(5), 190-195.
[http://dx.doi.org/10.1016/j.bioorg.2010.06.003] [PMID: 20638707]
[40]
Sandes, J.M.; Fontes, A.; Regis-da-Silva, C.G.; de Castro, M.C.A.B.; Lima-Junior, C.G.; Silva, F.P.L. Trypanosoma cruzi cell death induced by the morita-baylis-hillman adduct 3-hydroxy-2-methylene-3-(4-Nitrophenylpropanenitrile). PLoS One, 2014, 9(4), e93936.
[41]
Morales-Suarez-Varela, M.; Peraita-Costa, I.; Llopis-Morales, A.; Llopis-Gonzalez, A. Supplementation with micronutrients and schistosomiasis: Systematic review and meta-analysis. Pathog. Glob. Health, 2019, 113(3), 101-108.
[http://dx.doi.org/10.1080/20477724.2019.1603902] [PMID: 30983544]
[42]
Loverde, P.T. Schistosomiasis. In: Advances in Experimental Medicine and Biology; Springer: New York LLC, 2019; p. 45-70.
[43]
Mendes, T.M.F.; Carrilho, E.; Afonso, A.J.P.F.S.; Galinaro, C.A.; Cabral, F.J.; Allegretti, S.M. Proteomic, metabolic and immunological changes in Biomphalaria glabrata infected with Schistosoma mansoni. Int. J. Parasitol., 2019, 49(13-14), 1049-1060.
[http://dx.doi.org/10.1016/j.ijpara.2019.08.001] [PMID: 31726057]
[44]
Vasconcellos, M.L.A.A.; Silva, T.M.S.; Camara, C.A.; Martins, R.M.; Lacerda, K.M.; Lopes, H.M.; Pereira, V.L.P.; de Souza, R.O.M.A.; Crespo, L.T.C. Baylis–Hillman adducts with molluscicidal activity against Biomphalaria glabrata. Pest Manag. Sci., 2006, 62(3), 288-292.
[http://dx.doi.org/10.1002/ps.1153] [PMID: 16475220]
[45]
Eikenberry, S.E.; Gumel, A.B. Mathematical modeling of climate change and malaria transmission dynamics: A historical review. J. Math. Biol., 2018, 77(4), 857-933.
[http://dx.doi.org/10.1007/s00285-018-1229-7] [PMID: 29691632]
[46]
Sortica, V.A.; Lindenau, J.D.; Cunha, M.G.; Ohnishi, M.D.O.; Ventura, A.M.R.; Ribeiro-dos-Santos, Â.K.C.; Santos, S.E.B.; Guimarães, L.S.P.; Hutz, M.H. The effect of SNPs in CYP450 in chloroquine/primaquine Plasmodium vivax malaria treatment. Pharmacogenomics, 2016, 17(17), 1903-1911.
[http://dx.doi.org/10.2217/pgs-2016-0131] [PMID: 27767381]
[47]
Kundu, M.K.; Sundar, N.; Kumar, S.K.; Bhat, S.V.; Biswas, S.; Valecha, N.; Valecha, N. Antimalarial activity of 3-hydroxyalkyl-2-methylene-propionic acid derivatives. Bioorg. Med. Chem. Lett., 1999, 9(5), 731-736.
[http://dx.doi.org/10.1016/S0960-894X(99)00057-8] [PMID: 10201838]
[48]
Narender, P.; Srinivas, U.; Gangadasu, B.; Biswas, S.; Rao, V.J. Anti-malarial activity of Baylis–Hillman adducts from substituted 2-chloronicotinaldehydes. Bioorg. Med. Chem. Lett., 2005, 15(24), 5378-5381.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.008] [PMID: 16213708]
[49]
Labony, S.S.; Begum, N.; Rima, U.K.; Azam Chowdhury, M.G.; Hossain, M.Z.; Habib, M.A.; Ali Khan, M.A.H.N. Apply traditional and molecular protocols for the detection of carrier state of visceral leishmaniasis in black Bengal goat. IOSR J. Agric. Vet. Sci., 2014, 7(2), 13-18.
[http://dx.doi.org/10.9790/2380-07231318]
[50]
Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet, 2018, 392(10151), 951-970.
[http://dx.doi.org/10.1016/S0140-6736(18)31204-2] [PMID: 30126638]
[51]
Islamuddin, M.; Sahal, D.; Afrin, F. Apoptosis-like death in Leishmania donovani promastigotes induced by eugenol-rich oil of Syzygium aromaticum. J. Med. Microbiol., 2014, 63(1), 74-85.
[http://dx.doi.org/10.1099/jmm.0.064709-0] [PMID: 24161990]
[52]
Boeck, P.; Bandeira Falcão, C.A.; Leal, P.C.; Yunes, R.A.; Filho, V.C.; Torres-Santos, E.C.; Rossi-Bergmann, B. Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg. Med. Chem., 2006, 14(5), 1538-1545.
[http://dx.doi.org/10.1016/j.bmc.2005.10.005] [PMID: 16386424]
[53]
de Souza, R.O.M.A.; Pereira, V.L.P.; Muzitano, M.F.; Falcão, C.A.B.; Rossi-Bergmann, B.; Filho, E.B.A.; Vasconcellos, M.L.A.A. High selective leishmanicidal activity of 3-hydroxy-2-methylene-3-(4-bromophenyl)propanenitrile and analogous compounds. Eur. J. Med. Chem., 2007, 42(1), 99-102.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.013] [PMID: 17010481]
[54]
de Morais, S.M.; Vila-Nova, N.S.; Bevilaqua, C.M.L.; Rondon, F.C.; Lobo, C.H.; de Alencar Araripe Noronha Moura, A.; Sales, A.D.; Rodrigues, A.P.R.; de Figuereido, J.R.; Campello, C.C.; Wilson, M.E.; de Andrade, H.F., Jr Thymol and eugenol derivatives as potential antileishmanial agents. Bioorg. Med. Chem., 2014, 22(21), 6250-6255.
[http://dx.doi.org/10.1016/j.bmc.2014.08.020] [PMID: 25281268]
[55]
Junior, C.G.L.; de Assis, P.A.C.; Silva, F.P.L.; Sousa, S.C.O.; de Andrade, N.G.; Barbosa, T.P.; Nerís, P.L.N.; Segundo, L.V.G.; Anjos, Í.C.; Carvalho, G.A.U.; Rocha, G.B.; Oliveira, M.R.; Vasconcellos, M.L.A.A. Efficient synthesis of 16 aromatic Morita–Baylis–Hillman adducts: Biological evaluation on Leishmania amazonensis and Leishmania chagasi. Bioorg. Chem., 2010, 38(6), 279-284.
[http://dx.doi.org/10.1016/j.bioorg.2010.08.002] [PMID: 20855101]
[56]
Barbosa, T.P.; Junior, C.G.L.; Silva, F.P.L.; Lopes, H.M.; Figueiredo, L.R.F.; Sousa, S.C.O.; Batista, G.N.; da Silva, T.G.; Silva, T.M.S.; de Oliveira, M.R.; Vasconcellos, M.L. Improved synthesis of seven aromatic Baylis–Hillman adducts (BHA): Evaluation against Artemia salina Leach. and Leishmania chagasi. Eur. J. Med. Chem., 2009, 44(4), 1726-1730.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.016] [PMID: 18448204]
[57]
Silva, F.P.L.; de Assis, P.A.C.; Junior, C.G.L.; de Andrade, N.G.; da Cunha, S.M.D.; Oliveira, M.R.; Vasconcellos, M.L.A.A. Synthesis, evaluation against Leishmania amazonensis and cytotoxicity assays in macrophages of sixteen new congeners Morita–Baylis–Hillman adducts. Eur. J. Med. Chem., 2011, 46(9), 4295-4301.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.036] [PMID: 21775030]
[58]
Claudio Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[59]
Barbosa, T.P.; Sousa, S.C.O.; Amorim, F.M.; Rodrigues, Y.K.S.; de Assis, P.A.C.; Caldas, J.P.A.; Oliveira, M.R.; Vasconcellos, M.L.A.A. Design, synthesis and antileishmanial in vitro activity of new series of chalcones-like compounds: A molecular hybridization approach. Bioorg. Med. Chem., 2011, 19(14), 4250-4256.
[http://dx.doi.org/10.1016/j.bmc.2011.05.055] [PMID: 21684751]
[60]
Amorim, F.M.; Rodrigues, Y.K.S.; Barbosa, T.P.; Néris, P.L.N.; Caldas, J.P.A.; Sousa, S.C.O.; Leite, J.A.; Rodrigues-Mascarenhas, S.; Vasconcellos, M.L.A.A.; Oliveira, M.R. Morita-Baylis-Hillman adduct shows in vitro activity against Leishmania (Viannia) braziliensis associated with a reduction in IL-6 and IL-10 but independent of nitric oxide. Parasitology, 2013, 140(1), 29-38.
[http://dx.doi.org/10.1017/S0031182012001291] [PMID: 22906971]
[61]
da Silva, W.A.V.; Rodrigues, D.C.; de Oliveira, R.G.; Mendes, R.K.S.; Olegário, T.R.; Rocha, J.C.; Keesen, T.S.L.; Lima-Junior, C.G.; Vasconcellos, M.L.A.A. Synthesis and activity of novel homodimers of Morita–Baylis–Hillman adducts against Leishmania donovani: A twin drug approach. Bioorg. Med. Chem. Lett., 2016, 26(18), 4523-4526.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.022] [PMID: 27520941]
[62]
Xavier, F.; Rodrigues, K.; de Oliveira, R.; Lima Junior, C.; Rocha, J.; Keesen, T.; de Oliveira, M.; Silva, F.; Vasconcellos, M. Synthesis and in vitro anti Leishmania amazonensis Biological Screening of Morita-Baylis-Hillman Adducts Prepared from Eugenol, Thymol and Car-vacrol. Molecules, 2016, 21(11), 1483.
[http://dx.doi.org/10.3390/molecules21111483] [PMID: 27834831]
[63]
Sousa, S.; Rocha, J.; Keesen, T.; Silva, E.; de Assis, P.; de Oliveira, J.; Capim, S.; Xavier, F.; Marinho, B.; Silva, F.; Lima-Junior, C.; Vasconcellos, M. Synthesis of 16 new hybrids from tetrahydropyrans derivatives and Morita-Baylis-Hillman adducts: In vitro screening against Leishmania donovani. Molecules, 2017, 22(2), 207.
[http://dx.doi.org/10.3390/molecules22020207] [PMID: 28146095]
[64]
da Câmara Rocha, J.; da Franca Rodrigues, K.A.; do Nascimento Néris, P.L.; da Silva, L.V.; Almeida, F.S.; Lima, V.S.; Peixoto, R.F.; da Câmara Rocha, J.; de Azevedo, F.L.A.A.; Veras, R.C.; de Medeiros, I.A.; da Silva, W.A.V.; Lima-Junior, C.G.; de Almeida Vasconcellos, M.L.A.; do Amaral, I.P.G.; de Oliveira, M.R.; de Souza Lima Keesen, T. Biological activity of Morita-Baylis-Hillman adduct homodimers in L. infantum and L. amazonensis: Anti-Leishmania activity and cytotoxicity. Parasitol. Res., 2019, 118(10), 3067-3076.
[http://dx.doi.org/10.1007/s00436-019-06403-w] [PMID: 31392413]
[65]
de Souza, R.O.M.A.; Barros, J.C.; da Silva, J.F.M.; Antunes, O.A.C. Quantitative structure-activity relationship of Morita-Baylis-Hillman adducts with leishmanicidal activity. Z. Naturforsch. C J. Biosci., 2011, 66(3-4), 136-142.
[http://dx.doi.org/10.1515/znc-2011-3-407] [PMID: 21630587]
[66]
Filho, E.B.A.; Moraes, I.A.; Weber, K.C.; Rocha, G.B.; Vasconcellos, M.L.A.A. DFT/PCM, QTAIM, 1H NMR conformational studies and QSAR modeling of thirty-two anti-Leishmania amazonensis Morita–Baylis–Hillman Adducts. J. Mol. Struct., 2012, 1022, 72-80.
[http://dx.doi.org/10.1016/j.molstruc.2012.04.051]
[67]
de Paiva, Y.G.; de Souza, A.A.; Lima-Junior, C.G.; Silva, F.P.L. Correlation between electrochemical and theoretical studies on the leishmanicidal activity of twelve morita-baylis-hillman adducts. J. Braz. Chem. Soc., 2012, 23(5), 894-904.
[68]
Alencar Filho, E.B.; Weber, K.C.; Vasconcellos, M.L.A.A. Selection of 2D/3D molecular descriptors and QSAR modeling of aromatic Morita–Baylis–Hillman adducts with leishmanicidal activities. Med. Chem. Res., 2014, 23(12), 5328-5335.
[http://dx.doi.org/10.1007/s00044-014-1077-y]
[69]
Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis., 2014, 14(8), 742-750.
[http://dx.doi.org/10.1016/S1473-3099(14)70780-7] [PMID: 25022435]
[70]
Martinez, J.L. General principles of antibiotic resistance in bacteria. Drug Discov. Today. Technol., 2014, 11(1), 33-39.
[http://dx.doi.org/10.1016/j.ddtec.2014.02.001] [PMID: 24847651]
[71]
Warzecha, T.; Lundh, D.; Mandal, A. Effect of Fusarium culmorum infection on survivability of a T-DNA tagged mutant of Arabidopsis thaliana harboring a mutation in the peptide transporter gene At5g46050. Bio. Technologia, 2011, 1, 77-84.
[http://dx.doi.org/10.5114/bta.2011.46519]
[72]
Yin, M.; Fasoyin, O.E.; Wang, C.; Yue, Q.; Zhang, Y.; Dun, B.; Xu, Y.; Zhang, L. Herbicidal efficacy of harzianums produced by the biofertilizer fungus, Trichoderma. brevicompactum. AMB Express, 2020, 10(1), 118.
[http://dx.doi.org/10.1186/s13568-020-01055-x] [PMID: 32613360]
[73]
Yu, C.R.; Xu, L.H.; Tu, S.; Li, Z.N.; Li, B. Synthesis and bioactivity of novel (3-chloro-5-(trifluoromethyl)pyridin-2-yloxy)phenyl containing acrylate and acrylonitrile derivatives. J. Fluor. Chem., 2006, 127(12), 1540-1546.
[http://dx.doi.org/10.1016/j.jfluchem.2006.07.011]
[74]
Guiqiu, Y.; Chunrui, Y.U.; Xiulan, Y.U.; Xinghua, Q.I.U. Synthesis and bioactivity baylis-hillman adducts. In: Chem Reagents; , 2011; 33, p. 803-806.
[75]
Hajar, R. Risk factors for coronary artery disease: Historical perspectives. Hear Views, 2017, 18(3), 109.
[76]
Wright, J.M.; Musini, V.M.; Gill, R. First-line drugs for hypertension. Cochrane Database Syst. Rev., 2018, 2018(4)
[http://dx.doi.org/10.1002/14651858.CD001841.pub3]
[77]
Rabani, V.; Davani, S. translational approaches in cardiovascular diseases by omics. Curr. Issues Mol. Biol., 2018, 28, 1-14.
[PMID: 28894039]
[78]
Koren, D.; Kun, S.; Hegyesné Vecseri, B.; Kun-Farkas, G. Study of antioxidant activity during the malting and brewing process. J. Food Sci. Technol., 2019, 56(8), 3801-3809.
[http://dx.doi.org/10.1007/s13197-019-03851-1] [PMID: 31413406]
[79]
González-Burgos, E.; Gómez-Serranillos, M.P. Terpene compounds in nature: A review of their potential antioxidant activity. Curr. Med. Chem., 2012, 19(31), 5319-5341.
[http://dx.doi.org/10.2174/092986712803833335] [PMID: 22963623]
[80]
Liang, N.; Kitts, D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules, 2014, 19(11), 19180-19208.
[http://dx.doi.org/10.3390/molecules191119180] [PMID: 25415479]
[81]
de Andrade, T.; Brasil, G.; Endringer, D.; da Nóbrega, F.; de Sousa, D. Cardiovascular activity of the chemical constituents of essential oils. Molecules, 2017, 22(9), 1539.
[http://dx.doi.org/10.3390/molecules22091539] [PMID: 28926969]
[82]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[83]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[84]
Netea, M.G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M.Y.; Giamarellos-Bourboulis, E.J.; Golenbock, D.; Gresnigt, M.S.; Heneka, M.T.; Hoffman, H.M.; Hotchkiss, R.; Joosten, L.A.B.; Kastner, D.L.; Korte, M.; Latz, E.; Libby, P.; Mandrup-Poulsen, T.; Mantovani, A.; Mills, K.H.G.; Nowak, K.L.; O’Neill, L.A.; Pickkers, P.; van der Poll, T.; Ridker, P.M.; Schalkwijk, J.; Schwartz, D.A.; Siegmund, B.; Steer, C.J.; Tilg, H.; van der Meer, J.W.M.; van de Veerdonk, F.L.; Dinarello, C.A. A guiding map for inflammation. Nat. Immunol., 2017, 18(8), 826-831.
[http://dx.doi.org/10.1038/ni.3790] [PMID: 28722720]
[85]
Ingawale, D.K.; Mandlik, S.K. New insights into the novel anti-inflammatory mode of action of glucocorticoids. Immunopharmacol. Immunotoxicol., 2020, 42(2), 59-73.
[http://dx.doi.org/10.1080/08923973.2020.1728765] [PMID: 32070175]
[86]
Bacchi, S.; Palumbo, P.; Sponta, A.; Coppolino, M.F. Clinical pharmacology of non-steroidal anti-inflammatory drugs: a review. Antiinflamm. Antiallergy Agents Med. Chem., 2012, 11(1), 52-64.
[http://dx.doi.org/10.2174/187152312803476255] [PMID: 22934743]
[87]
Ghasemian, M; Owlia, S; Owlia, MB Review of anti-inflammatory herbal medicines. Adv. Pharmacol. Sci., 2016, 2016
[http://dx.doi.org/10.1155/2016/9130979]
[88]
Singh, N.; Baby, D.; Rajguru, J.; Patil, P.; Thakkannavar, S.; Pujari, V. Inflammation and cancer. Ann. Afr. Med., 2019, 18(3), 121-126.
[http://dx.doi.org/10.4103/aam.aam_56_18] [PMID: 31417011]
[89]
Lima-, C.G.; Faheina-Martins, G.V.; Bomfim, C.C.; Dantas, B.B.; Silva, E.P.; Araújo, D.A.; Filho, E.B.; Vasconcellos, M.L. Synthesis, cytotoxic activity on leukemia Cell Lines and Quantitative Structure-Activity Relationships (QSAR) Studies of Morita-Baylis-Hillman Adducts. Med. Chem., 2016, 12(7), 602-612.
[http://dx.doi.org/10.2174/1573406412666160506150924] [PMID: 27150963]
[90]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[91]
Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[92]
Okabe, Y.; Medzhitov, R. Tissue biology perspective on macrophages. Nat. Immunol., 2016, 17(1), 9-17.
[http://dx.doi.org/10.1038/ni.3320] [PMID: 26681457]
[93]
Bulua, A.C.; Simon, A.; Maddipati, R.; Pelletier, M.; Park, H.; Kim, K.Y.; Sack, M.N.; Kastner, D.L.; Siegel, R.M. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med., 2011, 208(3), 519-533.
[http://dx.doi.org/10.1084/jem.20102049] [PMID: 21282379]
[94]
Sethi, G.; Shanmugam, M.K.; Ramachandran, L.; Kumar, A.P.; Tergaonkar, V. Multifaceted link between cancer and inflammation. Biosci. Rep., 2012, 32(1), 1-15.
[http://dx.doi.org/10.1042/BSR20100136] [PMID: 21981137]
[95]
Jung, Y.J.; Isaacs, J.S.; Lee, S.; Trepel, J.; Neckers, L. IL‐1β mediated up‐regulation of HIF‐lα via an NFkB/COX‐2 pathway identifies HIF‐1 as a critical link between inflammation and oncogenesis. FASEB J., 2003, 17(14), 1-22.
[http://dx.doi.org/10.1096/fj.03-0329fje] [PMID: 12958148]
[96]
Lin, W.W.; Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest., 2007, 117(5), 1175-1183.
[http://dx.doi.org/10.1172/JCI31537] [PMID: 17476347]
[97]
Kohn, L.K.; Pavam, C.H.; Veronese, D.; Coelho, F.; De Carvalho, J.E.; Almeida, W.P. Antiproliferative effect of Baylis–Hillman adducts and a new phthalide derivative on human tumor cell lines. Eur. J. Med. Chem., 2006, 41(6), 738-744.
[http://dx.doi.org/10.1016/j.ejmech.2006.03.006] [PMID: 16647163]
[98]
Mohan, R.; Rastogi, N.; Namboothiri, I.N.N.; Mobin, S.M.; Panda, D. Synthesis and evaluation of α-hydroxymethylated conjugated ni-troalkenes for their anticancer activity: Inhibition of cell proliferation by targeting microtubules. Bioorganic. Med. Chem., 2006, 14(23), 8073-8085.
[99]
Buznikov, G.A.; Nikitina, L.A.; Bezuglov, V.V.; Lauder, J.M.; Padilla, S.; Slotkin, T.A. An invertebrate model of the developmental neurotoxicity of insecticides: Effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae. Environ. Health Perspect., 2001, 109(7), 651.
[http://dx.doi.org/10.1289/ehp.01109651]
[100]
Rastogi, N.; Mohan, R.; Panda, D.; Mobin, S.M.; Namboothiri, I.N.N. Synthesis and anticancer activity studies of α-aminoalkylated conjugated nitroalkenes. Org. Biomol. Chem., 2006, 4(17), 3211-3214.
[http://dx.doi.org/10.1039/B607537A] [PMID: 17036105]
[101]
Dadwal, M.; Mohan, R.; Panda, D.; Mobin, S.M.; Namboothiri, I.N.N. The Morita–Baylis–Hillman adducts of β-aryl nitroethylenes with other activated alkenes: Synthesis and anticancer activity studies. Chem. Commun. (Camb.), 2006, (3), 338-340.
[http://dx.doi.org/10.1039/B512267H] [PMID: 16391753]
[102]
Leite, J.C.A.; Junior, C.G.L.; Silva, F.P.L.; Sousa, S.C.O.; Vasconcellos, M.L.A.A.; Marques-Santos, L.F. Antimitotic activity on sea urchin embryonic cells of seven antiparasitic Morita-Baylis-Hillman adducts: A potential new class of anticancer drugs. Med. Chem., 2012, 8(6), 1003-1011.
[PMID: 22830498]
[103]
Brito, V.B.M.; Santos, G.F.; Silva, T.D.S.; Souza, J.L.C.; Militão, G.C.G.; Martins, F.T.; Silva, F.P.L.; Oliveira, B.G.; Araújo, E.C.C.; Vasconcellos, M.L.A.A.; Lima-Júnior, C.G.; Alencar-Filho, E.B. Synthesis, anti-proliferative activity, theoretical and 1H NMR experimental studies of Morita–Baylis–Hillman adducts from isatin derivatives. Mol. Divers., 2020, 24(1), 265-281.
[http://dx.doi.org/10.1007/s11030-019-09950-7] [PMID: 30955150]
[104]
Ketata, E.; Elleuch, H.; Neifar, A.; Mihoubi, W.; Ayadi, W.; Marrakchi, N.; Rezgui, F.; Gargouri, A. Anti-melanogenesis potential of a new series of Morita-Baylis-Hillman adducts in B16F10 melanoma cell line. Bioorg. Chem., 2019, 84(84), 17-23.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.028] [PMID: 30476649]
[105]
Bhowmik, S.; Batra, S. Applications of Morita-Baylis-hillman reaction to the synthesis of natural products and drug molecules. Curr. Org. Chem., 2015, 18(24), 3078-3119.
[http://dx.doi.org/10.2174/1385272819666141125003114]
[106]
Blakemore, D.C.; Castro, L.; Churcher, I.; Rees, D.C.; Thomas, A.W.; Wilson, D.M.; Wood, A. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem., 2018, 10(4), 383-394.
[http://dx.doi.org/10.1038/s41557-018-0021-z] [PMID: 29568051]
[107]
Campos, K.R.; Coleman, P.J.; Alvarez, J.C.; Dreher, S.D.; Garbaccio, R.M.; Terrett, N.K.; Tillyer, R.D.; Truppo, M.D.; Parmee, E.R. The importance of synthetic chemistry in the pharmaceutical industry. Science, 2019, 363(6424), eaat0805.
[http://dx.doi.org/10.1126/science.aat0805] [PMID: 30655413]
[108]
Coelho, F.; Almeida, W.P. The Baylis-Hillman reaction: A strategy for the preparation of multifunctionalised intermediates for organic synthesis. Quim. Nova, 2000, 23(1), 98-101.
[http://dx.doi.org/10.1590/S0100-40422000000100017]
[109]
Kim, J.H.; Kim, S.Y.; Kim, B.; Lee, S.R.; Cha, S.H.; Lee, D.S.; Lee, H.J. Prospects of Therapeutic target and directions for ischemic stroke. Pharmaceuticals (Basel), 2021, 14(4), 321.
[http://dx.doi.org/10.3390/ph14040321] [PMID: 33916253]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy