Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Overexpression of mTOR in Leukocytes from ALS8 Patients

Author(s): Nathália Augusta Gomes, Francisco das Chagas Lima e Silva, Caroline Maria de Oliveira Volpe, Pedro Henrique Villar-Delfino, Camila Ferreira de Sousa, Fabiana Rocha-Silva and José Augusto Nogueira-Machado*

Volume 21, Issue 3, 2023

Published on: 07 February, 2023

Page: [482 - 490] Pages: 9

DOI: 10.2174/1570159X21666230201151016

Price: $65

Abstract

Background: The mutated VAPBP56S (vesicle B associated membrane protein – P56S) protein has been described in a Brazilian family and classified as Amyotrophic Lateral Sclerosis type 8 (ALS8).

Objective: We aimed to study altered biochemical and immunological parameters in cells from ALS8 patients to identify possible biomarkers or therapeutic targets.

Methods: Wild-type VAPB, VAPBP56S, mTOR, proinflammatory cytokines, and oxidant/reducing levels in serum, leucocytes, and cellular lysate from ALS8 patients and health Controls were performed by ELISA, fluorimetry, and spectrophotometry.

Results: Our results showed similar levels of mutant and wild-type VAPB in serum and intracellular lysate (p > 0.05) when ALS8 patients and Controls were compared. IL-1β, IL-6, and IL-18 levels in patients and Controls showed no difference, suggesting an absence of peripheral inflammation (p > 0.05). Oxidative metabolic response, assessed by mitochondrial ROS production, and reductive response by MTT reduction, were higher in the ALS8 group compared to Controls (p < 0.05), although not characterizing typical oxidative stress in ALS8 patients. Total mTOR levels (phosphorylated or non-phosphorylated) of ALS8 patients were significantly lower in serum and higher in intracellular lysate than the mean equivalents in Controls (p < 0.05). A similar result was observed when we quantified the phosphorylated protein (p < 0.05).

Conclusion: We demonstrate the possibility of using these biochemical and immunological parameters as potential therapeutic targets or biomarkers. Furthermore, by hypothesis, we suggest a hormetic response in which both VAPB forms could coexist in different proportions throughout life. The mutated VAPBP56S production would increase with aging and predominate over the wild-type VAPB levels, determining the onset of symptoms and aggravating the disease.

Graphical Abstract

[1]
Souza, P.V.S.; Pinto, W.B.V.R.; Chieia, M.A.T.; Oliveira, A.S.B. Clinical and genetic basis of familial amyotrophic lateral sclerosis. Arq. Neuropsiquiatr., 2015, 73(12), 1026-1037.
[http://dx.doi.org/10.1590/0004-282X20150161] [PMID: 26465287]
[2]
Nishimura, A.L.; Mitne-Neto, M.; Silva, H.C.A.; Richieri-Costa, A.; Middleton, S.; Cascio, D.; Kok, F.; Oliveira, J.R.M.; Gillingwater, T.; Webb, J.; Skehel, P.; Zatz, M. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet., 2004, 75(5), 822-831.
[http://dx.doi.org/10.1086/425287] [PMID: 15372378]
[3]
Kanekura, K.; Nishimoto, I.; Aiso, S.; Matsuoka, M. Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8). J. Biol. Chem., 2006, 281(40), 30223-30233.
[http://dx.doi.org/10.1074/jbc.M605049200] [PMID: 16891305]
[4]
Chen, J.; Bassot, A.; Giuliani, F.; Simmen, T. Amyotrophic lateral sclerosis (ALS): Stressed by dysfunctional mitochondria-endoplasmic reticulum contacts (MERCs). Cells, 2021, 10(7), 1789.
[http://dx.doi.org/10.3390/cells10071789] [PMID: 34359958]
[5]
Shi, Y.; Shen, H.M.; Gopalakrishnan, V.; Gordon, N. Epigenetic regulation of autophagy beyond the cytoplasm: A review. Front. Cell Dev. Biol., 2021, 9675599
[http://dx.doi.org/10.3389/fcell.2021.675599] [PMID: 34195194]
[6]
Yin, S.; Liu, L.; Gan, W. The roles of post-translational modifications on mTOR signaling. Int. J. Mol. Sci., 2021, 22(4), 1784.
[http://dx.doi.org/10.3390/ijms22041784] [PMID: 33670113]
[7]
Ramesh, N.; Pandey, U.B. Autophagy dysregulation in ALS: When protein aggregates get out of hand. Front. Mol. Neurosci., 2017, 10, 263.
[http://dx.doi.org/10.3389/fnmol.2017.00263] [PMID: 28878620]
[8]
Rehorst, W.A.; Thelen, M.P.; Nolte, H.; Türk, C.; Cirak, S.; Peterson, J.M.; Wong, G.W.; Wirth, B.; Krüger, M.; Winter, D.; Kye, M.J. Muscle regulates mTOR dependent axonal local translation in motor neurons via CTRP3 secretion: Implications for a neuromuscular disorder, spinal muscular atrophy. Acta Neuropathol. Commun., 2019, 7(1), 154.
[http://dx.doi.org/10.1186/s40478-019-0806-3] [PMID: 31615574]
[9]
Ding, W.X.; Ni, H.M.; Gao, W.; Hou, Y.F.; Melan, M.A.; Chen, X.; Stolz, D.B.; Shao, Z.M.; Yin, X.M. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem., 2007, 282(7), 4702-4710.
[http://dx.doi.org/10.1074/jbc.M609267200] [PMID: 17135238]
[10]
Han, S.M.; El Oussini, H.; Scekic-Zahirovic, J.; Vibbert, J.; Cottee, P.; Prasain, J.K.; Bellen, H.J.; Dupuis, L.; Miller, M.A. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans. PLoS Genet., 2013, 9(9)e1003738
[http://dx.doi.org/10.1371/journal.pgen.1003738] [PMID: 24039594]
[11]
Yoon, M.S. mTOR as a key regulator in maintaining skeletal muscle mass. Front. Physiol., 2017, 8, 788.
[http://dx.doi.org/10.3389/fphys.2017.00788] [PMID: 29089899]
[12]
Dupuis, L.; Oudart, H.; René, F.; de Aguilar, J-L.G.; Loeffler, J.P. Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: Benefit of a high-energy diet in a transgenic mouse model. Proc. Natl. Acad. Sci. USA, 2004, 101(30), 11159-11164.
[http://dx.doi.org/10.1073/pnas.0402026101] [PMID: 15263088]
[13]
Hoffmann, M.H.; Griffiths, H.R. The dual role of reactive oxygen species in autoimmune and inflammatory diseases: Evidence from preclinical models. Free Radic. Biol. Med., 2018, 125, 62-71.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.016] [PMID: 29550327]
[14]
Gomez-Suaga, P.; Paillusson, S.; Stoica, R.; Noble, W.; Hanger, D.P.; Miller, C.C.J. The ER-mitochondria tethering complex vapb-ptpip51 regulates autophagy. Curr. Biol., 2017, 27(3), 371-385.
[http://dx.doi.org/10.1016/j.cub.2016.12.038] [PMID: 28132811]
[15]
Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med. Cell. Longev., 2019, 2019, 1-18.
[http://dx.doi.org/10.1155/2019/2105607] [PMID: 31210837]
[16]
Jiang, G.M.; Tan, Y.; Wang, H.; Peng, L.; Chen, H.T.; Meng, X.J.; Li, L.L.; Liu, Y.; Li, W.F.; Shan, H. The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol. Cancer, 2019, 18(1), 17.
[http://dx.doi.org/10.1186/s12943-019-0944-z] [PMID: 30678689]
[17]
Liu, G.Y.; Sabatini, D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol., 2020, 21(4), 183-203.
[http://dx.doi.org/10.1038/s41580-019-0199-y] [PMID: 31937935]
[18]
Mossmann, D.; Park, S.; Hall, M.N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer, 2018, 18(12), 744-757.
[http://dx.doi.org/10.1038/s41568-018-0074-8] [PMID: 30425336]
[19]
Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell, 2017, 168(6), 960-976.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[20]
Sullivan, P.F.; Fan, C.; Perou, C.M. Evaluating the comparability of gene expression in blood and brain. Am J Med Genet Part B, Neuropsychiatr Genet Off Publ Int Soc. Psychiatr. Genet., 2006, 141B(3), 261-268.
[21]
Araujo, B.G.; Souza e Silva, L.F.; de Barros Torresi, J.L.; Siena, A.; Valerio, B.C.O.; Brito, M.D.; Rosenstock, T.R. Decreased mitochondrial function, biogenesis, and degradation in peripheral blood mononuclear cells from amyotrophic lateral sclerosis patients as a potential tool for biomarker research. Mol. Neurobiol., 2020, 57(12), 5084-5102.
[http://dx.doi.org/10.1007/s12035-020-02059-1] [PMID: 32840822]
[22]
Cedarbaum, J.M.; Stambler, N. Performance of the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS) in multicenter clinical trials. J. Neurol. Sci., 1997, 152(Suppl. 1), s1-s9.
[http://dx.doi.org/10.1016/S0022-510X(97)00237-2] [PMID: 9419047]
[23]
Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J., 2012, 24(3), 69-71.
[PMID: 23638278]
[24]
Deivasigamani, S.; Verma, H.K.; Ueda, R.; Ratnaparkhi, A.; Ratnaparkhi, G.S. A genetic screen identifies Tor as an interactor of VAPB in a Drosophila model of amyotrophic lateral sclerosis. Biol. Open, 2014, 3(11), 1127-1138.
[http://dx.doi.org/10.1242/bio.201410066] [PMID: 25361581]
[25]
Exocytosis, M.A. Exocytosis. Essays Biochem., 1995, 30, 77-95.
[PMID: 8822150]
[26]
Chennampally, P.; Sayed-Zahid, A.; Soundararajan, P.; Sharp, J.; Cox, G.A.; Collins, S.D.; Smith, R.L. A microfluidic approach to rescue ALS motor neuron degeneration using rapamycin. Sci. Rep., 2021, 11(1), 18168.
[http://dx.doi.org/10.1038/s41598-021-97405-1] [PMID: 34518579]
[27]
Bauché, S.; O’Regan, S.; Azuma, Y.; Laffargue, F.; McMacken, G.; Sternberg, D.; Brochier, G.; Buon, C.; Bouzidi, N.; Topf, A.; Lacène, E.; Remerand, G.; Beaufrere, A.M.; Pebrel-Richard, C.; Thevenon, J.; El Chehadeh-Djebbar, S.; Faivre, L.; Duffourd, Y.; Ricci, F.; Mongini, T.; Fiorillo, C.; Astrea, G.; Burloiu, C.M.; Butoianu, N.; Sandu, C.; Servais, L.; Bonne, G.; Nelson, I.; Desguerre, I.; Nougues, M.C.; Boeuf, B.; Romero, N.; Laporte, J.; Boland, A.; Lechner, D.; Deleuze, J.F.; Fontaine, B.; Strochlic, L.; Lochmuller, H.; Eymard, B.; Mayer, M.; Nicole, S. Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea. Am. J. Hum. Genet., 2016, 99(3), 753-761.
[http://dx.doi.org/10.1016/j.ajhg.2016.06.033] [PMID: 27569547]
[28]
Koscielny, A.; Liszewska, E.; Machnicka, K.; Wezyk, M.; Kotulska, K.; Jaworski, J. mTOR controls endoplasmic reticulum–Golgi apparatus trafficking of VSVg in specific cell types. Cell. Mol. Biol. Lett., 2021, 26(1), 18.
[http://dx.doi.org/10.1186/s11658-021-00262-z] [PMID: 34006213]
[29]
Oliveira, D.; Morales-Vicente, D.A.; Amaral, M.S.; Luz, L.; Sertié, A.L.; Leite, F.S.; Navarro, C.; Kaid, C.; Esposito, J.; Goulart, E.; Caires, L.; Alves, L.M.; Melo, U.S.; Figueiredo, T.; Mitne-Neto, M.; Okamoto, O.K.; Verjovski-Almeida, S.; Zatz, M. Different gene expression profiles in iPSC-derived motor neurons from ALS8 patients with variable clinical courses suggest mitigating pathways for neurodegeneration. Hum. Mol. Genet., 2020, 29(9), 1465-1475.
[http://dx.doi.org/10.1093/hmg/ddaa069] [PMID: 32280986]
[30]
Chaplot, K.; Pimpale, L.; Ramalingam, B.; Deivasigamani, S.; Kamat, S.S.; Ratnaparkhi, G.S. SOD1 activity threshold and TOR signalling modulate VAP(P58S) aggregation via reactive oxygen species-induced proteasomal degradation in a Drosophila model of amyotrophic lateral sclerosis. Dis. Model. Mech., 2019, 12(2)dmm033803
[http://dx.doi.org/10.1242/dmm.033803] [PMID: 30635270]
[31]
Morimoto, R.I. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev., 1998, 12(24), 3788-3796.
[http://dx.doi.org/10.1101/gad.12.24.3788] [PMID: 9869631]
[32]
McCombe, P.A.; Henderson, R.D. The Role of immune and inflammatory mechanisms in ALS. Curr. Mol. Med., 2011, 11(3), 246-254.
[http://dx.doi.org/10.2174/156652411795243450] [PMID: 21375489]
[33]
Mitne-Neto, M.; Machado-Costa, M.; Marchetto, M.C.N.; Bengtson, M.H.; Joazeiro, C.A.; Tsuda, H.; Bellen, H.J.; Silva, H.C.A.; Oliveira, A.S.B.; Lazar, M.; Muotri, A.R.; Zatz, M. Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum. Mol. Genet., 2011, 20(18), 3642-3652.
[http://dx.doi.org/10.1093/hmg/ddr284] [PMID: 21685205]
[34]
Trilico, M.L.C.; Lorenzoni, P.J.; Kay, C.S.K.; Ducci, R.D.P.; Fustes, O.J.H.; Werneck, L.C.; Scola, R.H. Characterization of the amyotrophic lateral sclerosis-linked P56S mutation of the VAPB gene in Southern Brazil. Amyotroph. Lateral Scler. Frontotemporal Degener., 2020, 21(3-4), 286-290.
[http://dx.doi.org/10.1080/21678421.2020.1738495] [PMID: 32162544]
[35]
Kjældgaard, A.L.; Pilely, K.; Olsen, K.S.; Jessen, A.H.; Lauritsen, A.Ø.; Pedersen, S.W.; Svenstrup, K.; Karlsborg, M.; Thagesen, H.; Blaabjerg, M.; Theódórsdóttir, Á.; Elmo, E.G.; Møller, A.T.; Bonefeld, L.; Berg, M.; Garred, P.; Møller, K. Prediction of survival in amyotrophic lateral sclerosis: A nationwide, Danish cohort study. BMC Neurol., 2021, 21(1), 164.
[http://dx.doi.org/10.1186/s12883-021-02187-8] [PMID: 33865343]
[36]
Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature. Curr. Opin. Neurol., 2019, 32(5), 771-776.
[http://dx.doi.org/10.1097/WCO.0000000000000730] [PMID: 31361627]
[37]
Genevini, P.; Papiani, G.; Ruggiano, A.; Cantoni, L.; Navone, F.; Borgese, N. Amyotrophic lateral sclerosis-linked mutant VAPB inclusions do not interfere with protein degradation pathways or intracellular transport in a cultured cell model. PLoS One, 2014, 9(11)e113416
[http://dx.doi.org/10.1371/journal.pone.0113416] [PMID: 25409455]
[38]
Sanhueza, M.; Zechini, L.; Gillespie, T.; Pennetta, G. Gain-of-function mutations in the ALS8 causative gene VAPB have detrimental effects on neurons and muscles. Biol. Open, 2014, 3(1), 59-71.
[http://dx.doi.org/10.1242/bio.20137070] [PMID: 24326187]
[39]
Borgese, N.; Iacomino, N.; Colombo, S.F.; Navone, F. The link between VAPB loss of function and amyotrophic lateral sclerosis. Cells, 2021, 10(8), 1865.
[http://dx.doi.org/10.3390/cells10081865] [PMID: 34440634]
[40]
Kabashi, E.; El Oussini, H.; Bercier, V.; Gros-Louis, F.; Valdmanis, P.N.; McDearmid, J.; Mejier, I.A.; Dion, P.A.; Dupre, N.; Hollinger, D.; Sinniger, J.; Dirrig-Grosch, S.; Camu, W.; Meininger, V.; Loeffler, J.P.; René, F.; Drapeau, P.; Rouleau, G.A.; Dupuis, L. Investigating the contribution of VAPB/ALS8 loss of function in amyotrophic lateral sclerosis. Hum. Mol. Genet., 2013, 22(12), 2350-2360.
[http://dx.doi.org/10.1093/hmg/ddt080] [PMID: 23446633]
[41]
Borgese, N.; Navone, F.; Nukina, N.; Yamanaka, T. Mutant VAPB: Culprit or innocent bystander of amyotrophic lateral sclerosis? Contact (Thousand Oaks), 2021, 4.
[http://dx.doi.org/10.1177/25152564211022515]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy