Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Production Technology and Functionality of Bioactive Peptides

Author(s): Qingmei Wen, Lei Zhang, Feng Zhao, Yilu Chen, Yi Su, Xiaochun Zhang, Pu Chen* and Tao Zheng*

Volume 29, Issue 9, 2023

Published on: 24 February, 2023

Page: [652 - 674] Pages: 23

DOI: 10.2174/1381612829666230201121353

Price: $65

Abstract

Bioactive peptides are specific protein fragments that prove health-promoting potential for humans. The bioactivities include antimicrobial, antioxidant, anticancer, immunomodulatory activities, etc. Hence, bioactive peptides’ production technology and processes have attracted excessive attention, especially concerning peptides’ synthesis, separation, identification, and functionality. This review summarizes the relevant investigations from the above four aspects. Among the production technology of bioactive peptides, biosynthesis, chemosynthesis, technology for separation and purification, and the interactions responsible for peptide-based nanostructures are emphasized. Here, the biosynthesis of peptides includes enzymatic hydrolysis, microbial fermentation, and recombinant DNA technology, and chemosynthesis consists of solution-phase peptide synthesis and solid-phase peptide synthesis (SPPS). The commonly used enzymes in enzymatic hydrolysis are investigated, including pepsin, trypsin, and alcalase. The commonly used microorganisms, typical processes, protein sources, and advantages of microbial fermentation are analyzed. Membrane separation (including ultrafiltration and nanofiltration), chromatography technology (including ion-exchange chromatography, gel filtration chromatography, affinity chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC)), and electrophoresis technology are detailed for the purification technology. Mass spectrometry (MS), its combination with the high-performance separation method, and nuclear magnetic resonance (NMR) are elucidated for the identification technology. The non-covalent interactions responsible for peptide-based nanostructures involve electrostatic force, hydrogen bonds, π-π stacking, hydrophobic interaction, and van der Waals force. Afterward, we detail the peptides’ antihypertensive, antithrombotic, anticancer, antimicrobial, antioxidant, and immunomodulatory activities. The activity analysis mainly involves peptides’ sources, structural features, mechanisms of action, and influencing factors. Based on the production and functionality elucidation, potential challenges for peptide application in biomedicine are given. The challenge is analyzed from the aspects of purification and identification technologies and influencing factors of peptides’ bioactivities. Our work will elaborate on advances in the production technology of peptides and their bioactivities, which could promote and expand their industrial applications.

[1]
Chalamaiah M, Yu W, Wu J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem 2018; 245: 205-22.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.087] [PMID: 29287362]
[2]
He XQ, Cao WH, Pan GK, Yang L, Zhang CH. Enzymatic hydrolysis optimization of Paphia undulata and lymphocyte proliferation activity of the isolated peptide fractions. J Sci Food Agric 2015; 95(7): 1544-53.
[http://dx.doi.org/10.1002/jsfa.6859] [PMID: 25087732]
[3]
Panchaud A, Affolter M, Kussmann M. Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects. J Proteomics 2012; 75(12): 3546-59.
[http://dx.doi.org/10.1016/j.jprot.2011.12.022] [PMID: 22227401]
[4]
Yao L, Xu J, Zhang L, Liu L, Zhang L. Nanoencapsulation of anthocyanin by an amphiphilic peptide for stability enhancement. Food Hydrocoll 2021; 118: 106741.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106741]
[5]
Chalamaiah M, Rao GN, Rao DG, Jyothirmayi T. Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chem 2010; 120(3): 652-7.
[http://dx.doi.org/10.1016/j.foodchem.2009.10.057]
[6]
Wang R, Zhai S, Liang Y, Teng L, Wang D, Zhang G. Antibacterial effects of a polypeptide-enriched extract of Rana chensinensis via the regulation of energy metabolism. Mol Biol Rep 2020; 47(6): 4477-83.
[http://dx.doi.org/10.1007/s11033-020-05508-1] [PMID: 32415505]
[7]
Korhonen H, Pihlanto A. Food-derived bioactive peptides-opportunities for designing future foods. Curr Pharm Des 2003; 9(16): 1297-308.
[http://dx.doi.org/10.2174/1381612033454892] [PMID: 12769738]
[8]
Dong D, Dong M, Liu K, Lu Y, Yu B. Antioxidant activity of queen bee larvae processed by enzymatic hydrolysis. J Food Process Preserv 2018; 42(2): e13461.
[http://dx.doi.org/10.1111/jfpp.13461]
[9]
Musa A, Gasmalla MAA, Ma H, et al. A new continuous system of enzymatic hydrolysis coupled with membrane separation for isolation of peptides with angiotensin I converting enzyme inhibitory capacity from defatted corn germ protein. Food Funct 2020; 11(1): 1146-54.
[http://dx.doi.org/10.1039/C9FO01980D] [PMID: 31830159]
[10]
Yan Z, Song Z, Li D, Yuan Y, Liu X, Zheng T. The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw. Bioresour Technol 2015; 177: 266-73.
[http://dx.doi.org/10.1016/j.biortech.2014.11.089] [PMID: 25496947]
[11]
Li J, Rui J, Pei Z, et al. Straw- and slurry-associated prokaryotic communities differ during co-fermentation of straw and swine manure. Appl Microbiol Biotechnol 2014; 98(10): 4771-80.
[http://dx.doi.org/10.1007/s00253-014-5629-3] [PMID: 24633443]
[12]
Bhat ZF, Kumar S, Bhat HF. Bioactive peptides of animal origin: a review. J Food Sci Technol 2015; 52(9): 5377-92.
[http://dx.doi.org/10.1007/s13197-015-1731-5] [PMID: 26344955]
[13]
Ashokan A, Aradhyam GK. Effective purification of recombinant peptide ligands for GPCR research. G Protein-Coupled Receptors. (2nd edi..). 2017; pp. 111-8.
[http://dx.doi.org/10.1016/bs.mcb.2017.07.001]
[14]
Ferrazzano L, Catani M, Cavazzini A, et al. Sustainability in peptide chemistry: Current synthesis and purification technologies and future challenges. Green Chem 2022; 24(3): 975-1020.
[http://dx.doi.org/10.1039/D1GC04387K]
[15]
Isidro-Llobet A, Kenworthy MN, Mukherjee S, et al. Sustainability challenges in peptide synthesis and purification: From R&D to production. J Org Chem 2019; 84(8): 4615-28.
[http://dx.doi.org/10.1021/acs.joc.8b03001] [PMID: 30900880]
[16]
Meo T, Gramsch C, Inan R, et al. Monoclonal antibody to the message sequence Tyr-Gly-Gly-Phe of opioid peptides exhibits the specificity requirements of mammalian opioid receptors. Proc Natl Acad Sci USA 1983; 80(13): 4084-8.
[http://dx.doi.org/10.1073/pnas.80.13.4084] [PMID: 6191329]
[17]
Sánchez-Rivera L, Santos PF, Miralles B, Carrón R, José Montero M, Recio I. Peptide fragments from β-casein f(134–138), HLPLP, generated by the action of rat blood plasma peptidases show potent antihypertensive activity. Food Res Int 2016; 88: 348-53.
[http://dx.doi.org/10.1016/j.foodres.2015.12.007]
[18]
Czapla MA, Champion HC, Zadina JE, et al. Endomorphin 1 and 2, endogenous μ-opioid agonists, decrease systemic arterial pressure in the rat. Life Sci 1998; 62(13): PL175-9.
[http://dx.doi.org/10.1016/S0024-3205(98)00048-4] [PMID: 9519803]
[19]
Jauhiainen T, Korpela R. Milk peptides and blood pressure. J Nutr 2007; 137(3) (Suppl. 2): 825S-9S.
[http://dx.doi.org/10.1093/jn/137.3.825S] [PMID: 17311982]
[20]
Gagnaire V, Pierre A, Molle D, Leonil J. Phosphopeptides interacting with colloidal calcium phosphate isolated by tryptic hydrolysis of bovine casein micelles. J Dairy Res 1996; 63(3): 405-22.
[http://dx.doi.org/10.1017/S0022029900031927] [PMID: 8864935]
[21]
Mora L, Gallego M, Reig M, Toldrá F. Challenges in the quantitation of naturally generated bioactive peptides in processed meats. Trends Food Sci Technol 2017; 69: 306-14.
[http://dx.doi.org/10.1016/j.tifs.2017.04.011]
[22]
Yu J, Hu Y, Xue M, et al. Purification and identification of antioxidant peptides from enzymatic hydrolysate of Spirulina platensis. J Microbiol Biotechnol 2016; 26(7): 1216-23.
[http://dx.doi.org/10.4014/jmb.1601.01033] [PMID: 27090190]
[23]
Wu S, Bekhit AEDA, Wu Q, et al. Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends Food Sci Technol 2021; 108: 164-76.
[http://dx.doi.org/10.1016/j.tifs.2020.12.019]
[24]
Chalamaiah M, Hemalatha R, Jyothirmayi T, et al. Immunomodulatory effects of protein hydrolysates from rohu (Labeo rohita) egg (roe) in BALB/c mice. Food Res Int 2014; 62: 1054-61.
[http://dx.doi.org/10.1016/j.foodres.2014.05.050]
[25]
Chalamaiah M, Hemalatha R, Jyothirmayi T, et al. Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg. Nutrition 2015; 31(2): 388-98.
[http://dx.doi.org/10.1016/j.nut.2014.08.006] [PMID: 25592018]
[26]
Ahn CB, Cho YS, Je JY. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chem 2015; 168: 151-6.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.112] [PMID: 25172694]
[27]
Lozano-Ojalvo D, Molina E, López-Fandiño R. Hydrolysates of egg white proteins modulate T- and B-cell responses in mitogen-stimulated murine cells. Food Funct 2016; 7(2): 1048-56.
[http://dx.doi.org/10.1039/C5FO00614G] [PMID: 26778535]
[28]
Pan D, Guo Y. Optimization of sour milk fermentation for the production of ACE-inhibitory peptides and purification of a novel peptide from whey protein hydrolysate. Int Dairy J 2010; 20(7): 472-9.
[http://dx.doi.org/10.1016/j.idairyj.2010.01.007]
[29]
Rodríguez-Carrio J, Fernández A, Riera FA, Suárez A. Immunomodulatory activities of whey β-lactoglobulin tryptic-digested fractions. Int Dairy J 2014; 34(1): 65-73.
[http://dx.doi.org/10.1016/j.idairyj.2013.07.004]
[30]
Ma JJ, Mao XY, Wang Q, et al. Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. Lebensm Wiss Technol 2014; 56(2): 296-302.
[http://dx.doi.org/10.1016/j.lwt.2013.12.019]
[31]
Chi CF, Hu FY, Wang B, Ren XJ, Deng SG, Wu CW. Purification and characterization of three antioxidant peptides from protein hydrolyzate of croceine croaker (Pseudosciaena crocea) muscle. Food Chem 2015; 168: 662-7.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.117] [PMID: 25172761]
[32]
Zhao Y, Li B, Liu Z, Dong S, Zhao X, Zeng M. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate. Process Biochem 2007; 42(12): 1586-91.
[http://dx.doi.org/10.1016/j.procbio.2007.08.011]
[33]
Valencia P, Valdivia S, Nuñez S, et al. Assessing the enzymatic hydrolysis of salmon frame proteins through different by-product/water ratios and pH regimes. Foods 2021; 10(12): 3045.
[http://dx.doi.org/10.3390/foods10123045] [PMID: 34945596]
[34]
Stolarow J, Heinzelmann M, Yeremchuk W, Syldatk C, Hausmann R. Immobilization of trypsin in organic and aqueous media for enzymatic peptide synthesis and hydrolysis reactions. BMC Biotechnol 2015; 15(1): 77.
[http://dx.doi.org/10.1186/s12896-015-0196-y] [PMID: 26286267]
[35]
Cheison SC, Wang Z, Xu SY. Hydrolysis of whey protein isolate in a tangential flow filter membrane reactor. J Membr Sci 2006; 283(1-2): 45-56.
[http://dx.doi.org/10.1016/j.memsci.2006.06.023]
[36]
Prieto CA, Guadix A, González-Tello P, Guadix EM. A cyclic batch membrane reactor for the hydrolysis of whey protein. J Food Eng 2007; 78(1): 257-65.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.09.024]
[37]
Zhao W, Xu G, Yang R, Katiyo W. Preparation of casein phosphopeptides using a novel continuous process of combining an enzymatic membrane reactor with anion-exchange chromatography. J Food Eng 2013; 117(1): 105-12.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.02.015]
[38]
Rajapakse N, Mendis E, Jung WK, Je J-Y, Kim S-K. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int 2005; 38(2): 175-82.
[http://dx.doi.org/10.1016/j.foodres.2004.10.002]
[39]
Gallego M, Mora L, Escudero E, Toldrá F. Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages. Int J Food Microbiol 2018; 276: 71-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.04.009] [PMID: 29674143]
[40]
Sentandreu MA, Stoeva S, Aristoy MC, Laib K, Voelter W, Toldra E. Identification of small peptides generated in Spanish dry-cured ham. J Food Sci 2003; 68(1): 64-9.
[http://dx.doi.org/10.1111/j.1365-2621.2003.tb14115.x]
[41]
Hughes MC, Kerry JP, Arendt EK, Kenneally PM, McSweeney PLH, O’Neill EE. Characterization of proteolysis during the ripening of semi-dry fermented sausages. Meat Sci 2002; 62(2): 205-16.
[http://dx.doi.org/10.1016/S0309-1740(01)00248-0] [PMID: 22061413]
[42]
Je JY, Cha JY, Cho YS, et al. Hepatoprotective effect of peptic hydrolysate from salmon pectoral fin protein byproducts on ethanol-induced oxidative stress in Sprague-Dawley rats. Food Res Int 2013; 51(2): 648-53.
[http://dx.doi.org/10.1016/j.foodres.2013.01.045]
[43]
Martí-Quijal FJ, Khubber S, Remize F, Tomasevic I, Roselló-Soto E, Barba FJ. Obtaining antioxidants and natural preservatives from food by-products through fermentation: A review. Fermentation 2021; 7(3): 106.
[http://dx.doi.org/10.3390/fermentation7030106]
[44]
Yadav JSS, Yan S, Pilli S, Kumar L, Tyagi RD, Surampalli RY. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol Adv 2015; 33(6): 756-74.
[http://dx.doi.org/10.1016/j.biotechadv.2015.07.002] [PMID: 26165970]
[45]
Harnedy PA, FitzGerald RJ. Bioactive peptides from marine processing waste and shellfish: A review. J Funct Foods 2012; 4(1): 6-24.
[http://dx.doi.org/10.1016/j.jff.2011.09.001]
[46]
Chen Q, Kong B, Sun Q, Dong F, Liu Q. Antioxidant potential of a unique LAB culture isolated from Harbin dry sausage: In vitro and in a sausage model. Meat Sci 2015; 110: 180-8.
[http://dx.doi.org/10.1016/j.meatsci.2015.07.021] [PMID: 26241464]
[47]
Chen Q, Kong B, Han Q, Liu Q, Xu L. The role of bacterial fermentation in the hydrolysis and oxidation of sarcoplasmic and myofibrillar proteins in Harbin dry sausages. Meat Sci 2016; 121: 196-206.
[http://dx.doi.org/10.1016/j.meatsci.2016.06.012] [PMID: 27341621]
[48]
de Lima MSF, da Silva RA, da Silva MF, et al. Brazilian kefir-fermented sheep’s milk, a source of antimicrobial and antioxidant peptides. Probiotics Antimicrob Proteins 2018; 10(3): 446-55.
[http://dx.doi.org/10.1007/s12602-017-9365-8] [PMID: 29285743]
[49]
Ebner J, Aşçı Arslan A, Fedorova M, Hoffmann R, Küçükçetin A, Pischetsrieder M. Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains. J Proteomics 2015; 117: 41-57.
[http://dx.doi.org/10.1016/j.jprot.2015.01.005] [PMID: 25613046]
[50]
Lemme-Dumit JM, Polti MA, Perdigón G, Galdeano CM. Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality. Benef Microbes 2018; 9(1): 153-64.
[http://dx.doi.org/10.3920/BM2016.0220] [PMID: 29124968]
[51]
Anal AK, Perpetuini G, Petchkongkaew A, et al. Food safety risks in traditional fermented food from South-East Asia. Food Control 2020; 109: 106922.
[http://dx.doi.org/10.1016/j.foodcont.2019.106922]
[52]
Chang OK, Seol KH, Jeong SG, et al. Casein hydrolysis by Bifidobacterium longum KACC91563 and antioxidant activities of peptides derived therefrom. J Dairy Sci 2013; 96(9): 5544-55.
[http://dx.doi.org/10.3168/jds.2013-6687] [PMID: 23871374]
[53]
Elfahri KR, Donkor ON, Vasiljevic T. Potential of novel Lactobacillus helveticus strains and their cell wall bound proteases to release physiologically active peptides from milk proteins. Int Dairy J 2014; 38(1): 37-46.
[http://dx.doi.org/10.1016/j.idairyj.2014.03.010]
[54]
Moreno-Montoro M, Jauregi P, Navarro-Alarcón M, et al. Bioaccessible peptides released by in vitro gastrointestinal digestion of fermented goat milks. Anal Bioanal Chem 2018; 410(15): 3597-606.
[http://dx.doi.org/10.1007/s00216-018-0983-0] [PMID: 29523944]
[55]
Mazorra-Manzano MA, Robles-Porchas GR, González-Velázquez DA, et al. Cheese whey fermentation by its native microbiota: Proteolysis and bioactive peptides release with ACE-inhibitory activity. Fermentation 2020; 6(1): 19.
[http://dx.doi.org/10.3390/fermentation6010019]
[56]
López CM, Bru E, Vignolo GM, Fadda SG. Identification of small peptides arising from hydrolysis of meat proteins in dry fermented sausages. Meat Sci 2015; 104: 20-9.
[http://dx.doi.org/10.1016/j.meatsci.2015.01.013] [PMID: 25682212]
[57]
Mora L, Escudero E, Aristoy MC, Toldrá F. A peptidomic approach to study the contribution of added casein proteins to the peptide profile in Spanish dry-fermented sausages. Int J Food Microbiol 2015; 212: 41-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.05.022] [PMID: 26116420]
[58]
Mejri L, Vásquez-Villanueva R, Hassouna M, Marina ML, García MC. Identification of peptides with antioxidant and antihypertensive capacities by RP-HPLC-Q-TOF-MS in dry fermented camel sausages inoculated with different starter cultures and ripening times. Food Res Int 2017; 100(Pt 1): 708-16.
[http://dx.doi.org/10.1016/j.foodres.2017.07.072] [PMID: 28873740]
[59]
Mora L, Escudero E, Arihara K, Toldrá F. Antihypertensive effect of peptides naturally generated during Iberian dry-cured ham processing. Food Res Int 2015; 78: 71-8.
[http://dx.doi.org/10.1016/j.foodres.2015.11.005] [PMID: 28433319]
[60]
Wang W, Xia W, Gao P, Xu Y. Sarcoplasmic protein hydrolysis activity of Lactobacillus plantarum 120 isolated from suanyu: a traditional chinese low salt fermented fish. J Food Process Preserv 2017; 41(2): e12821.
[61]
Wang Y, Li C, Li L, et al. Application of UHPLC-Q/TOF-MS-based metabolomics in the evaluation of metabolites and taste quality of Chinese fish sauce (Yu-lu) during fermentation. Food Chem 2019; 296: 132-41.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.043] [PMID: 31202297]
[62]
Zohora US, Rahman MS, Khan AW, Okanami M, Ano T. Improvement of production of lipopeptide antibiotic iturin A using fish protein. J Environ Sci 2013; 25 (Suppl. 1): S2-7.
[http://dx.doi.org/10.1016/S1001-0742(14)60616-1] [PMID: 25078830]
[63]
Grienke U, Silke J, Tasdemir D. Bioactive compounds from marine mussels and their effects on human health. Food Chem 2014; 142: 48-60.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.027] [PMID: 24001811]
[64]
Sanjukta S, Rai AK. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci Technol 2016; 50: 1-10.
[http://dx.doi.org/10.1016/j.tifs.2016.01.010]
[65]
Wei G, Regenstein JM, Zhou P. The fermentation-time dependent proteolysis profile and peptidomic analysis of fermented soybean curd. J Food Sci 2021; 86(8): 3422-33.
[http://dx.doi.org/10.1111/1750-3841.15823] [PMID: 34250594]
[66]
Wang Y, Xu K, Lu F, Wang Y, Ouyang N, Ma H. Application of ultrasound technology in the field of solid-state fermentation: increasing peptide yield through ultrasound-treated bacterial strain. J Sci Food Agric 2021; 101(13): 5348-58.
[http://dx.doi.org/10.1002/jsfa.11183] [PMID: 33650220]
[67]
Fideler J, Johanningsmeier SD, Ekelöf M, Muddiman DC. Discovery and quantification of bioactive peptides in fermented cucumber by direct analysis IR-MALDESI mass spectrometry and LC-QQQ-MS. Food Chem 2019; 271: 715-23.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.187] [PMID: 30236736]
[68]
Wang X, Gao A, Chen Y, Zhang X, Li S, Chen Y. Preparation of cucumber seed peptide-calcium chelate by liquid state fermentation and its characterization. Food Chem 2017; 229: 487-94.
[http://dx.doi.org/10.1016/j.foodchem.2017.02.121] [PMID: 28372205]
[69]
Piers KL, Brown MH, Hancock REW. Recombinant DNA procedures for producing small antimicrobial cationic peptides in bacteria. Gene 1993; 134(1): 7-13.
[http://dx.doi.org/10.1016/0378-1119(93)90168-3] [PMID: 8244033]
[70]
Ma J, Yan H, Qin C, Liang Y, Ren D. Accumulation of astaxanthin by co-fermentation of Spirulina platensis and recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 2022; 194(2): 988-99.
[http://dx.doi.org/10.1007/s12010-021-03666-x] [PMID: 34591255]
[71]
Herbel V, Schäfer H, Wink M. Recombinant production of snakin-2 (an antimicrobial peptide from tomato) in E. coli and analysis of its bioactivity. Molecules 2015; 20(8): 14889-901.
[http://dx.doi.org/10.3390/molecules200814889] [PMID: 26287145]
[72]
Gaurab K. Human insulin production by genetic engineering. 2018. Available from: https://www.onlinebiologynotes.com/human-insulin-production-by-genetic-engineering/
[73]
Lawrenson SB, Arav R, North M. The greening of peptide synthesis. Green Chem 2017; 19(7): 1685-91.
[http://dx.doi.org/10.1039/C7GC00247E]
[74]
Xu B, Yang S, Zhu J, et al. Novel chemical strategy for the synthesis of RGDCySS tetrapeptide. Chem Res Chin Univ 2014; 30(1): 103-7.
[http://dx.doi.org/10.1007/s40242-014-3228-6]
[75]
Tsuda Y, Okada Y. Solution-Phase Peptide Synthesis. Amino Acids. In: Peptides and proteins in organic chemistry; Wiley Online Library: New Jersey, 2010; 201-51.
[76]
Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide J Am Chem Soc 1963; 85(14): 2149-54.
[http://dx.doi.org/10.1021/ja00897a025]
[77]
Wang T, Danishefsky SJ. Solid-phase peptide synthesis and solid-phase fragment coupling mediated by isonitriles. Proc Natl Acad Sci USA 2013; 110(29): 11708-13.
[http://dx.doi.org/10.1073/pnas.1310431110] [PMID: 23821753]
[78]
Hwang TL, Ranganathan K, Fang YQ, Crockett RD, Osgood S, Cui S. Studies of coupling kinetics and correlation of reaction conversions to color tests for solid-phase peptide synthesis of AMG 416 by NMR. Org Process Res Dev 2018; 22(8): 1007-14.
[http://dx.doi.org/10.1021/acs.oprd.8b00177]
[79]
Feng H, Gao L, Ye X, et al. Synthesis of a heptapeptide and its application in the detection of mercury(II) ion. Chem Res Chin Univ 2017; 33(2): 155-9.
[http://dx.doi.org/10.1007/s40242-017-6362-0]
[80]
Pawlas J, Rasmussen JH. Environmentally sensible organocatalytic Fmoc/t-Bu solid-phase peptide synthesis. Org Lett 2022; 24(9): 1827-32.
[http://dx.doi.org/10.1021/acs.orglett.2c00266] [PMID: 35226504]
[81]
Song H, Liu C, Wu Y, Hu H, Yan F. Efficient synthesis of bicyclic peptide BI-32169 utilizing a novel aryl boronate ester protecting group. Huaxue Xuebao 2018; 76(2): 95-8.
[http://dx.doi.org/10.6023/A17100473]
[82]
Kistemaker HAV, Voorneveld J, Filippov DV. ADPr-Peptide Synthesis.ADP-Ribosylation and NAD+ utilizing enzymes: Methods and protocols. 2018; pp. 345-69.
[http://dx.doi.org/10.1007/978-1-4939-8588-3_24]
[83]
Wang Z, Wang X, Wang P, Zhao J. Allenone-mediated racemization/epimerization-free peptide bond formation and its application in peptide synthesis. J Am Chem Soc 2021; 143(27): 10374-81.
[http://dx.doi.org/10.1021/jacs.1c04614] [PMID: 34191506]
[84]
Liu T, Xu S, Zhao J. Recent advances in ynamide coupling reagent. Youji Huaxue 2021; 41(3): 873-87.
[http://dx.doi.org/10.6023/cjoc202011022]
[85]
Poschalko A, Rohr T, Gruber H, et al. SUBPOL: A novel sucrose-based polymer support for solid-phase peptide synthesis and affinity chromatography applications. J Am Chem Soc 2003; 125(44): 13415-26.
[http://dx.doi.org/10.1021/ja035874a] [PMID: 14583037]
[86]
Itoh H, Inoue M. Full solid-phase total synthesis of macrocyclic natural peptides using four-dimensionally orthogonal protective groups. Org Biomol Chem 2019; 17(27): 6519-27.
[http://dx.doi.org/10.1039/C9OB01130G] [PMID: 31232404]
[87]
Qin F, Wang CY, Kim D, et al. Nitidumpeptins A and B, cyclohexapeptides isolated from Zanthoxylum nitidum var. tomentosum: Structural elucidation, total synthesis, and antiproliferative activity in cancer cells. J Org Chem 2021; 86(2): 1462-70.
[http://dx.doi.org/10.1021/acs.joc.0c02057] [PMID: 33410687]
[88]
Zigoneanu IG, Sims CE, Allbritton NL. Separation of peptide fragments of a protein kinase C substrate fused to a β-hairpin by capillary electrophoresis. Anal Bioanal Chem 2015; 407(30): 8999-9008.
[http://dx.doi.org/10.1007/s00216-015-9065-8] [PMID: 26427499]
[89]
Nagy E. 10 Nanofiltration. Basic equations of the mass transport through a membrane layer. Oxford: Elsevier 2012; pp. 249-66.
[http://dx.doi.org/10.1016/B978-0-12-416025-5.00010-7]
[90]
Zambrowicz A, Pokora M, Setner B, et al. Multifunctional peptides derived from an egg yolk protein hydrolysate: Isolation and characterization. Amino Acids 2015; 47(2): 369-80.
[http://dx.doi.org/10.1007/s00726-014-1869-x] [PMID: 25408464]
[91]
Mohanty DP, Mohapatra S, Misra S, Sahu PS. Milk derived bioactive peptides and their impact on human health - A review. Saudi J Biol Sci 2016; 23(5): 577-83.
[http://dx.doi.org/10.1016/j.sjbs.2015.06.005] [PMID: 27579006]
[92]
Frolov A, Hoffmann R. Analysis of amadori peptides enriched by boronic acid affinity chromatography. Ann NY Acad Sci 2008; 1126: 253-6.
[93]
Ibrahim HR, Ahmed AS, Miyata T. Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. J Adv Res 2017; 8(1): 63-71.
[http://dx.doi.org/10.1016/j.jare.2016.12.002] [PMID: 28053783]
[94]
Ghribi AM, Sila A, Przybylski R, et al. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. J Funct Foods 2015; 12: 516-25.
[http://dx.doi.org/10.1016/j.jff.2014.12.011]
[95]
Benavente F, Pero-Gascon R, Pont L, Jaumot J, Barbosa J, Sanz-Nebot V. Identification of antihypertensive peptides in nutraceuticals by capillary electrophoresis-mass spectrometry. J Chromatogr A 2018; 1579: 129-37.
[http://dx.doi.org/10.1016/j.chroma.2018.10.018] [PMID: 30361036]
[96]
Craik DJ, Daly NL. NMR as a tool for elucidating the structures of circular and knotted proteins. Mol Biosyst 2007; 3(4): 257-65.
[http://dx.doi.org/10.1039/b616856f] [PMID: 17372654]
[97]
Haney EF, Vogel HJ. NMR of Antimicrobial Peptides. Annual Reports on NMR Spectroscopy. Academic Press: Cambridge, 2009; pp. 1-51.
[98]
Xie X, Marahiel MA. NMR as an effective tool for the structure determination of lasso peptides. Chem Bio Chem 2012; 13(5): 621-5.
[http://dx.doi.org/10.1002/cbic.201100754] [PMID: 22278977]
[99]
Zhang L, Xu J, Wang F, et al. Histidine-rich cell-penetrating peptide for cancer drug delivery and its uptake mechanism. Langmuir 2019; 35(9): 3513-23.
[http://dx.doi.org/10.1021/acs.langmuir.8b03175] [PMID: 30673275]
[100]
Zhang L, Sheng Y, Zehtab Yazdi A, et al. Surface-assisted assembly of a histidine-rich lipidated peptide for simultaneous exfoliation of graphite and functionalization of graphene nanosheets. Nanoscale 2019; 11(6): 2999-3012.
[http://dx.doi.org/10.1039/C8NR08397E] [PMID: 30698183]
[101]
Zhang R, Morton LD, Smith JD, Gallazzi F, White TA, Ulery BD. Instructive design of triblock peptide amphiphiles for structurally complex micelle fabrication. ACS Biomater Sci Eng 2018; 4(7): 2330-9.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00300] [PMID: 33435099]
[102]
Lu H, Zhou C, Zhou X, et al. Polythiophene-peptide biohybrid assemblies for enhancing photoinduced hydrogen evolution. Adv Electron Mater 2017; 3(11): 1700161.
[http://dx.doi.org/10.1002/aelm.201700161]
[103]
Nagy-Smith K, Yamada Y, Schneider JP. Protein release from highly charged peptide hydrogel networks. J Mater Chem B Mater Biol Med 2016; 4(11): 1999-2007.
[http://dx.doi.org/10.1039/C5TB02137E] [PMID: 32263077]
[104]
Li J, Li X, Xu J, et al. Engineering the ionic self-assembly of polyoxometalates and facial-like peptides. Chemistry 2016; 22(44): 15751-9.
[http://dx.doi.org/10.1002/chem.201602449] [PMID: 27621229]
[105]
Baghaee PT, Divsalar A, Chamani J, Donya A. Human serum albumin-malathion complex study in the presence of silver nanoparticles at different sizes by multi spectroscopic techniques. J Biomol Struct Dyn 2019; 37(9): 2254-64.
[http://dx.doi.org/10.1080/07391102.2018.1491416] [PMID: 30035667]
[106]
Perrin CL, Nielson JB. “Strong” hydrogen bonds in chemistry and biology. Annu Rev Phys Chem 1997; 48(1): 511-44.
[http://dx.doi.org/10.1146/annurev.physchem.48.1.511] [PMID: 9348662]
[107]
Huang Z, Yao Q, Chen J, Gao Y. Redox supramolecular self-assemblies nonlinearly enhance fluorescence to identify cancer cells. Chem Commun 2018; 54(42): 5385-8.
[http://dx.doi.org/10.1039/C8CC02648C] [PMID: 29745387]
[108]
Teng P, Gray GM, Zheng M, et al. Orthogonal halogen-bonding- driven 3D supramolecular assembly of right-handed synthetic helical peptides. Angew Chem Int Ed 2019; 58(23): 7778-82.
[http://dx.doi.org/10.1002/anie.201903259] [PMID: 30957356]
[109]
Wang J, Liu K, Xing R, Yan X. Peptide self-assembly: Thermodynamics and kinetics. Chem Soc Rev 2016; 45(20): 5589-604.
[http://dx.doi.org/10.1039/C6CS00176A] [PMID: 27487936]
[110]
Cao M, Cao C, Zhang L, Xia D, Xu H. Tuning of peptide assembly through force balance adjustment. J Colloid Interface Sci 2013; 407: 287-95.
[http://dx.doi.org/10.1016/j.jcis.2013.06.051] [PMID: 23871602]
[111]
Xu H, Wang J, Han S, et al. Hydrophobic-region-induced transitions in self-assembled peptide nanostructures. Langmuir 2009; 25(7): 4115-23.
[http://dx.doi.org/10.1021/la802499n] [PMID: 19714895]
[112]
Chamani J, Moosavi-Movahedi AA. Effect of n-alkyl trimethylammonium bromides on folding and stability of alkaline and acid-denatured cytochrome c: A spectroscopic approach. J Colloid Interface Sci 2006; 297(2): 561-9.
[http://dx.doi.org/10.1016/j.jcis.2005.11.035] [PMID: 16338232]
[113]
Haldar S, Maji SK. Role of non-covalent interactions in the molecular organization of N-n-hexadecanoyl amino acid amphiphiles with hydrophobic Cα-side chains in Tris buffer (pH 9.3). Colloids Surf A Physicochem Eng Asp 2013; 420: 10-21.
[http://dx.doi.org/10.1016/j.colsurfa.2012.12.012]
[114]
Tsonchev S, Niece KL, Schatz GC, Ratner MA, Stupp SI. Phase diagram for assembly of biologically-active peptide amphiphiles. J Phys Chem B 2008; 112(2): 441-7.
[http://dx.doi.org/10.1021/jp076273z] [PMID: 18088110]
[115]
Gudlur S, Sukthankar P, Gao J, et al. Peptide nanovesicles formed by the self-assembly of branched amphiphilic peptides. PLoS One 2012; 7(9): e45374.
[http://dx.doi.org/10.1371/journal.pone.0045374] [PMID: 23028970]
[116]
Kang S, Huynh T, Xia Z, et al. Hydrophobic interaction drives surface-assisted epitaxial assembly of amyloid-like peptides. J Am Chem Soc 2013; 135(8): 3150-7.
[http://dx.doi.org/10.1021/ja310989u] [PMID: 23360070]
[117]
Israelachvili JN. Intermolecular and surface forces. Academic Press: San Diego, 2011.
[118]
Yu T, Lee OS, Schatz GC. Steered molecular dynamics studies of the potential of mean force for peptide amphiphile self-assembly into cylindrical nanofibers. J Phys Chem A 2013; 117(32): 7453-60.
[http://dx.doi.org/10.1021/jp401508w] [PMID: 23510255]
[119]
Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nat Rev Drug Discov 2021; 20(4): 309-25.
[http://dx.doi.org/10.1038/s41573-020-00135-8] [PMID: 33536635]
[120]
Sadeghzadeh F, Entezari AA, Behzadian K, et al. Characterizing the binding of angiotensin converting enzyme I inhibitory peptide to human hemoglobin: Influence of electromagnetic fields. Protein Pept Lett 2020; 27(10): 1007-21.
[http://dx.doi.org/10.2174/18755305MTA2lMTEgw] [PMID: 32334494]
[121]
Petrillo EW Jr, Ondetti MA. Angiotensin-converting enzyme inhibitors: Medicinal chemistry and biological actions. Med Res Rev 1982; 2(1): 1-41.
[http://dx.doi.org/10.1002/med.2610020103] [PMID: 6287131]
[122]
FitzGerald RJ, Murray BA, Walsh DJ. Hypotensive peptides from milk proteins. J Nutr 2004; 134(4): 980S-8S.
[http://dx.doi.org/10.1093/jn/134.4.980S] [PMID: 15051858]
[123]
Balti R, Bougatef A, Sila A, Guillochon D, Dhulster P, Nedjar-Arroume N. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chem 2015; 170: 519-25.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.091] [PMID: 25306378]
[124]
Lopez-Fandino R, Recio I, Ramos M. Egg-protein-derived peptides with antihypertensive activity. Bioactive Egg Compounds. 2007; pp. 199-211.
[http://dx.doi.org/10.1007/978-3-540-37885-3_24]
[125]
Escudero E, Mora L, Fraser PD, Aristoy MC, Arihara K, Toldrá F. Purification and identification of antihypertensive peptides in Spanish dry-cured ham. J Proteomics 2013; 78: 499-507.
[http://dx.doi.org/10.1016/j.jprot.2012.10.019] [PMID: 23117181]
[126]
Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J Dairy Sci 1995; 78(4): 777-83.
[http://dx.doi.org/10.3168/jds.S0022-0302(95)76689-9] [PMID: 7790570]
[127]
Wang H, Zhang S, Sun Y, Dai Y. ACE-inhibitory peptide isolated from fermented soybean meal as functional food. Int J Food Eng 2013; 9(1): 1-8.
[http://dx.doi.org/10.1515/ijfe-2012-0207]
[128]
Liu L, Liu L, Lu B, Xia D, Zhang Y. Evaluation of antihypertensive and antihyperlipidemic effects of bamboo shoot angiotensin converting enzyme inhibitory peptide in vivo. J Agric Food Chem 2012; 60(45): 11351-8.
[http://dx.doi.org/10.1021/jf303471f] [PMID: 23046038]
[129]
Wu J, Aluko RE, Muir AD. Improved method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions. J Chromatogr A 2002; 950(1-2): 125-30.
[http://dx.doi.org/10.1016/S0021-9673(02)00052-3] [PMID: 11990985]
[130]
Ruiz JÁG, Ramos M, Recio I. Angiotensin converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion. Int Dairy J 2004; 14(12): 1075-80.
[http://dx.doi.org/10.1016/j.idairyj.2004.04.007]
[131]
Pihlanto-Leppälä A. Bioactive peptides derived from bovine whey proteins. Trends Food Sci Technol 2000; 11(9-10): 347-56.
[http://dx.doi.org/10.1016/S0924-2244(01)00003-6]
[132]
Fan H, Xu Q, Hong H, Wu J. Stability and transport of spent hen-derived ACE-inhibitory peptides IWHHT, IWH, and IW in human intestinal Caco-2 cell monolayers. J Agric Food Chem 2018; 66(43): 11347-54.
[http://dx.doi.org/10.1021/acs.jafc.8b03956] [PMID: 30280571]
[133]
Fernández-Musoles R, Salom JB, Castelló-Ruiz M, Contreras MM, Recio I, Manzanares P. Bioavailability of antihypertensive lactoferricin B-derived peptides: Transepithelial transport and resistance to intestinal and plasma peptidases. Int Dairy J 2013; 32(2): 169-74.
[http://dx.doi.org/10.1016/j.idairyj.2013.05.009]
[134]
Jogi N, Yathisha UG, Bhat I, Mamatha BS. Antihypertensive activity of orally consumed ACE-I inhibitory peptides. Crit Rev Food Sci Nutr 2021.
[PMID: 34213991]
[135]
García MC, Puchalska P, Esteve C, Marina ML. Vegetable foods: A cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta 2013; 106: 328-49.
[http://dx.doi.org/10.1016/j.talanta.2012.12.041] [PMID: 23598136]
[136]
Udenigwe CC, Mohan A. Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. J Funct Foods 2014; 8: 45-52.
[http://dx.doi.org/10.1016/j.jff.2014.03.002]
[137]
Nurminen ML, Sipola M, Kaarto H, et al. α-Lactorphin lowers blood pressure measured by radiotelemetry in normotensive and spontaneously hypertensive rats. Life Sci 2000; 66(16): 1535-43.
[http://dx.doi.org/10.1016/S0024-3205(00)00471-9] [PMID: 10794501]
[138]
Tanaka M, Tokuyasu M, Matsui T, Matsumoto K. Endothelium-independent vasodilation effect of di- and tri-peptides in thoracic aorta of Sprague-Dawley rats. Life Sci 2008; 82(15-16): 869-75.
[http://dx.doi.org/10.1016/j.lfs.2008.02.001] [PMID: 18329669]
[139]
Wang Z, Watanabe S, Kobayashi Y, Tanaka M, Matsui T. Trp-His, a vasorelaxant di-peptide, can inhibit extracellular Ca2+ entry to rat vascular smooth muscle cells through blockade of dihydropyridine-like l-type Ca2+ channels. Peptides 2010; 31(11): 2060-6.
[http://dx.doi.org/10.1016/j.peptides.2010.07.013] [PMID: 20688122]
[140]
Cheng S, Tu M, Liu H, Zhao G, Du M. Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr 2019; 59(sup1): S81-95.
[http://dx.doi.org/10.1080/10408398.2018.1524363] [PMID: 30740983]
[141]
Sabbione AC, Suárez S, Añón MC, Scilingo A. Amaranth functional cookies exert potential antithrombotic and antihypertensive activities. Int J Food Sci Technol 2019; 54(5): 1506-13.
[http://dx.doi.org/10.1111/ijfs.13930]
[142]
Tanaka-Azevedo AM, Morais-Zani K, Torquato RJS, Tanaka AS. Thrombin inhibitors from different animals. J Biomed Biotechnol 2010; 2010: 1-9.
[http://dx.doi.org/10.1155/2010/641025] [PMID: 20976270]
[143]
Yamada T, Kurihara K, Ohnishi Y, et al. Neutron and X-ray crystallographic analysis of the human α-thrombin-bivalirudin complex at pD 5.0: Protonation states and hydration structure of the enzyme product complex. Biochim Biophys Acta Proteins Proteomics 2013; 1834(8): 1532-8.
[http://dx.doi.org/10.1016/j.bbapap.2013.05.014] [PMID: 23712263]
[144]
Figueiredo AC, de Sanctis D, Gutiérrez-Gallego R, et al. Unique thrombin inhibition mechanism by anophelin, an anticoagulant from the malaria vector. Proc Natl Acad Sci USA 2012; 109(52): E3649-58.
[http://dx.doi.org/10.1073/pnas.1211614109] [PMID: 23223529]
[145]
Macedo-Ribeiro S, Almeida C, Calisto BM, et al. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS One 2008; 3(2): e1624.
[http://dx.doi.org/10.1371/journal.pone.0001624] [PMID: 18286181]
[146]
Yang C, Ng CT, Li D, Zhang L. Targeting indoleamine 2,3-dioxygenase 1: Fighting cancers via dormancy regulation. Front Immunol 2021; 12: 725204.
[http://dx.doi.org/10.3389/fimmu.2021.725204] [PMID: 34539663]
[147]
Zhang L, Bennett WFD, Zheng T, et al. Effect of cholesterol on cellular uptake of cancer drugs pirarubicin and ellipticine. J Phys Chem B 2016; 120(12): 3148-56.
[http://dx.doi.org/10.1021/acs.jpcb.5b12337] [PMID: 26937690]
[148]
Pan X, Zhao YQ, Hu FY, Chi CF, Wang B. Anticancer activity of a hexapeptide from skate (Raja porosa) cartilage protein hydrolysate in HeLa cells. Mar Drugs 2016; 14(8): 153.
[http://dx.doi.org/10.3390/md14080153] [PMID: 27537897]
[149]
Zhao R, Liu X, Yang X, et al. Nanomaterial-based organelles protect normal cells against chemotherapy-induced cytotoxicity. Adv Mater 2018; 30(27): 1801304.
[http://dx.doi.org/10.1002/adma.201801304] [PMID: 29761566]
[150]
Li JT, Zhang JL, He H, et al. Apoptosis in human hepatoma HepG2 cells induced by corn peptides and its anti-tumor efficacy in H22 tumor bearing mice. Food Chem Toxicol 2013; 51: 297-305.
[http://dx.doi.org/10.1016/j.fct.2012.09.038] [PMID: 23063592]
[151]
Huang Y, Wang X, Wang H, Liu Y, Chen Y. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Cancer Ther 2011; 10(3): 416-26.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0811] [PMID: 21252288]
[152]
Su X, Dong C, Zhang J, et al. Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer. Cell Biosci 2014; 4(1): 7-7.
[http://dx.doi.org/10.1186/2045-3701-4-7] [PMID: 24507386]
[153]
Yu L, Yang L, An W, Su X. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells. J Cell Biochem 2014; 115(4): 697-711.
[http://dx.doi.org/10.1002/jcb.24711] [PMID: 24214799]
[154]
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415(6870): 389-95.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[155]
Yazici A, Ortucu S, Taskin M, Marinelli L. Natural-based antibiofilm and antimicrobial peptides from microorganisms. Curr Top Med Chem 2019; 18(24): 2102-7.
[http://dx.doi.org/10.2174/1568026618666181112143351] [PMID: 30417789]
[156]
Brogden KA, Ackermann M, McCray PB Jr, Tack BF. Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 2003; 22(5): 465-78.
[http://dx.doi.org/10.1016/S0924-8579(03)00180-8] [PMID: 14602364]
[157]
Zanetti M, Del Sal G, Storici P, Schneider C, Romeo D. The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteine proteinase inhibitor that is common to other neutrophil antibiotics. J Biol Chem 1993; 268(1): 522-6.
[http://dx.doi.org/10.1016/S0021-9258(18)54182-X] [PMID: 8416958]
[158]
Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 1992; 267(7): 4292-5.
[http://dx.doi.org/10.1016/S0021-9258(18)42830-X] [PMID: 1537821]
[159]
Wu M, Hancock REW. Improved derivatives of bactenecin, a cyclic dodecameric antimicrobial cationic peptide. Antimicrob Agents Chemother 1999; 43(5): 1274-6.
[http://dx.doi.org/10.1128/AAC.43.5.1274] [PMID: 10223951]
[160]
Bagella L, Scocchi M, Zanetti M. cDNA sequences of three sheep myeloid cathelicidins. FEBS Lett 1995; 376(3): 225-8.
[http://dx.doi.org/10.1016/0014-5793(95)01285-3] [PMID: 7498547]
[161]
Tossi A, Scocchi M, Zanetti M, Storici P, Gennaro R. PMAP-37, a novel antibacterial peptide from pig myeloid cells. cDNA cloning, chemical synthesis and activity. Eur J Biochem 1995; 228(3): 941-6.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20344.x] [PMID: 7737198]
[162]
Scocchi M, Wang S, Zanetti M. Structural organization of the bovine cathelicidin gene family and identification of a novel member. FEBS Lett 1997; 417(3): 311-5.
[http://dx.doi.org/10.1016/S0014-5793(97)01310-0] [PMID: 9409740]
[163]
Selsted ME, Tang YQ, Morris WL, et al. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 1993; 268(9): 6641-8.
[http://dx.doi.org/10.1016/S0021-9258(18)53298-1] [PMID: 8454635]
[164]
Evans EW, Beach GG, Wunderlich J, Harmon BG. Isolation of antimicrobial peptides from avian heterophils. J Leukoc Biol 1994; 56(5): 661-5.
[http://dx.doi.org/10.1002/jlb.56.5.661] [PMID: 7964174]
[165]
Sugiarto H, Yu P. Identification of three novel ostricacins: An update on the phylogenetic perspective of β-defensins. Int J Antimicrob Agents 2006; 27(3): 229-35.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.10.013] [PMID: 16459058]
[166]
Goitsuka R, Chen CH, Benyon L, Asano Y, Kitamura D, Cooper MD. Chicken cathelicidin-B1, an antimicrobial guardian at the mucosal M cell gateway. Proc Natl Acad Sci USA 2007; 104(38): 15063-8.
[http://dx.doi.org/10.1073/pnas.0707037104] [PMID: 17827276]
[167]
Anderson RC, Yu PL. Isolation and characterisation of proline/arginine-rich cathelicidin peptides from ovine neutrophils. Biochem Biophys Res Commun 2003; 312(4): 1139-46.
[http://dx.doi.org/10.1016/j.bbrc.2003.11.045] [PMID: 14651991]
[168]
Xiao Y, Hughes AL, Ando J, et al. A genome-wide screen identifies a single β-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics 2004; 5(1): 56.
[http://dx.doi.org/10.1186/1471-2164-5-56] [PMID: 15310403]
[169]
Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical applications of nisin. J Appl Microbiol 2016; 120(6): 1449-65.
[http://dx.doi.org/10.1111/jam.13033] [PMID: 26678028]
[170]
Wu Y, Gao B, Zhu S. New fungal defensin-like peptides provide evidence for fold change of proteins in evolution. Biosci Rep 2017; 37(1): BSR20160438.
[http://dx.doi.org/10.1042/BSR20160438] [PMID: 27913751]
[171]
Essig A, Hofmann D, Münch D, et al. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem 2014; 289(50): 34953-64.
[http://dx.doi.org/10.1074/jbc.M114.599878] [PMID: 25342741]
[172]
Greenberg ML, Cammack N. Resistance to enfuvirtide, the first HIV fusion inhibitor. J Antimicrob Chemother 2004; 54(2): 333-40.
[http://dx.doi.org/10.1093/jac/dkh330] [PMID: 15231762]
[173]
Gennaro R, Scocchi M, Merluzzi L, Zanetti M. Biological characterization of a novel mammalian antimicrobial peptide. Biochim Biophys Acta, Gen Subj 1998; 1425(2): 361-8.
[http://dx.doi.org/10.1016/S0304-4165(98)00087-7] [PMID: 9795251]
[174]
Rydlo T, Miltz J, Mor A. Eukaryotic antimicrobial peptides: Promises and premises in food safety. J Food Sci 2006; 71(9): R125-35.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00175.x]
[175]
Frank RW, Gennaro R, Schneider K, Przybylski M, Romeo D. Amino acid sequences of two proline-rich bactenecins. Antimicrobial peptides of bovine neutrophils. J Biol Chem 1990; 265(31): 18871-4.
[http://dx.doi.org/10.1016/S0021-9258(17)30595-1] [PMID: 2229048]
[176]
Hsu CH, Chen C, Jou M-L, et al. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 2005; 33(13): 4053-64.
[http://dx.doi.org/10.1093/nar/gki725] [PMID: 16034027]
[177]
Skerlavaj B, Gennaro R, Bagella L, Merluzzi L, Risso A, Zanetti M. Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J Biol Chem 1996; 271(45): 28375-81.
[http://dx.doi.org/10.1074/jbc.271.45.28375] [PMID: 8910461]
[178]
Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol 2002; 14(1): 96-102.
[http://dx.doi.org/10.1016/S0952-7915(01)00303-X] [PMID: 11790538]
[179]
Skerlavaj B, Romeo D, Gennaro R. Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun 1990; 58(11): 3724-30.
[http://dx.doi.org/10.1128/iai.58.11.3724-3730.1990] [PMID: 2228243]
[180]
Li Y, Yao L, Zhang L, et al. Enhanced physicochemical stabilities of cyanidin-3-O-glucoside via combination with silk fibroin peptide. Food Chem 2021; 355: 129479.
[http://dx.doi.org/10.1016/j.foodchem.2021.129479] [PMID: 33799258]
[181]
Yao L, Xu J, Zhang L, Zheng T, Liu L, Zhang L. Physicochemical stability-increasing effects of anthocyanin via a co-assembly approach with an amphiphilic peptide. Food Chem 2021; 362: 130101.
[http://dx.doi.org/10.1016/j.foodchem.2021.130101] [PMID: 34091173]
[182]
Thiansilakul Y, Benjakul S, Shahidi F. Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem 2007; 103(4): 1385-94.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.055]
[183]
Kim SK, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. J Funct Foods 2010; 2(1): 1-9.
[http://dx.doi.org/10.1016/j.jff.2010.01.003]
[184]
Wang W, Kannan P, Xue J, Kannan K. Synthetic phenolic antioxidants, including butylated hydroxytoluene (BHT), in resin-based dental sealants. Environ Res 2016; 151: 339-43.
[http://dx.doi.org/10.1016/j.envres.2016.07.042] [PMID: 27522571]
[185]
Chen HM, Muramoto K, Yamauchi F, Nokihara K. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J Agric Food Chem 1996; 44(9): 2619-23.
[http://dx.doi.org/10.1021/jf950833m]
[186]
Guo H, Kouzuma Y, Yonekura M. Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem 2009; 113(1): 238-45.
[http://dx.doi.org/10.1016/j.foodchem.2008.06.081]
[187]
Bougatef A, Hajji M, Balti R, Lassoued I, Triki-Ellouz Y, Nasri M. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chem 2009; 114(4): 1198-205.
[http://dx.doi.org/10.1016/j.foodchem.2008.10.075]
[188]
Raghavan S, Kristinsson HG. Antioxidative efficacy of alkali-treated tilapia protein hydrolysates: A comparative study of five enzymes. J Agric Food Chem 2008; 56(4): 1434-41.
[http://dx.doi.org/10.1021/jf0733160] [PMID: 18247531]
[189]
Wu HC, Chen HM, Shiau CY. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res Int 2003; 36(9-10): 949-57.
[http://dx.doi.org/10.1016/S0963-9969(03)00104-2]
[190]
Je JY, Qian ZJ, Byun HG, Kim SK. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem 2007; 42(5): 840-6.
[http://dx.doi.org/10.1016/j.procbio.2007.02.006]
[191]
Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem 2005; 53(6): 1841-56.
[http://dx.doi.org/10.1021/jf030723c] [PMID: 15769103]
[192]
MacDonald-Wicks LK, Wood LG, Garg ML. Methodology for the determination of biological antioxidant capacityin vitro: A review. J Sci Food Agric 2006; 86(13): 2046-56.
[http://dx.doi.org/10.1002/jsfa.2603]
[193]
Chalamaiah M, Dinesh kumar B, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem 2012; 135(4): 3020-38.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.100] [PMID: 22980905]
[194]
Gallego M, Mora L, Hayes M, Reig M, Toldrá F. Effect of cooking and in vitro digestion on the antioxidant activity of dry-cured ham by-products. Food Res Int 2017; 97: 296-306.
[http://dx.doi.org/10.1016/j.foodres.2017.04.027] [PMID: 28578055]
[195]
Ao J, Li B. Stability and antioxidative activities of casein peptide fractions during simulated gastrointestinal digestion in vitro: Charge properties of peptides affect digestive stability. Food Res Int 2013; 52(1): 334-41.
[http://dx.doi.org/10.1016/j.foodres.2013.03.036]
[196]
Pavlicevic M, Marmiroli N, Maestri E. Immunomodulatory peptides—A promising source for novel functional food production and drug discovery. Peptides 2022; 148: 170696.
[http://dx.doi.org/10.1016/j.peptides.2021.170696] [PMID: 34856531]
[197]
Fang Y, Pan X, Zhao E, et al. Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates. Food Chem 2019; 275: 696-702.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.115] [PMID: 30724251]
[198]
Hsieh LS, Lu MS, Chiang WD. Identification and characterization of immunomodulatory peptides from pepsinsoy protein hydrolysates. Bioresour Bioprocess 2022; 9(1): 39.
[http://dx.doi.org/10.1186/s40643-022-00526-2]
[199]
Liang N, Beverly RL, Scottoline BP, Dallas DC. Peptides derived from in vitro and in vivo digestion of human milk are immunomodulatory in THP-1 human macrophages. J Nutr 2022; 152(1): 331-42.
[http://dx.doi.org/10.1093/jn/nxab350] [PMID: 34601601]
[200]
Liu P, Liao W, Qi X, Yu W, Wu J. Identification of immunomodulatory peptides from zein hydrolysates. Eur Food Res Technol 2020; 246(5): 931-7.
[http://dx.doi.org/10.1007/s00217-020-03450-x]
[201]
He P, Wang Q, Zhan Q, et al. Purification and characterization of immunomodulatory peptides from enzymatic hydrolysates of duck egg ovalbumin. Food Funct 2021; 12(2): 668-81.
[http://dx.doi.org/10.1039/D0FO02674C] [PMID: 33410435]
[202]
Li W, Ye S, Zhang Z, et al. Purification and characterization of a novel pentadecapeptide from protein hydrolysates of Cyclina sinensis and its immunomodulatory effects on RAW264.7 cells. Mar Drugs 2019; 17(1): 30.
[http://dx.doi.org/10.3390/md17010030] [PMID: 30621347]
[203]
He P, Pan L, Wu H, et al. Isolation, Identification, and Immunomodulatory Mechanism of Peptides from Lepidium meyenii (Maca) Protein Hydrolysate. J Agric Food Chem 2022; 70(14): 4328-41.
[http://dx.doi.org/10.1021/acs.jafc.1c08315] [PMID: 35357828]
[204]
Dong W, Zhu X, Zhou X, et al. Potential role of a series of lysine-/leucine-rich antimicrobial peptide in inhibiting lipopoly- saccharide-induced inflammation. Biochem J 2018; 475(22): 3687-706.
[http://dx.doi.org/10.1042/BCJ20180483] [PMID: 30373763]
[205]
John CM, Li M, Feng D, Jarvis GA. Cationic cell-penetrating peptide is bactericidal against Neisseria gonorrhoeae. J Antimicrob Chemother 2019; 74(11): 3245-51.
[http://dx.doi.org/10.1093/jac/dkz339] [PMID: 31424547]
[206]
Vladoiu MC, Labrie M, Létourneau M, et al. Design of a peptidic inhibitor that targets the dimer interface of a prototypic galectin. Oncotarget 2015; 6(38): 40970-80.
[http://dx.doi.org/10.18632/oncotarget.5403] [PMID: 26543238]
[207]
Hirano Y, Yang WL, Aziz M, Zhang F, Sherry B, Wang P. MFG-E8-derived peptide attenuates adhesion and migration of immune cells to endothelial cells. J Leukoc Biol 2017; 101(5): 1201-9.
[http://dx.doi.org/10.1189/jlb.3A0416-184RR] [PMID: 28096298]
[208]
Kotraiah V, Phares TW, Browne CD, et al. Novel Peptide-based PD1 immunomodulators demonstrate efficacy in infectious disease vaccines and therapeutics. Front Immunol 2020; 11: 264.
[http://dx.doi.org/10.3389/fimmu.2020.00264] [PMID: 32210956]
[209]
Karnjanapratum S, O’Callaghan YC, Benjakul S, O’Brien N. Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysate from unicorn leatherjacket skin. J Sci Food Agric 2016; 96(9): 3220-6.
[http://dx.doi.org/10.1002/jsfa.7504] [PMID: 26493634]
[210]
Zhang M, Shan Y, Gao H, et al. Expression of a recombinant hybrid antimicrobial peptide magainin II-cecropin B in the mycelium of the medicinal fungus Cordyceps militaris and its validation in mice. Microb Cell Fact 2018; 17(1): 18.
[http://dx.doi.org/10.1186/s12934-018-0865-3] [PMID: 29402269]
[211]
Mallet JF, Duarte J, Vinderola G, Anguenot R, Beaulieu M, Matar C. The immunopotentiating effects of shark-derived protein hydrolysate. Nutrition 2014; 30(6): 706-12.
[http://dx.doi.org/10.1016/j.nut.2013.10.025] [PMID: 24800670]
[212]
Hou H, Fan Y, Li B, et al. Purification and identification of immunomodulating peptides from enzymatic hydrolysates of Alaska pollock frame. Food Chem 2012; 134(2): 821-8.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.186] [PMID: 23107696]
[213]
Lee SJ, Kim EK, Kim YS, et al. Purification and characterization of a nitric oxide inhibitory peptide from Ruditapes philippinarum. Food Chem Toxicol 2012; 50(5): 1660-6.
[http://dx.doi.org/10.1016/j.fct.2012.02.021] [PMID: 22386812]
[214]
Hemshekhar M, Faiyaz S, Choi KYG, Krokhin OV, Mookherjee N. Immunomodulatory functions of the human cathelicidin LL-37 (aa 13-31)-derived peptides are associated with predicted α-helical propensity and hydrophobic index. Biomolecules 2019; 9(9): 501.
[http://dx.doi.org/10.3390/biom9090501] [PMID: 31540479]
[215]
Kumar MS. Peptides and peptidomimetics as potential antiobesity agents: Overview of current status. Front Nutr 2019; 6: 11.
[http://dx.doi.org/10.3389/fnut.2019.00011] [PMID: 30834248]
[216]
Tsou MJ, Kao FJ, Lu HC, Kao HC, Chiang WD. Purification and identification of lipolysis-stimulating peptides derived from enzymatic hydrolysis of soy protein. Food Chem 2013; 138(2-3): 1454-60.
[http://dx.doi.org/10.1016/j.foodchem.2012.10.149] [PMID: 23411267]
[217]
Kim YM, Kim EY, Kim IH, Nam TJ. Peptide derived from desalinated boiled tuna extract inhibits adipogenesis through the downregulation of C/EBP-α and PPAR-γ in 3T3-L1 adipocytes. Int J Mol Med 2015; 35(5): 1362-8.
[http://dx.doi.org/10.3892/ijmm.2015.2127] [PMID: 25761066]
[218]
Zhang L, Zhao L, Ouyang PK, Chen P. Insight into the role of cholesterol in modulation of morphology and mechanical properties of CHO-K1 cells: An in situ AFM study. Front Chem Sci Eng 2019; 13(1): 98-107.
[http://dx.doi.org/10.1007/s11705-018-1775-y]
[219]
Lee H, Shin E, Kang H, Youn H, Youn B. Soybean-derived peptides attenuate hyperlipidemia by regulating trans-intestinal cholesterol excretion and bile acid synthesis. Nutrients 2021; 14(1): 95.
[http://dx.doi.org/10.3390/nu14010095] [PMID: 35010970]
[220]
Hosseinzadeh M, Nikjoo S, Zare N, Delavar D, Beigoli S, Chamani J. Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: spectroscopic and molecular modeling approaches. Res Chem Intermed 2019; 45(2): 401-23.
[http://dx.doi.org/10.1007/s11164-018-3608-5]
[221]
Iwaniak A, Minkiewicz P, Darewicz M, Sieniawski K, Starowicz P. BIOPEP database of sensory peptides and amino acids. Food Res Int 2016; 85: 155-61.
[http://dx.doi.org/10.1016/j.foodres.2016.04.031] [PMID: 29544830]
[222]
Gasteiger E, Hoogland C, Gattiker A, et al. Protein Identification and Analysis Tools on the ExPASy Server. In: The Proteomics Protocols Handbook. Totowa, NJ: Humana Press 2005; pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[223]
Gu Y, Majumder K, Wu J. QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Res Int 2011; 44(8): 2465-74.
[http://dx.doi.org/10.1016/j.foodres.2011.01.051]
[224]
Barone C, Barbera M, Barone M, et al. Biogenic amines in cheeses: Types and typical amounts. Chemical Evolution of Nitrogen-based Compounds in Mozzarella Cheeses 2018; 1-18.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy