Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Structural Insight into Privileged Heterocycles as Anti-Trypanosoma cruzi and brucei Agents

Author(s): Jafar Abbasi Shiran, Mina Ghanbari, Elaheh Mohammadnejadi and Nima Razzaghi-Asl*

Volume 23, Issue 9, 2023

Published on: 03 March, 2023

Page: [736 - 752] Pages: 17

DOI: 10.2174/1568026623666230201103843

Price: $65

Abstract

Trypanosomiasis is caused by parasitic protozoan trypanosomes in vertebrates. T. cruzi and T. brucei are causative agents of Chagas disease (CD) and Human African Trypanosomiasis (HAT), respectively. These life-threatening diseases are a serious threat to public health, with considerable incidence in sub-Saharan African and continental Latin America countries. Although WHO validated mitigated number of HAT cases in Togo (June 2020) and Cote d’Ivoire (December 2020), serious efforts need to be performed for the elimination of the disease. Antigenic variation of trypanosomal parasites provides a major bottleneck for developing effective vaccines. In the absence of human vaccines or chemoprophylaxis, the control of trypanosomatid infections may be envisaged through the eradication of vectors, management of animal reservoirs, and chemotherapy. A small number of chemical agents are currently available for antitrypanosomal treatments, and most of them are associated with toxicity, lack of efficacy, and non-oral route of administration. Given the restricted applicability of current medications, numerous efforts have been made for the synthesis and biological evaluation of heterocyclic scaffolds as antitrypanosomal candidates. In light of the above considerations, we were prompted to describe chemical diversity within privileged 5- membered heterocycles (imidazoles, thiazoles, triazoles and tetrazoles) as antitrypanosomal agents. The main purpose of the study was to throw light on the structure-activity relationship (SAR) of the relevant structures. To capture the recent structural diversity within reported cases, small molecules that belonged to the recent 7-year period (2015-2021) have been discussed. The available medications have also been briefly reviewed.

Graphical Abstract

[1]
Molyneux, D.H.; Savioli, L.; Engels, D. Neglected tropical diseases: Progress towards addressing the chronic pandemic. Lancet, 2017, 389(10066), 312-325.
[http://dx.doi.org/10.1016/S0140-6736(16)30171-4] [PMID: 27639954]
[2]
Aya Pastrana, N.; Beran, D.; Somerville, C.; Heller, O.; Correia, J.C.; Suggs, L.S. The process of building the priority of neglected tropical diseases: A global policy analysis. PLoS Negl. Trop. Dis., 2020, 14(8), e0008498.
[http://dx.doi.org/10.1371/journal.pntd.0008498] [PMID: 32785262]
[3]
Parker, M.; Polman, K.; Allen, T. Neglected tropical diseases in biosocial perspective. J. Biosoc. Sci., 2016, 48(S1), S1-S15.
[http://dx.doi.org/10.1017/S0021932016000274] [PMID: 27428062]
[4]
Molyneux, D.H.; Asamoa-Bah, A.; Fenwick, A.; Savioli, L.; Hotez, P. The history of the neglected tropical disease movement. Trans. R. Soc. Trop. Med. Hyg., 2021, 115(2), 169-175.
[http://dx.doi.org/10.1093/trstmh/trab015] [PMID: 33508096]
[5]
Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet, 2018, 391(10115), 82-94.
[http://dx.doi.org/10.1016/S0140-6736(17)31612-4] [PMID: 28673423]
[6]
Büscher, P.; Cecchi, G.; Jamonneau, V.; Priotto, G. Human African trypanosomiasis. Lancet, 2017, 390(10110), 2397-2409.
[http://dx.doi.org/10.1016/S0140-6736(17)31510-6] [PMID: 28673422]
[7]
Bravo-Gallego, L.Y.; Francisco-González, L.; Vázquez-Pérez, Á.; García-López, H.M.; López, V.R.; González-Granado, L.I.; Santos, M.; Epalza, C.; Jiménez, A.B.; Cilleruelo, M.J.; Guillén, S.; Fernández, T.; Olabarrieta, I.; Flores-Chavez, M.; Ramos Amador, J.T.; González-Tomé, M.I. Pediatric chagas disease in the non-endemic area of madrid: A fifteen-year review (2004–2018). PLoS Negl. Trop. Dis., 2022, 16(2), e0010232.
[http://dx.doi.org/10.1371/journal.pntd.0010232] [PMID: 35202395]
[8]
World Health Organization. World chagas disease day: finding and reporting every case. Available from: http://www.who.int/neglected_diseases/diseases/en/
[9]
Jansen, A.M.; Xavier, S.C.C.; Roque, A.L.R. Trypanosoma cruzi transmission in the wild and its most important reservoir hosts in Brazil. Parasit. Vectors, 2018, 11(1), 502.
[http://dx.doi.org/10.1186/s13071-018-3067-2] [PMID: 30189896]
[10]
Hernández, C.; Vera, M.J.; Cucunubá, Z.; Flórez, C.; Cantillo, O.; Buitrago, L.S.; González, M.S.; Ardila, S.; Dueñas, L.Z.; Tovar, R.; Forero, L.F.; Ramírez, J.D. High-resolution molecular typing of Trypanosoma cruzi in 2 large outbreaks of acute chagas disease in Colombia. J. Infect. Dis., 2016, 214(8), 1252-1255.
[http://dx.doi.org/10.1093/infdis/jiw360] [PMID: 27511897]
[11]
Gascon, J.; Pinazo, M-J. Chagas disease: From Latin America to the world. Reports Parasitol., 2015, 4, 7-14.
[http://dx.doi.org/10.2147/RIP.S57144]
[12]
de Oliveira, R.G.; Cruz, L.R.; Mollo, M.C.; Dias, L.C.; Kratz, J.M. Chagas disease drug discovery in Latin America-A mini review of antiparasitic agents explored between 2010 and 2021. Front Chem., 2021, 9, 771143.
[http://dx.doi.org/10.3389/fchem.2021.771143] [PMID: 34778217]
[13]
Stein, J.; Mogk, S.; Mudogo, C.N.; Sommer, B.P.; Scholze, M.; Meiwes, A.; Huber, M.; Gray, A.; Duszenko, M. Drug development against sleeping sickness: Old wine in new bottles? Curr. Med. Chem., 2014, 21(15), 1713-1727.
[http://dx.doi.org/10.2174/0929867320666131119121636] [PMID: 24251577]
[14]
Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet, 2010, 375(9709), 148-159.
[http://dx.doi.org/10.1016/S0140-6736(09)60829-1] [PMID: 19833383]
[15]
Scarim, C.B.; Jornada, D.H.; Machado, M.G.M.; Ferreira, C.M.R.; dos Santos, J.L.; Chung, M.C. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur. J. Med. Chem., 2019, 162, 378-395.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.013] [PMID: 30453246]
[16]
Kryshchyshyn, A.; Kaminskyy, D.; Grellier, P.; Lesyk, R. Trends in research of antitrypanosomal agents among synthetic heterocycles. Eur. J. Med. Chem., 2014, 85, 51-64.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.092] [PMID: 25072876]
[17]
Kennedy, P.G.E. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol., 2013, 12(2), 186-194.
[http://dx.doi.org/10.1016/S1474-4422(12)70296-X] [PMID: 23260189]
[18]
Barrett, M.P.; Boykin, D.W.; Brun, R.; Tidwell, R.R. Human African trypanosomiasis: Pharmacological re-engagement with a neglected disease. Br. J. Pharmacol., 2007, 152(8), 1155-1171.
[http://dx.doi.org/10.1038/sj.bjp.0707354] [PMID: 17618313]
[19]
La Greca, F.; Magez, S. Vaccination against trypanosomiasis. Hum. Vaccin., 2011, 7(11), 1225-1233.
[http://dx.doi.org/10.4161/hv.7.11.18203] [PMID: 22205439]
[20]
Walsh, M.E.; Naudzius, E.M.; Diaz, S.J.; Wismar, T.W.; Martchenko Shilman, M.; Schulz, D. Identification of clinically approved small molecules that inhibit growth and affect transcript levels of developmentally regulated genes in the African trypanosome. PLoS Negl. Trop. Dis., 2020, 14(3), e0007790.
[http://dx.doi.org/10.1371/journal.pntd.0007790] [PMID: 32168320]
[21]
Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.J.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S.; Gilbert, I.H. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need. Nat. Rev. Microbiol., 2017, 15(4), 217-231.
[http://dx.doi.org/10.1038/nrmicro.2016.193] [PMID: 28239154]
[22]
Pereira, C.A.; Sayé, M.; Reigada, C.; Silber, A.M.; Labadie, G.R.; Miranda, M.R.; Valera-Vera, E. Computational approaches for drug discovery against trypanosomatid-caused diseases. Parasitology, 2020, 147(6), 611-633.
[http://dx.doi.org/10.1017/S0031182020000207] [PMID: 32046803]
[23]
Steverding, D. The history of Chagas disease. Parasit. Vectors, 2014, 7(1), 317.
[http://dx.doi.org/10.1186/1756-3305-7-317] [PMID: 25011546]
[24]
Dias, J.C.P.; Coura, J.R.; Yasuda, M.A.S. The present situation, challenges, and perspectives regarding the production and utilization of effective drugs against human Chagas disease. Rev. Soc. Bras. Med. Trop., 2014, 47(1), 123-125.
[http://dx.doi.org/10.1590/0037-8682-0248-2013] [PMID: 24603750]
[25]
Gaspar, L.; Moraes, C.; Freitas-Junior, L.; Ferrari, S.; Costantino, L.; Costi, M.; Coron, R.; Smith, T.; Siqueira-Neto, J.; McKerrow, J.; Cordeiro-da-Silva, A. Current and future chemotherapy for chagas disease. Curr. Med. Chem., 2015, 22(37), 4293-4312.
[http://dx.doi.org/10.2174/0929867322666151015120804] [PMID: 26477622]
[26]
Nepali, K.; Lee, H.Y.; Liou, J.P. Nitro-group-containing drugs. J. Med. Chem., 2019, 62(6), 2851-2893.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00147] [PMID: 30295477]
[27]
Thomas, J.A.; Baker, N.; Hutchinson, S.; Dominicus, C.; Trenaman, A.; Glover, L.; Alsford, S.; Horn, D. Insights into antitrypanosomal drug mode-of-action from cytology-based profiling. PLoS Negl. Trop. Dis., 2018, 12(11), e0006980.
[http://dx.doi.org/10.1371/journal.pntd.0006980] [PMID: 30475806]
[28]
Azam, A.; Peerzada, M.N.; Ahmad, K. Parasitic diarrheal disease: Drug development and targets. Front. Microbiol., 2015, 6, 1183.
[http://dx.doi.org/10.3389/fmicb.2015.01183] [PMID: 26617574]
[29]
Wilkinson, S.R.; Bot, C.; Kelly, J.M.; Hall, B.S. Trypanocidal activity of nitroaromatic prodrugs: Current treatments and future perspectives. Curr. Top. Med. Chem., 2011, 11(16), 2072-2084.
[http://dx.doi.org/10.2174/156802611796575894] [PMID: 21619510]
[30]
Molina, I.; Salvador, F.; Sánchez-Montalvá, A.; Treviño, B.; Serre, N.; Sao Avilés, A.; Almirante, B. Toxic profile of benznidazole in patients with chronic chagas disease: Risk factors and comparison of the product from two different manufacturers. Antimicrob. Agents Chemother., 2015, 59(10), 6125-6131.
[http://dx.doi.org/10.1128/AAC.04660-14] [PMID: 26195525]
[31]
Sales, Junior, P.A.; Molina, I.; Fonseca Murta, S.M.; Sánchez-Montalvá, A.; Salvador, F.; Corrêa-Oliveira, R.; Carneiro, C.M. Experimental and clinical treatment of chagas disease: A review. Am. J. Trop. Med. Hyg., 2017, 97(5), 1289-1303.
[http://dx.doi.org/10.4269/ajtmh.16-0761] [PMID: 29016289]
[32]
Bermudez, J.; Davies, C.; Simonazzi, A.; Pablo Real, J.; Palma, S. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop., 2016, 156, 1-16.
[http://dx.doi.org/10.1016/j.actatropica.2015.12.017] [PMID: 26747009]
[33]
Beltran-Hortelano, I.; Alcolea, V.; Font, M.; Pérez-Silanes, S. The role of imidazole and benzimidazole heterocycles in Chagas disease: A review. Eur. J. Med. Chem., 2020, 206, 112692.
[http://dx.doi.org/10.1016/j.ejmech.2020.112692] [PMID: 32818869]
[34]
Kennedy, P.G.E.; Rodgers, J. Clinical and neuropathogenetic aspects of human African trypanosomiasis. Front. Immunol., 2019, 10, 39.
[http://dx.doi.org/10.3389/fimmu.2019.00039] [PMID: 30740102]
[35]
Fairlamb, A.H. Fexinidazole for the treatment of human African trypanosomiasis. Drugs Today, 2019, 55(11), 705-712.
[http://dx.doi.org/10.1358/dot.2019.55.11.3068795] [PMID: 31840685]
[36]
Mesu, V.K.B.K.; Kalonji, W.M.; Bardonneau, C.; Mordt, O.V.; Blesson, S.; Simon, F.; Delhomme, S.; Bernhard, S.; Kuziena, W.; Lubaki, J.P.F.; Vuvu, S.L.; Ngima, P.N.; Mbembo, H.M.; Ilunga, M.; Bonama, A.K.; Heradi, J.A.; Solomo, J.L.L.; Mandula, G.; Badibabi, L.K.; Dama, F.R.; Lukula, P.K.; Tete, D.N.; Lumbala, C.; Scherrer, B.; Strub-Wourgaft, N.; Tarral, A. Oral fexinidazole for late-stage African Trypanosoma brucei gambiense trypanosomiasis: A pivotal multicentre, randomised, non-inferiority trial. Lancet, 2018, 391(10116), 144-154.
[http://dx.doi.org/10.1016/S0140-6736(17)32758-7] [PMID: 29113731]
[37]
Bray, P.G.; Barrett, M.P.; Ward, S.A.; de Koning, H.P. Pentamidine uptake and resistance in pathogenic protozoa: Past, present and future. Trends Parasitol., 2003, 19(5), 232-239.
[http://dx.doi.org/10.1016/S1471-4922(03)00069-2] [PMID: 12763430]
[38]
Burri, C. Chemotherapy against human African trypanosomiasis: Is there a road to success? Parasitology, 2010, 137(14), 1987-1994.
[http://dx.doi.org/10.1017/S0031182010001137] [PMID: 20961469]
[39]
Lindner, A.K.; Lejon, V.; Chappuis, F.; Seixas, J.; Kazumba, L.; Barrett, M.P.; Mwamba, E.; Erphas, O.; Akl, E.A.; Villanueva, G.; Bergman, H.; Simarro, P.; Kadima Ebeja, A.; Priotto, G.; Franco, J.R. New WHO guidelines for treatment of gambiense human African trypanosomiasis including fexinidazole: substantial changes for clinical practice. Lancet Infect. Dis., 2020, 20(2), e38-e46.
[http://dx.doi.org/10.1016/S1473-3099(19)30612-7] [PMID: 31879061]
[40]
Larson, S.; Carter, M.; Hovel-Miner, G. Effects of trypanocidal drugs on DNA synthesis: new insights into melarsoprol growth inhibition. Parasitology, 2021, 148(10), 1143-1150.
[http://dx.doi.org/10.1017/S0031182021000317] [PMID: 33593467]
[41]
Vincent, I.M.; Creek, D.; Watson, D.G.; Kamleh, M.A.; Woods, D.J.; Wong, P.E.; Burchmore, R.J.S.; Barrett, M.P. A molecular mechanism for eflornithine resistance in African trypanosomes. PLoS Pathog., 2010, 6(11), e1001204.
[http://dx.doi.org/10.1371/journal.ppat.1001204] [PMID: 21124824]
[42]
Bacchi, C.J.; Nathan, H.C.; Hutner, S.H.; McCann, P.P.; Sjoerdsma, A. Polyamine metabolism: A potential therapeutic target in trypanosomes. Science, 1980, 210(4467), 332-334.
[http://dx.doi.org/10.1126/science.6775372] [PMID: 6775372]
[43]
Wall, R.J.; Rico, E.; Lukac, I.; Zuccotto, F.; Elg, S.; Gilbert, I.H.; Freund, Y.; Alley, M.R.K.; Field, M.C.; Wyllie, S.; Horn, D. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3. Proc. Natl. Acad. Sci., 2018, 115(38), 9616-9621.
[http://dx.doi.org/10.1073/pnas.1807915115] [PMID: 30185555]
[44]
De Luca, L. Naturally occurring and synthetic imidazoles: their chemistry and their biological activities. Curr. Med. Chem., 2006, 13(1), 1-23.
[http://dx.doi.org/10.2174/092986709787002826] [PMID: 16457636]
[45]
Sharma, A.; Kumar, V.; Kharb, R.; Kumar, S.; Chander Sharma, P.; Pal Pathak, D. Imidazole derivatives as potential therapeutic agents. Curr. Pharm. Des., 2016, 22(21), 3265-3301.
[http://dx.doi.org/10.2174/1381612822666160226144333] [PMID: 26916016]
[46]
Chopra, P.N.; Sahu, J.K. Biological significance of imidazole-based analogues in new drug development. Curr. Drug Discov. Technol., 2020, 17(5), 574-584.
[http://dx.doi.org/10.2174/1570163816666190320123340] [PMID: 30894111]
[47]
Ponzi, S.; Bresciani, A.; Kaiser, M.; Nardi, V.; Nizi, E.; Ontoria, J.M.; Pace, P.; Paonessa, G.; Summa, V.; Harper, S. Discovery of 4-((1-(1H-imidazol-2-yl)alkoxy)methyl)pyridines as a new class of Trypanosoma cruzi growth inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(8), 127052.
[http://dx.doi.org/10.1016/j.bmcl.2020.127052] [PMID: 32113841]
[48]
Fersing, C.; Boudot, C.; Paoli-Lombardo, R.; Primas, N.; Pinault, E.; Hutter, S.; Castera-Ducros, C.; Kabri, Y.; Pedron, J.; Bourgeade-Delmas, S.; Sournia-Saquet, A.; Stigliani, J.L.; Valentin, A.; Azqueta, A.; Muruzabal, D.; Destere, A.; Wyllie, S.; Fairlamb, A.H.; Corvaisier, S.; Since, M.; Malzert-Fréon, A.; Di Giorgio, C.; Rathelot, P.; Azas, N.; Courtioux, B.; Vanelle, P.; Verhaeghe, P. Antikinetoplastid SAR study in 3-nitroimidazopyridine series: Identification of a novel non-genotoxic and potent anti-T. b. brucei hit-compound with improved pharmacokinetic properties. Eur. J. Med. Chem., 2020, 206, 112668.
[http://dx.doi.org/10.1016/j.ejmech.2020.112668] [PMID: 32795774]
[49]
Fersing, C.; Basmaciyan, L.; Boudot, C.; Pedron, J.; Hutter, S.; Cohen, A.; Castera-Ducros, C.; Primas, N.; Laget, M.; Casanova, M.; Bourgeade-Delmas, S.; Piednoel, M.; Sournia-Saquet, A.; Belle Mbou, V.; Courtioux, B.; Boutet-Robinet, É.; Since, M.; Milne, R.; Wyllie, S.; Fairlamb, A.H.; Valentin, A.; Rathelot, P.; Verhaeghe, P.; Vanelle, P.; Azas, N. Nongenotoxic 3-nitroimidazo[1,2-a]pyridines are NTR1 substrates that display potent in vitro antileishmanial activity. ACS Med. Chem. Lett., 2019, 10(1), 34-39.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00347] [PMID: 30655943]
[50]
Silva, D.G.; Gillespie, J.R.; Ranade, R.M.; Herbst, Z.M.; Nguyen, U.T.T.; Buckner, F.S.; Montanari, C.A.; Gelb, M.H. New class of antitrypanosomal agents based on imidazopyridines. ACS Med. Chem. Lett., 2017, 8(7), 766-770.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00202] [PMID: 28740614]
[51]
Buchynskyy, A.; Gillespie, J.R.; Herbst, Z.M.; Ranade, R.M.; Buckner, F.S.; Gelb, M.H. 1-Benzyl-3-aryl-2-thiohydantoin derivatives as new anti-Trypanosoma brucei agents: SAR and in vivo efficacy. ACS Med. Chem. Lett., 2017, 8(8), 886-891.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00230] [PMID: 28835807]
[52]
Miana, G.E.; Ribone, S.R.; Vera, D.M.A.; Sánchez-Moreno, M.; Mazzieri, M.R.; Quevedo, M.A. Design, synthesis and molecular docking studies of novel N-arylsulfonyl-benzimidazoles with anti Trypanosoma cruzi activity. Eur. J. Med. Chem., 2019, 165, 1-10.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.013] [PMID: 30641409]
[53]
Saccoliti, F.; Madia, V.N.; Tudino, V.; De Leo, A.; Pescatori, L.; Messore, A.; De Vita, D.; Scipione, L.; Brun, R.; Kaiser, M.; Mäser, P.; Calvet, C.M.; Jennings, G.K.; Podust, L.M.; Costi, R.; Di Santo, R. Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents. Eur. J. Med. Chem., 2018, 156, 53-60.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.063] [PMID: 30006174]
[54]
Ferrigno, F.; Biancofiore, I.; Malancona, S.; Ponzi, S.; Paonessa, G.; Graziani, R.; Bresciani, A.; Gennari, N.; Di Marco, A.; Kaiser, M.; Summa, V.; Harper, S.; Ontoria, J.M. Discovery of 2-(1H-imidazo-2-yl)piperazines as a new class of potent and non-cytotoxic inhibitors of Trypanosoma brucei growth in vitro. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3689-3692.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.028] [PMID: 30482621]
[55]
Valsecchi, W.M.; Delfino, J.M.; Santos, J.; Fernández Villamil, S.H. Zoledronate repositioning as a potential trypanocidal drug. Trypanosoma cruzi HPRT an alternative target to be considered. Biochem. Pharmacol., 2021, 188, 114524.
[http://dx.doi.org/10.1016/j.bcp.2021.114524] [PMID: 33741333]
[56]
Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem., 2016, 16(26), 2841-2862.
[http://dx.doi.org/10.2174/1568026616666160506130731] [PMID: 27150376]
[57]
Jadhav, P.M.; Kantevari, S.; Tekale, A.B.; Bhosale, S.V.; Pawar, R.P.; Tekale, S.U. A review on biological and medicinal significance of thiazoles. Phosphorus Sulfur Silicon Relat. Elem., 2021, 196(10), 879-895.
[http://dx.doi.org/10.1080/10426507.2021.1945601]
[58]
de Souza, M.V.N. Synthesis and biological activity of natural thiazoles: An important class of heterocyclic compounds. J. Sulfur Chem., 2005, 26(4-5), 429-449.
[http://dx.doi.org/10.1080/17415990500322792]
[59]
Borcea, A.M. Ionuț, I.; Crișan, O.; Oniga, O. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules, 2021, 26(3), 624.
[http://dx.doi.org/10.3390/molecules26030624] [PMID: 33504100]
[60]
Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem., 2020, 188, 112016.
[http://dx.doi.org/10.1016/j.ejmech.2019.112016] [PMID: 31926469]
[61]
Scarim, C.B.; Jornada, D.H.; Chelucci, R.C.; de Almeida, L.; dos Santos, J.L.; Chung, M.C. Current advances in drug discovery for Chagas disease. Eur. J. Med. Chem., 2018, 155, 824-838.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.040] [PMID: 30033393]
[62]
Lara, L.S.; Lechuga, G.C.; Orlando, L.M.R.; Ferreira, B.S.; Souto, B.A.; dos Santos, M.S.; Pereira, M.C.S. Bioactivity of novel pyrazole-thiazoline scaffolds against Trypanosoma cruzi: Computational approaches and 3D spheroid model on drug discovery for chagas disease. Pharmaceutics, 2022, 14(5), 995.
[http://dx.doi.org/10.3390/pharmaceutics14050995] [PMID: 35631581]
[63]
Haroon, M.; de Barros Dias, M.C.H.; Santos, A.C.S.; Pereira, V.R.A.; Barros Freitas, L.A.; Balbinot, R.B.; Kaplum, V.; Nakamura, C.V.; Alves, L.C.; Brayner, F.A.; Leite, A.C.L.; Akhtar, T. The design, synthesis, and in vitro trypanocidal and leishmanicidal activities of 1,3-thiazole and 4-thiazolidinone ester derivatives. RSC Advances, 2021, 11(4), 2487-2500.
[http://dx.doi.org/10.1039/D0RA06994A] [PMID: 35424158]
[64]
Colín-Lozano, B.; León-Rivera, I.; Chan-Bacab, M.J.; Ortega-Morales, B.O.; Moo-Puc, R.; López-Guerrero, V.; Hernández-Núñez, E.; Argüello-Garcia, R.; Scior, T.; Barbosa-Cabrera, E.; Navarrete-Vázquez, G. Synthesis, in vitro and in vivo giardicidal activity of nitrothiazole-NSAID chimeras displaying broad antiprotozoal spectrum. Bioorg. Med. Chem. Lett., 2017, 27(15), 3490-3494.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.071] [PMID: 28645659]
[65]
Russell, S.; Rahmani, R.; Jones, A.J.; Newson, H.L.; Neilde, K.; Cotillo, I.; Rahmani Khajouei, M.; Ferrins, L.; Qureishi, S.; Nguyen, N.; Martinez-Martinez, M.S.; Weaver, D.F.; Kaiser, M.; Riley, J.; Thomas, J.; De Rycker, M.; Read, K.D.; Flematti, G.R.; Ryan, E.; Tanghe, S.; Rodriguez, A.; Charman, S.A.; Kessler, A.; Avery, V.M.; Baell, J.B.; Piggott, M.J. Hit-to-lead optimization of a novel class of potent, broad-spectrum trypanosomacides. J. Med. Chem., 2016, 59(21), 9686-9720.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00442] [PMID: 27548560]
[66]
Patrick, D.A.; Wenzler, T.; Yang, S.; Weiser, P.T.; Wang, M.Z.; Brun, R.; Tidwell, R.R. Synthesis of novel amide and urea derivatives of thiazol-2-ethylamines and their activity against Trypanosoma brucei rhodesiense. Bioorg. Med. Chem., 2016, 24(11), 2451-2465.
[http://dx.doi.org/10.1016/j.bmc.2016.04.006] [PMID: 27102161]
[67]
Álvarez, G.; Varela, J.; Cruces, E.; Fernández, M.; Gabay, M.; Leal, S.M.; Escobar, P.; Sanabria, L.; Serna, E.; Torres, S.; Figueredo Thiel, S.J.; Yaluff, G.; Vera de Bilbao, N.I.; Cerecetto, H.; González, M. Identification of a new amide-containing thiazole as a drug candidate for treatment of Chagas’ disease. Antimicrob. Agents Chemother., 2015, 59(3), 1398-1404.
[http://dx.doi.org/10.1128/AAC.03814-14] [PMID: 25512408]
[68]
da Silva, E.B.; Oliveira e Silva, D.A.; Oliveira, A.R.; da Silva Mendes, C.H.; dos Santos, T.A.R.; da Silva, A.C.; de Castro, M.C.A.; Ferreira, R.S.; Moreira, D.R.M.; Cardoso, M.V.O.; de Simone, C.A.; Pereira, V.R.A.; Leite, A.C.L. Desing and synthesis of potent anti-Trypanosoma cruzi agents new thiazoles derivatives which induce apoptotic parasite death. Eur. J. Med. Chem., 2017, 130, 39-50.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.026] [PMID: 28242550]
[69]
Jadav, S.S.; Badavath, V.N.; Ganesan, R.; Ganta, N.M.; Besson, D.; Jayaprakash, V. Biological evaluation of 2-aminothiazole hybrid as antimalarial and antitrypanosomal agents: Design and synthesis. Antiinfect. Agents, 2020, 18(2), 101-108.
[http://dx.doi.org/10.2174/2211352516666181016122537]
[70]
de Siqueira, L.R.P.; de Oliveira, B.M.; Oliveira, A.R.; de Moraes Gomes, P.A.T.; de Oliveira Filho, G.B.; de Oliveira Cardoso, M.V.; Pereira, V.R.A.; da Silva Santos, A.C.; Júnior, P.A.S.; Romanha, A.J.; Leite, A.C.L. Synthesis and anti-Trypanosoma cruzi profile of the novel 4-thiazolidinone and 1,3-thiazole derivatives. Front. Drug Chem. Clin. Res, 2019, 2(2), 1-12.
[http://dx.doi.org/10.15761/FDCCR.1000120]
[71]
Kryshchyshyn, A.; Kaminskyy, D.; Karpenko, O.; Gzella, A.; Grellier, P.; Lesyk, R. Thiazolidinone/thiazole based hybrids – New class of antitrypanosomal agents. Eur. J. Med. Chem., 2019, 174, 292-308.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.052] [PMID: 31051403]
[72]
Racané, L.; Rep, V. Kraljević Pavelić, S.; Grbčić, P.; Zonjić, I.; Radić Stojković, M.; Taylor, M.C.; Kelly, J.M.; Raić-Malić, S. Synthesis, antiproliferative and antitrypanosomal activities, and DNA binding of novel 6-amidino-2-arylbenzothiazoles. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1952-1967.
[http://dx.doi.org/10.1080/14756366.2021.1959572] [PMID: 34455887]
[73]
Fleau, C.; Padilla, A.; Miguel-Siles, J.; Quesada-Campos, M.T.; Saiz-Nicolas, I.; Cotillo, I.; Cantizani Perez, J.; Tarleton, R.L.; Marco, M.; Courtemanche, G. Chagas disease drug discovery: Multiparametric lead optimization against Trypanosoma cruzi in acylaminobenzothiazole series. J. Med. Chem., 2019, 62(22), 10362-10375.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01429] [PMID: 31657555]
[74]
Linciano, P.; Pozzi, C.; Iacono, L.; di Pisa, F.; Landi, G.; Bonucci, A.; Gul, S.; Kuzikov, M.; Ellinger, B.; Witt, G.; Santarem, N.; Baptista, C.; Franco, C.; Moraes, C.B.; Müller, W.; Wittig, U.; Luciani, R.; Sesenna, A.; Quotadamo, A.; Ferrari, S.; Pöhner, I.; Cordeiro-da-Silva, A.; Mangani, S.; Costantino, L.; Costi, M.P. Enhancement of benzothiazoles as pteridine reductase-1 inhibitors for the treatment of trypanosomatidic infections. J. Med. Chem., 2019, 62(8), 3989-4012.
[http://dx.doi.org/10.1021/acs.jmedchem.8b02021] [PMID: 30908048]
[75]
Ferrari, S.; Morandi, F.; Motiejunas, D.; Nerini, E.; Henrich, S.; Luciani, R.; Venturelli, A.; Lazzari, S.; Calò, S.; Gupta, S.; Hannaert, V.; Michels, P.A.M.; Wade, R.C.; Costi, M.P. Virtual screening identification of nonfolate compounds, including a CNS drug, as antiparasitic agents inhibiting pteridine reductase. J. Med. Chem., 2011, 54(1), 211-221.
[http://dx.doi.org/10.1021/jm1010572] [PMID: 21126022]
[76]
Patrick, D.A.; Gillespie, J.R.; McQueen, J.; Hulverson, M.A.; Ranade, R.M.; Creason, S.A.; Herbst, Z.M.; Gelb, M.H.; Buckner, F.S.; Tidwell, R.R. Urea derivatives of 2-aryl-benzothiazol-5-amines: A new class of potential drugs for human African trypanosomiasis. J. Med. Chem., 2017, 60(3), 957-971.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01163] [PMID: 27992217]
[77]
Álvarez, G.; Martínez, J.; Varela, J.; Birriel, E.; Cruces, E.; Gabay, M.; Leal, S.M.; Escobar, P.; Aguirre-López, B.; Cabrera, N.; de Gómez-Puyou, T.M.; Gómez, P.A.; Pérez-Montfort, R.; Yaluff, G.; Torres, S.; Serna, E.; Vera de Bilbao, N.; González, M.; Cerecetto, H. Development of bis-thiazoles as inhibitors of triosephosphate isomerase from Trypanosoma cruzi. Identification of new non-mutagenic agents that are active in vivo. Eur. J. Med. Chem., 2015, 100, 246-256.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.018] [PMID: 26094151]
[78]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Chatelain, E.; Kaiser, M.; Wilkinson, S.R.; McKenzie, C.; Ioset, J.R. Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents. J. Med. Chem., 2012, 55(11), 5554-5565.
[http://dx.doi.org/10.1021/jm300508n] [PMID: 22550999]
[79]
Aggarwal, R.; Sumran, G. An insight on medicinal attributes of 1,2,4-triazoles. Eur. J. Med. Chem., 2020, 205, 112652.
[http://dx.doi.org/10.1016/j.ejmech.2020.112652] [PMID: 32771798]
[80]
Pone, K.B.; Dalhatou, S.; Paumo, H.K.; Katata-Seru, L.M.; Ferreira, E.I. Triazole-containing heterocycles: Privileged scaffolds in anti-Trypanosoma cruzi drug development. Curr. Drug Targets, 2022, 23(1), 33-59.
[http://dx.doi.org/10.2174/1389450122666210412125643] [PMID: 33845739]
[81]
Leite, D.I.; Fontes, F.V.; Bastos, M.M.; Hoelz, L.V.B.; Bianco, M.C.A.D.; de Oliveira, A.P.; da Silva, P.B.; da Silva, C.F.; Batista, D.G.J.; da Gama, A.N.S.; Peres, R.B.; Villar, J.D.F.; Soeiro, M.N.C.; Boechat, N. New 1,2,3-triazole-based analogues of benznidazole for use against Trypanosoma cruzi infection: in vitro and in vivo evaluations. Chem. Biol. Drug Des., 2018, 92(3), 1670-1682.
[http://dx.doi.org/10.1111/cbdd.13333] [PMID: 29745048]
[82]
Fargnoli, L.; Panozzo-Zénere, E.A.; Pagura, L.; Barisón, M.J.; Cricco, J.A.; Silber, A.M. New L-proline uptake inhibitors with anti-Trypanosoma cruzi activity. ChemRxiv, 2019.
[http://dx.doi.org/10.26434/chemrxiv.7564991.v2]
[83]
Magdaleno, A.; Ahn, I.Y.; Paes, L.S.; Silber, A.M. Actions of a proline analogue, L-thiazolidine-4-carboxylic acid (T4C), on Trypanosoma cruzi. PLoS One, 2009, 4(2), e4534.
[http://dx.doi.org/10.1371/journal.pone.0004534] [PMID: 19229347]
[84]
Rocha, D.A.; Silva, E.B.; Fortes, I.S.; Lopes, M.S.; Ferreira, R.S.; Andrade, S.F. Synthesis and structure-activity relationship studies of cruzain and rhodesain inhibitors. Eur. J. Med. Chem., 2018, 157, 1426-1459.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.079] [PMID: 30282318]
[85]
Shaykoon, M.S.; Marzouk, A.A.; Soltan, O.M.; Wanas, A.S.; Radwan, M.M.; Gouda, A.M.; Youssif, B.G.M.; Abdel-Aziz, M. Design, synthesis and antitrypanosomal activity of heteroaryl-based 1,2,4-triazole and 1,3,4-oxadiazole derivatives. Bioorg. Chem., 2020, 100, 103933.
[http://dx.doi.org/10.1016/j.bioorg.2020.103933] [PMID: 32446119]
[86]
Brand, S.; Ko, E.J.; Viayna, E.; Thompson, S.; Spinks, D.; Thomas, M.; Sandberg, L.; Francisco, A.F.; Jayawardhana, S.; Smith, V.C.; Jansen, C.; De Rycker, M.; Thomas, J.; MacLean, L.; Osuna-Cabello, M.; Riley, J.; Scullion, P.; Stojanovski, L.; Simeons, F.R.C.; Epemolu, O.; Shishikura, Y.; Crouch, S.D.; Bakshi, T.S.; Nixon, C.J.; Reid, I.H.; Hill, A.P.; Underwood, T.Z.; Hindley, S.J.; Robinson, S.A.; Kelly, J.M.; Fiandor, J.M.; Wyatt, P.G.; Marco, M.; Miles, T.J.; Read, K.D.; Gilbert, I.H. Discovery and optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against Trypanosoma cruzi. J. Med. Chem., 2017, 60(17), 7284-7299.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00463] [PMID: 28844141]
[87]
Young, R.J.; Green, D.V.S.; Luscombe, C.N.; Hill, A.P. Getting physical in drug discovery II: The impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discov. Today, 2011, 16(17-18), 822-830.
[http://dx.doi.org/10.1016/j.drudis.2011.06.001] [PMID: 21704184]
[88]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; O’Shea, I.P.; Wilkinson, S.R.; Kaiser, M. 3-Nitrotriazole-based piperazides as potent antitrypanosomal agents. Eur. J. Med. Chem., 2015, 103, 325-334.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.042] [PMID: 26363868]
[89]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Kaiser, M. The antitrypanosomal and antitubercular activity of some nitro(triazole/imidazole)-based aromatic amines. Eur. J. Med. Chem., 2017, 138, 1106-1113.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.060] [PMID: 28763645]
[90]
Faria, R.X.; Gonzaga, D.T.G.; Pacheco, P.A.F.; Souza, A.L.A.; Ferreira, V.F.; da Silva, F.C. Searching for new drugs for Chagas diseases: triazole analogs display high in vitro activity against Trypanosoma cruzi and low toxicity toward mammalian cells. J. Bioenerg. Biomembr., 2018, 50(2), 81-91.
[http://dx.doi.org/10.1007/s10863-018-9746-z] [PMID: 29473131]
[91]
Nandikolla, A.; Srinivasarao, S.; Karan Kumar, B.; Murugesan, S.; Aggarwal, H.; Major, L.L.; Smith, T.K.; Chandra Sekhar, K.V.G. Synthesis, study of antileishmanial and antitrypanosomal activity of imidazo pyridine fused triazole analogues. RSC Advances, 2020, 10(63), 38328-38343.
[http://dx.doi.org/10.1039/D0RA07881F] [PMID: 35517538]
[92]
Popova, E.A.; Protas, A.V.; Trifonov, R.E. Tetrazole derivatives as promising anticancer agents. Anticancer. Agents Med. Chem., 2018, 17(14), 1856-1868.
[http://dx.doi.org/10.2174/1871520617666170327143148] [PMID: 28356016]
[93]
Lamie, P.F.; Azmey, A.F. Synthesis and biological evaluation of tetrazole derivatives as TNF-α IL-6 and COX-2 inhibitors with antimicrobial activity: Computational analysis, molecular modeling study and region-specific cyclization using 2D NMR tools. Bioorg. Chem., 2019, 92, 103301.
[http://dx.doi.org/10.1016/j.bioorg.2019.103301] [PMID: 31563696]
[94]
Manafi Khajeh Pasha, A.; Raoufi, S.; Ghobadi, M.; Kazemi, M. Biologically active tetrazole scaffolds: Catalysis in magnetic nanocomposites. Synth. Commun., 2020, 50(24), 3685-3716.
[http://dx.doi.org/10.1080/00397911.2020.1811872]
[95]
Zou, Y.; Liu, L.; Liu, J.; Liu, G. Bioisosteres in drug discovery: Focus on tetrazole. Future Med. Chem., 2020, 12(2), 91-93.
[http://dx.doi.org/10.4155/fmc-2019-0288] [PMID: 31762337]
[96]
Aziz, H.; Saeed, A.; Jabeen, F.; Din, N.; Flörke, U. Synthesis, single crystal analysis, biological and docking evaluation of tetrazole derivatives. Heliyon, 2018, 4(9), e00792.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00792] [PMID: 30246161]
[97]
Pitman, S.K.; Drew, R.H.; Perfect, J.R. Addressing current medical needs in invasive fungal infection prevention and treatment with new antifungal agents, strategies and formulations. Expert Opin. Emerg. Drugs, 2011, 16(3), 559-586.
[http://dx.doi.org/10.1517/14728214.2011.607811] [PMID: 21846302]
[98]
Hoekstra, W.J.; Hargrove, T.Y.; Wawrzak, Z.; da Gama Jaen Batista, D.; da Silva, C.F.; Nefertiti, A.S.G.; Rachakonda, G.; Schotzinger, R.J.; Villalta, F.; Soeiro, M.N.C.; Lepesheva, G.I. Clinical candidate VT-1161's antiparasitic effect in vitro, activity in a murine model of chagas disease, and structural characterization in complex with the target enzyme CYP51 from trypanosoma cruzi. Antimicrob. Agents Chemother., 2016, 60(2), 1058-1066.
[http://dx.doi.org/10.1128/AAC.02287-15] [PMID: 26643331]
[99]
Denning, D.W.; Bromley, M.J. How to bolster the antifungal pipeline. Science, 2015, 347(6229), 1414-1416.
[http://dx.doi.org/10.1126/science.aaa6097] [PMID: 25814567]
[100]
Tukulula, M.; Louw, S.; Njoroge, M.; Chibale, K. Synthesis and in vitroantiprotozoan evaluation of 4-/8-aminoquinoline-based lactams and tetrazoles. Molecules, 2020, 25(24), 5941.
[http://dx.doi.org/10.3390/molecules25245941] [PMID: 33333924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy