Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Mechanisms, Copper Catalysts, and Ligands Involved in the Synthesis of 1,2,3- Triazoles Using Click Chemistry

Author(s): Elisa Leyva*, Irving Rubén Rodríguez-Gutiérrez, Edgar Moctezuma and Saúl Noriega

Volume 26, Issue 23, 2022

Published on: 10 February, 2023

Page: [2098 - 2121] Pages: 24

DOI: 10.2174/1385272827666230201103825

Price: $65

conference banner
Abstract

In the last two decades, click chemistry has become a modular synthetic procedure to assemble new molecular structures. It is a powerful methodology that relies on the construction of carbon-heteroatom bonds of a variety of reactants. In modern synthetic chemistry, it has been applied in a large number of applications, from pharmaceutical to material science. The copper-catalyzed 1,2,3-triazole preparation, reacting organic azides with alkynes, has become the star of click chemistry due to its reliability and biocompatibility. As a consequence, this reaction has found many applications in diverse areas such as bioconjugation, material science, and drug discovery. In order to understand the effect of copper catalysts and ligands in click chemistry, it is important to understand the structural and mechanistic aspects involved. In this review, several physicochemical aspects of click chemistry are discussed. First, the mechanisms and intermediates involved in the preparation of 1,2,3-triazoles. Second, the different types of copper catalysts are used to perform the reaction regioselectively. The last section shows the structure and characteristics of effective ligands utilized to improve click chemistry under different experimental conditions.

Graphical Abstract

[1]
Noriega, S.; Leyva, E.; Moctezuma, E.; Flores, L.; Loredo-Carrillo, S. Recent catalysts used in the synthesis of 1,4-disubstituted 1,2,3-triazoles by heterogeneous and homogeneous Methods. Curr. Org. Chem., 2020, 24(5), 536-549.
[http://dx.doi.org/10.2174/1385272824666200226120135]
[2]
Nagesh, H.N.; Suresh, N.; Prakash, G.V.S.B.; Gupta, S.; Rao, J.V.; Sekhar, K.V.G.C. Synthesis and biological evaluation of novel phenanthridinyl piperazine triazoles via click chemistry as anti-proliferative agents. Med. Chem. Res., 2015, 24(2), 523-532.
[http://dx.doi.org/10.1007/s00044-014-1142-6]
[3]
Prachayasittikul, V.; Pingaew, R.; Anuwongcharoen, N.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Discovery of novel 1,2,3-triazole derivatives as anticancer agents using QSAR and in silico structural modification. Springerplus, 2015, 4(1), 571-593.
[http://dx.doi.org/10.1186/s40064-015-1352-5] [PMID: 26543706]
[4]
Mani, G.S.; Donthiboina, K.; Shaik, S.P.; Shankaraiah, N.; Kamal, A. Iodine-mediated C–N and N–N bond formation: A facile one-pot synthetic approach to 1,2,3-triazoles under metal-free and azide-free conditions. RSC Advances, 2019, 9(46), 27021-27031.
[http://dx.doi.org/10.1039/C9RA06005G] [PMID: 35528599]
[5]
Sharghi, H.; Ebrahimpourmoghaddam, S.; Doroodmand, M.M.; Purkhosrow, A. Synthesis of Vasorelaxaing 1,4-disubstituted 1,2,3-triazoles catalyzed by a 4′-phenyl-2,2′6′2”-terpyridine copper(II) complex immobilized on activated multiwalled carbon nanotubes. Asian J. Org. Chem., 2012, 1(4), 377-388.
[http://dx.doi.org/10.1002/ajoc.201200012]
[6]
Chavan, P.V.; Pandit, K.S.; Desai, U.V.; Wadgaonkar, P.P.; Nawale, L.; Bhansali, S.; Sarkar, D. Click-chemistry-based multicomponent condensation approach for design and synthesis of spirochromene-tethered 1,2,3-triazoles as potential antitubercular agents. Res. Chem. Intermed., 2017, 43(10), 5675-5690.
[http://dx.doi.org/10.1007/s11164-017-2955-y]
[7]
Aguilar-Morales, C.M.; de Loera, D.; Contreras-Celedón, C.; Cortés-García, C.J.; Chacón-García, L. Synthesis of 1,5-disubstituted tetrazole-1,2,3 triazoles hybrids via Ugi-azide/CuAAC. Synth. Commun., 2019, 49(16), 2086-2095.
[http://dx.doi.org/10.1080/00397911.2019.1616301]
[8]
Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: A review. Drugs Today (Barc), 2015, 51(12), 705-718.
[http://dx.doi.org/10.1358/dot.2015.51.12.2421058] [PMID: 26798851]
[9]
Swarup, H.A. Kemparajegowda; Mantelingu, K.; Rangappa, K.S. Effective and transition-metal-free construction of disubstituted, trisubstituted 1,2,3-NH-triazoles and triazolo pyridazine via intermolecular 1,3-dipolar cycloaddition reaction. ChemistrySelect, 2018, 3(2), 703-708.
[http://dx.doi.org/10.1002/slct.201702547]
[10]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and practice; Oxford University Press y Oxford: UK, 1998.
[11]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[12]
Meyer, J.P.; Adumeau, P.; Lewis, J.S.; Zeglis, B.M. Click chemistry and radiochemistry: The first 10 years. Bioconjug. Chem., 2016, 27(12), 2791-2807.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00561] [PMID: 27787983]
[13]
Li, P.Z.; Wang, X.J.; Zhao, Y. Click chemistry as a versatile reaction for construction and modification of metal-organic frameworks. Coord. Chem. Rev., 2019, 380, 484-518.
[http://dx.doi.org/10.1016/j.ccr.2018.11.006]
[14]
Jiang, X.; Hao, X.; Jing, L.; Wu, G.; Kang, D.; Liu, X.; Zhan, P. Recent applications of click chemistry in drug discovery. Expert Opin. Drug Discov., 2019, 14(8), 779-789.
[http://dx.doi.org/10.1080/17460441.2019.1614910] [PMID: 31094231]
[15]
Parker, C.G.; Pratt, M.R. Click chemistry in proteomic investigations. Cell, 2020, 180(4), 605-632.
[http://dx.doi.org/10.1016/j.cell.2020.01.025] [PMID: 32059777]
[16]
Agrahari, A.K.; Bose, P.; Jaiswal, M.K.; Rajkhowa, S.; Singh, A.S.; Hotha, S.; Mishra, N.; Tiwari, V.K. Cu(I)-catalyzed click chemistry in glycoscience and their diverse applications. Chem. Rev., 2021, 121(13), 7638-7956.
[http://dx.doi.org/10.1021/acs.chemrev.0c00920] [PMID: 34165284]
[17]
Fantoni, N.Z.; El-Sagheer, A.H.; Brown, T. A Hitchhiker’s guide to click-chemistry with nucleic acids. Chem. Rev., 2021, 121(12), 7122-7154.
[http://dx.doi.org/10.1021/acs.chemrev.0c00928] [PMID: 33443411]
[18]
Chen, Y.; Xianyu, Y.; Wu, J.; Yin, B.; Jiang, X. Click chemistry-mediated nanosensors for biochemical assays. Theranostics, 2016, 6(7), 969-985.
[http://dx.doi.org/10.7150/thno.14856] [PMID: 27217831]
[19]
Yi, G.; Son, J.; Yoo, J.; Park, C.; Koo, H. Application of click chemistry in nanoparticle modification and its targeted delivery. Biomater. Res., 2018, 22(1), 13.
[http://dx.doi.org/10.1186/s40824-018-0123-0] [PMID: 29686885]
[20]
Meghani, N.M.; Amin, H.H.; Lee, B.J. Mechanistic applications of click chemistry for pharmaceutical drug discovery and drug delivery. Drug Discov. Today, 2017, 22(11), 1604-1619.
[http://dx.doi.org/10.1016/j.drudis.2017.07.007] [PMID: 28754291]
[21]
Kim, E.; Koo, H. Biomedical applications of copper-free click chemistry: In vitro, in vivo, and ex vivo. Chem. Sci., 2019, 10(34), 7835-7851.
[http://dx.doi.org/10.1039/C9SC03368H] [PMID: 31762967]
[22]
Totobenazara, J.; Burke, A.J. New click-chemistry methods for 1,2,3-triazoles synthesis: Recent advances and applications. Tetrahedron Lett., 2015, 56(22), 2853-2859.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.136]
[23]
Tăbăcaru, A.; Furdui, B.; Ghinea, I.O.; Cârâc, G.; Dinică R.M. Recent advances in click chemistry reactions mediated by transition metal based systems. Inorg. Chim. Acta, 2017, 455, 329-349.
[http://dx.doi.org/10.1016/j.ica.2016.07.029]
[24]
Gui, B.; Meng, X.; Xu, H.; Wang, C. Postsynthetic modification of metal-organic frameworks through click chemistry. Chin. J. Chem., 2016, 34(2), 186-190.
[http://dx.doi.org/10.1002/cjoc.201500621]
[25]
Sheng, J.; Ma, N.; Wang, Y.; Ye, W.C.; Zhao, B-X. The application of click chemistry in the synthesis of agents with anticancer activity. Drug Des. Devel. Ther., 2015, 9, 1585-1599.
[http://dx.doi.org/10.2147/DDDT.S56038] [PMID: 25792812]
[26]
Arseneault, M.; Wafer, C.; Morin, J.F. Recent advances in click chemistry applied to dendrimer synthesis. Molecules, 2015, 20(5), 9263-9294.
[http://dx.doi.org/10.3390/molecules20059263] [PMID: 26007183]
[27]
He, X.P.; Zeng, Y.L.; Zang, Y.; Li, J.; Field, R.A.; Chen, G.R. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr. Res., 2016, 429, 1-22.
[http://dx.doi.org/10.1016/j.carres.2016.03.022] [PMID: 27085906]
[28]
Vrabel, M.; Carell, T. Cycloadditions in Bioorthogonal Chemistry, 1st ed; Springer Cham: Switzerland, 2016.
[http://dx.doi.org/10.1007/978-3-319-29686-9]
[29]
Meldal, M.; Diness, F. Recent fascinating aspects of the CuAAC click reaction. Trends Chem., 2020, 2(6), 569-584.
[http://dx.doi.org/10.1016/j.trechm.2020.03.007]
[30]
Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
[31]
Kenry; Liu, B. Bio-orthogonal click chemistry for in vivo bioimaging. Trends Chem., 2019, 1(8), 763-778.
[http://dx.doi.org/10.1016/j.trechm.2019.08.003]
[32]
Kumar, G.S.; Lin, Q. Light-triggered click chemistry. Chem. Rev., 2021, 121(12), 6991-7031.
[http://dx.doi.org/10.1021/acs.chemrev.0c00799] [PMID: 33104332]
[33]
Chassaing, S.; Bénéteau, V.; Pale, P. When CuAAC ‘Click Chemistry’ goes heterogeneous. Catal. Sci. Technol., 2016, 6(4), 923-957.
[http://dx.doi.org/10.1039/C5CY01847A]
[34]
Anjana, A.K.; Pooja, K.R.; Juno, S.; Sruthy, I.; Shahina, N.S.; Rakhi, A.R. A review on click chemistry. World J. Pharm. Res., 2022, 11, 2386-2399.
[http://dx.doi.org/10.20959/wjpr20222-23128]
[35]
Devaraj, N.K.; Finn, M.G. Introduction: Click chemistry. Chem. Rev., 2021, 121(12), 6697-6698.
[http://dx.doi.org/10.1021/acs.chemrev.1c00469] [PMID: 34157843]
[36]
Li, L.; Zhang, Z. Development and applications of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) as a bioorthogonal reaction. Molecules, 2016, 21(10), 1393.
[http://dx.doi.org/10.3390/molecules21101393] [PMID: 27783053]
[37]
Castro, V.; Rodríguez, H.; Albericio, F. CuAAC: An efficient click chemistry reaction on solid phase. ACS Comb. Sci., 2016, 18(1), 1-14.
[http://dx.doi.org/10.1021/acscombsci.5b00087] [PMID: 26652044]
[38]
Kaur, J.; Saxena, M.; Rishi, N. An overview of recent advances in biomedical applications of click chemistry. Bioconjug. Chem., 2021, 32(8), 1455-1471.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00247] [PMID: 34319077]
[39]
Vala, D.P.; Vala, R.M.; Patel, H.M. Versatile synthetic platform for 1,2,3-Triazole chemistry. ACS Omega, 2022, 7(42), 36945-36987.
[http://dx.doi.org/10.1021/acsomega.2c04883] [PMID: 36312377]
[40]
Pereira, D.; Pinto, M.; Correia-da-Silva, M.; Cidade, H. Recent advances in bioactive flavonoid hybrids linked by 1,2,3-Triazole ring obtained by click chemistry. Molecules, 2021, 27(1), 230.
[http://dx.doi.org/10.3390/molecules27010230] [PMID: 35011463]
[41]
Gao, P.; Sun, L.; Zhou, J.; Li, X.; Zhan, P.; Liu, X. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opin. Drug Discov., 2016, 11(9), 857-871.
[http://dx.doi.org/10.1080/17460441.2016.1210125] [PMID: 27400283]
[42]
Mandoli, A. Recent advances in recoverable systems for the copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC). Molecules, 2016, 21(9), 1174.
[http://dx.doi.org/10.3390/molecules21091174] [PMID: 27607998]
[43]
Izquierdo, E.; Delgado, A. Click chemistry in sphingolipid research. Chem. Phys. Lipids, 2018, 215, 71-83.
[http://dx.doi.org/10.1016/j.chemphyslip.2018.07.004] [PMID: 30028965]
[44]
Aflak, N.; Ben El Ayouchia, H.; Bahsis, L.; Anane, H.; Julve, M.; Stiriba, S.E. Recent advances in copper-based solid heterogeneous catalysts for azide–alkyne cycloaddition reactions. Int. J. Mol. Sci., 2022, 23(4), 2383.
[http://dx.doi.org/10.3390/ijms23042383] [PMID: 35216495]
[45]
Pickens, C.J.; Johnson, S.N.; Pressnall, M.M.; Leon, M.A.; Berkland, C.J. Practical considerations, challenges, and limitations of bioconjugation via azide–alkyne cycloaddition. Bioconjug. Chem., 2018, 29(3), 686-701.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00633] [PMID: 29287474]
[46]
Neumann, S.; Biewend, M.; Rana, S.; Binder, W.H. The CuAAC: Principles, homogeneous and heterogeneous catalysts, and novel developments and applications. Macromol. Rapid Commun., 2020, 41(1), 1900359.
[http://dx.doi.org/10.1002/marc.201900359] [PMID: 31631449]
[47]
Farrer, N.J.; Griffith, D.M. Exploiting azide–alkyne click chemistry in the synthesis, tracking and targeting of platinum anticancer complexes. Curr. Opin. Chem. Biol., 2020, 55, 59-68.
[http://dx.doi.org/10.1016/j.cbpa.2019.12.001] [PMID: 31945705]
[48]
Ouyang, T.; Liu, X.; Ouyang, H.; Ren, L. Recent trends in click chemistry as a promising technology for virus-related research. Virus Res., 2018, 256, 21-28.
[http://dx.doi.org/10.1016/j.virusres.2018.08.003] [PMID: 30081058]
[49]
Acherar, S.; Colombeau, L.; Frochot, C.; Vanderesse, R. Synthesis of porphyrin, chlorin and phthalocyanine derivatives by azide-alkyne click chemistry. Curr. Med. Chem., 2015, 22(28), 3217-3254.
[http://dx.doi.org/10.2174/0929867322666150716115832] [PMID: 26179994]
[50]
Martens, S.; Holloway, J.O.; Du Prez, F.E. Click and click-inspired chemistry for the design of sequence-controlled polymers. Macromol. Rapid Commun., 2017, 38(24), 1700469.
[http://dx.doi.org/10.1002/marc.201700469] [PMID: 28990247]
[51]
Porte, K.; Riomet, M.; Figliola, C.; Audisio, D.; Taran, F. Click and bio-orthogonal reactions with mesoionic compounds. Chem. Rev., 2021, 121(12), 6718-6743.
[http://dx.doi.org/10.1021/acs.chemrev.0c00806] [PMID: 33238101]
[52]
Testa, C.; Papini, A.M.; Chorev, M.; Rovero, P. Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC)-Mediated macrocyclization of peptides: Impact on conformation and biological activity. Curr. Top. Med. Chem., 2018, 18(7), 591-610.
[http://dx.doi.org/10.2174/1568026618666180518095755] [PMID: 29773065]
[53]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[54]
Lallana, E.; Riguera, R.; Fernandez-Megia, E. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions. Angew. Chem. Int. Ed., 2011, 50(38), 8794-8804.
[http://dx.doi.org/10.1002/anie.201101019] [PMID: 21905176]
[55]
Cintas, P.; Palmisano, G.; Cravotto, G. Power ultrasound in metal-assisted synthesis: From classical Barbier-like reactions to click chemistry. Ultrason. Sonochem., 2011, 18(4), 836-841.
[http://dx.doi.org/10.1016/j.ultsonch.2010.11.020] [PMID: 21216171]
[56]
Xu, H.; Jones, L.H. Click chemistry patents and their impact on drug discovery and chemical biology. Pharm. Pat. Anal., 2015, 4(2), 109-119.
[http://dx.doi.org/10.4155/ppa.14.59] [PMID: 25853470]
[57]
Csuk, R.; Deigner, H.P. The potential of click reactions for the synthesis of bioactive triterpenes. Bioorg. Med. Chem. Lett., 2019, 29(8), 949-958.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.020] [PMID: 30799214]
[58]
Wang, X.; Huang, B.; Liu, X.; Zhan, P. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discov. Today, 2016, 21(1), 118-132.
[http://dx.doi.org/10.1016/j.drudis.2015.08.004] [PMID: 26315392]
[59]
Gopinathan, J.; Noh, I. Click chemistry-based injectable hydrogels and bioprinting inks for tissue engineering applications. Tissue Eng. Regen. Med., 2018, 15(5), 531-546.
[http://dx.doi.org/10.1007/s13770-018-0152-8] [PMID: 30603577]
[60]
Lutz, J.F.; Zarafshani, Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne “click” chemistry. Adv. Drug Deliv. Rev., 2008, 60(9), 958-970.
[http://dx.doi.org/10.1016/j.addr.2008.02.004] [PMID: 18406491]
[61]
Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev., 2008, 108(8), 2952-3015.
[http://dx.doi.org/10.1021/cr0783479] [PMID: 18698735]
[62]
Huisgen, R. Kinetics and reaction mechanisms: Selected examples from the experience of forty years. Pure Appl. Chem., 1989, 61(4), 613-628.
[http://dx.doi.org/10.1351/pac198961040613]
[63]
Appukkuttan, P.; Dehaen, W.; Fokin, V.V.; Van der Eycken, E. A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. Org. Lett., 2004, 6(23), 4223-4225.
[http://dx.doi.org/10.1021/ol048341v] [PMID: 15524448]
[64]
Hajipour, A.R.; Karimzadeh, M.; Fakhari, F.; Karimi, H. CuFeO2/tetrabutylammonium bromide catalyzes selective synthesis of 1,4-disubstituted 1,2,3-triazoles in neat water at room temperature. Appl. Organomet. Chem., 2016, 30(11), 946-948.
[http://dx.doi.org/10.1002/aoc.3526]
[65]
Miura, M.; Enna, M.; Okuro, K.; Nomura, M. Copper-catalyzed reaction of terminal alkynes with nitrones. Selective synthesis of 1-Aza-1-buten-3-yne and 2-Azetidinone derivatives. J. Org. Chem., 1995, 60(16), 4999-5004.
[http://dx.doi.org/10.1021/jo00121a018]
[66]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[67]
Bock, V.D.; Hiemstra, H.; van Maarseveen, J.H. CuI ‐Catalyzed alkyne–azide “Click” Cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem., 2006, 2006(1), 51-68.
[http://dx.doi.org/10.1002/ejoc.200500483]
[68]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[69]
Rodionov, V.O.; Fokin, V.V.; Finn, M.G. Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. Angew. Chem. Int. Ed., 2005, 44(15), 2210-2215.
[http://dx.doi.org/10.1002/anie.200461496] [PMID: 15693051]
[70]
Jones, G.O.; Ess, D.H.; Houk, K.N. Activation energies and reaction energetics for 1,3-Dipolar cycloadditions of hydrazoic acid with C-C and C-N multiple bonds from high-accuracy and density functional quantum mechanical calculations. Helv. Chim. Acta, 2005, 88(7), 1702-1710.
[http://dx.doi.org/10.1002/hlca.200590134]
[71]
Pérez, P.; Domingo, L.R.; José Aurell, M.; Contreras, R. Quantitative characterization of the global electrophilicity pattern of some reagents involved in 1,3-dipolar cycloaddition reactions. Tetrahedron, 2003, 59(17), 3117-3125.
[http://dx.doi.org/10.1016/S0040-4020(03)00374-0]
[72]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[73]
Siemsen, P.; Livingston, R.C.; Diederich, F. Acetylenic Coupling: A powerful tool in molecular construction. Angew. Chem. Int. Ed., 2000, 39(15), 2632-2657.
[http://dx.doi.org/10.1002/1521-3773(20000804)39:15<2632:AID-ANIE2632>3.0.CO;2-F] [PMID: 10934391]
[74]
Mykhalichko, B.M.; Temkin, O.N.; Mys’kiv, M.G. Polynuclear complexes of copper(I) halides: coordination chemistry and catalytic transformations of alkynes. Russ. Chem. Rev., 2000, 69(11), 957-984.
[http://dx.doi.org/10.1070/RC2000v069n11ABEH000609]
[75]
Collman, J.P.; Devaraj, N.K.; Chidsey, C.E.D. “Clicking” functionality onto electrode surfaces. Langmuir, 2004, 20(4), 1051-1053.
[http://dx.doi.org/10.1021/la0362977] [PMID: 15803676]
[76]
Darensbourg, D.J.; Lee, W.Z.; Adams, M.J.; Yarbrough, J.C. Diamond-shaped heterometallic complexes of iron(II) and copper(I) bridged by cyanide groups containing monodentate or bidentate phosphanes bound to Copper(I), including an alternative structure based on the nature of the bidentate phosphane ligand. Eur. J. Inorg. Chem., 2001, 2001(11), 2811-2822.
[http://dx.doi.org/10.1002/1099-0682(200111)2001:11<2811:AID-EJIC2811>3.0.CO;2-A]
[77]
Mascal, M.; Kerdelhué, J.L.; Blake, A.J.; Cooke, P.A. S-Cylindrophanes: From metal tweezers to metal sandwiches. Angew. Chem. Int. Ed., 1999, 38(13-14), 1968-1971.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1968:AID-ANIE1968>3.0.CO;2-U] [PMID: 34182676]
[78]
Chang, C.W.; Lee, G.H. Synthesis of ruthenium triazolato and tetrazolato complexes by 1,3-dipolar cycloadditions of ruthenium azido complex with alkynes and alkenes and regiospecific alkylation of triazolates. Organometallics, 2003, 22(15), 3107-3116.
[http://dx.doi.org/10.1021/om030079r]
[79]
Giguère, D.; Patnam, R.; Bellefleur, M.A.; St-Pierre, C.; Sato, S.; Roy, R. Carbohydrate triazoles and isoxazoles as inhibitors of galectins-1 and -3. Chem. Commun. (Camb.), 2006, 2006(22), 2379-2381.
[http://dx.doi.org/10.1039/B517529A] [PMID: 16733586]
[80]
Pirali, T.; Tron, G.C.; Zhu, J. One-pot synthesis of macrocycles by a tandem three-component reaction and intramolecular [3+2] cycloaddition. Org. Lett., 2006, 8(18), 4145-4148.
[http://dx.doi.org/10.1021/ol061782p] [PMID: 16928095]
[81]
Franke, R.; Doll, C.; Eichler, J. Peptide ligation through click chemistry for the generation of assembled and scaffolded peptides. Tetrahedron Lett., 2005, 46(26), 4479-4482.
[http://dx.doi.org/10.1016/j.tetlet.2005.04.107]
[82]
Font, D.; Jimeno, C.; Pericàs, M.A. Polystyrene-supported hydroxyproline: An insoluble, recyclable organocatalyst for the asymmetric aldol reaction in water. Org. Lett., 2006, 8(20), 4653-4655.
[http://dx.doi.org/10.1021/ol061964j] [PMID: 16986973]
[83]
Roice, M.; Johannsen, I.; Meldal, M. High capacity Poly(ethylene glycol) based amino polymers for peptide and organic synthesis. QSAR Comb. Sci., 2004, 23(8), 662-673.
[http://dx.doi.org/10.1002/qsar.200420021]
[84]
Carroll, J.B.; Jordan, B.J.; Xu, H.; Erdogan, B.; Lee, L.; Cheng, L.; Tiernan, C.; Cooke, G.; Rotello, V.M. Model systems for flavoenzyme activity: Site-isolated redox behavior in flavin-functionalized random polystyrene copolymers. Org. Lett., 2005, 7(13), 2551-2554.
[http://dx.doi.org/10.1021/ol0505407] [PMID: 15957888]
[85]
Molander, G.A.; Ham, J. Synthesis of functionalized organotrifluoroborates via the 1,3-dipolar cycloaddition of azides. Org. Lett., 2006, 8(13), 2767-2770.
[http://dx.doi.org/10.1021/ol060826r] [PMID: 16774252]
[86]
Li, Z.; Bittman, R. Synthesis and spectral properties of cholesterol- and FTY720-containing boron dipyrromethene dyes. J. Org. Chem., 2007, 72(22), 8376-8382.
[http://dx.doi.org/10.1021/jo701475q] [PMID: 17914846]
[87]
Detz, R.J.; Heras, S.A.; de Gelder, R.; van Leeuwen, P.W.N.M.; Hiemstra, H.; Reek, J.N.H.; van Maarseveen, J.H. “Clickphine”: A novel and highly versatile P,N ligand class via click chemistry. Org. Lett., 2006, 8(15), 3227-3230.
[http://dx.doi.org/10.1021/ol061015q] [PMID: 16836372]
[88]
Oyelere, A.K.; Chen, P.C.; Yao, L.P.; Boguslavsky, N. Heterogeneous diazo-transfer reaction: A facile unmasking of azide groups on amine-functionalized insoluble supports for solid-phase synthesis. J. Org. Chem., 2006, 71(26), 9791-9796.
[http://dx.doi.org/10.1021/jo0618122] [PMID: 17168598]
[89]
Li, H.; Cheng, F.; Duft, A.M.; Adronov, A. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. J. Am. Chem. Soc., 2005, 127(41), 14518-14524.
[http://dx.doi.org/10.1021/ja054958b] [PMID: 16218649]
[90]
Liang, C.H.; Yao, S.; Chiu, Y.H.; Leung, P.Y.; Robert, N.; Seddon, J.; Sears, P.; Hwang, C.K.; Ichikawa, Y.; Romero, A. Synthesis and biological activity of new 5-O-sugar modified ketolide and 2-fluoro-ketolide antibiotics. Bioorg. Med. Chem. Lett., 2005, 15(5), 1307-1310.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.027] [PMID: 15713376]
[91]
Romero, A.; Liang, C.H.; Chiu, Y.H.; Yao, S.; Duffield, J.; Sucheck, S.J.; Marby, K.; Rabuka, D.; Leung, P.Y.; Shue, Y.K.; Ichikawa, Y.; Hwang, C.K. An efficient entry to new sugar modified ketolide antibiotics. Tetrahedron Lett., 2005, 46(9), 1483-1487.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.023]
[92]
Dondoni, A.; Marra, A. C-glycoside clustering on calix[4]arene, adamantane, and benzene scaffolds through 1,2,3-triazole linkers. J. Org. Chem., 2006, 71(20), 7546-7557.
[http://dx.doi.org/10.1021/jo0607156] [PMID: 16995658]
[93]
Weterings, J.J.; Khan, S.; van der Heden, G.J.; Drijfhout, J.W.; Melief, C.J.M.; Overkleeft, H.S.; van der Burg, S.H.; Ossendorp, F.; van der Marel, G.A.; Filippov, D.V. Synthesis of 2-alkoxy-8-hydroxyadenylpeptides: Towards synthetic epitope-based vaccines. Bioorg. Med. Chem. Lett., 2006, 16(12), 3258-3261.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.034] [PMID: 16581248]
[94]
Rossi, L.L.; Basu, A. Glycosidase inhibition by 1-glycosyl-4-phenyl triazoles. Bioorg. Med. Chem. Lett., 2005, 15(15), 3596-3599.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.081] [PMID: 15979309]
[95]
Salameh, B.A.; Leffler, H.; Nilsson, U.J. 3-(1,2,3-Triazol-1-yl)-1-thio-galactosides as small, efficient, and hydrolytically stable inhibitors of galectin-3. Bioorg. Med. Chem. Lett., 2005, 15(14), 3344-3346.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.084] [PMID: 15963723]
[96]
Cheshev, P.; Marra, A.; Dondoni, A. First synthesis of 1,2,3-triazolo-linked (1,6)-α- D -oligomannoses (triazolomannoses) by iterative Cu(I)-catalyzed alkyne–azide cycloaddition. Org. Biomol. Chem., 2006, 4(17), 3225-3227.
[http://dx.doi.org/10.1039/B609734K] [PMID: 17036109]
[97]
Looper, R.E.; Pizzirani, D.; Schreiber, S.L. Macrocycloadditions leading to conformationally restricted small molecules. Org. Lett., 2006, 8(10), 2063-2066.
[http://dx.doi.org/10.1021/ol0604724] [PMID: 16671782]
[98]
Dondoni, A.; Giovannini, P.P.; Massi, A. Assembling heterocycle-tethered C-glycosyl and alpha-amino acid residues via 1,3-dipolar cycloaddition reactions. Org. Lett., 2004, 6(17), 2929-2932.
[http://dx.doi.org/10.1021/ol048963g] [PMID: 15330650]
[99]
Tejler, J.; Skogman, F.; Leffler, H.; Nilsson, U.J. Synthesis of galactose-mimicking 1H-(1,2,3-triazol-1-yl)-mannosides as selective galectin-3 and 9N inhibitors. Carbohydr. Res., 2007, 342(12-13), 1869-1875.
[http://dx.doi.org/10.1016/j.carres.2007.03.012] [PMID: 17407769]
[100]
Choi, W.J.; Shi, Z.D.; Worthy, K.M.; Bindu, L.; Karki, R.G.; Nicklaus, M.C.; Fisher, R.J.; Burke, T.R., Jr Application of azide–alkyne cycloaddition ‘click chemistry’ for the synthesis of Grb2 SH2 domain-binding macrocycles. Bioorg. Med. Chem. Lett., 2006, 16(20), 5265-5269.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.004] [PMID: 16908148]
[101]
Punna, S.; Kuzelka, J.; Wang, Q.; Finn, M.G. Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition. Angew. Chem. Int. Ed., 2005, 44(15), 2215-2220.
[http://dx.doi.org/10.1002/anie.200461656] [PMID: 15693048]
[102]
Jang, H.; Fafarman, A.; Holub, J.M.; Kirshenbaum, K. Click to fit: Versatile polyvalent display on a peptidomimetic scaffold. Org. Lett., 2005, 7(10), 1951-1954.
[http://dx.doi.org/10.1021/ol050371q] [PMID: 15876027]
[103]
Tornøe, C.W.; Sanderson, S.J.; Mottram, J.C.; Coombs, G.H.; Meldal, M. Combinatorial library of peptidotriazoles: Identification of [1,2,3]-triazole inhibitors against a recombinant Leishmania mexicana cysteine protease. J. Comb. Chem., 2004, 6(3), 312-324.
[http://dx.doi.org/10.1021/cc020085v] [PMID: 15132590]
[104]
Conte, G.; Ely, F.; Gallardo, H. An investigation of the synthesis of chiral LCs based on the [1,2,3]‐triazole ring. Liq. Cryst., 2005, 32(10), 1213-1222.
[http://dx.doi.org/10.1080/02678290500329457]
[105]
Cristiano, R.; de Oliveira Santos, D.M.P.; Conte, G.; Gallardo, H. 1,4‐Diaryl and Schiff’s base [1,2,3]‐triazole derivative liquid crystalline compounds. Liq. Cryst., 2006, 33(9), 997-1003.
[http://dx.doi.org/10.1080/02678290600916138]
[106]
Gallardo, H.; Ely, F.; Bortoluzzi, A.J.; Conte, G. Applying click chemistry to synthesis of chiral [1,2,3]‐triazole liquid crystals. Liq. Cryst., 2005, 32(6), 667-671.
[http://dx.doi.org/10.1080/02678290500139732]
[107]
Wu, Y.M.; Deng, J.; Fang, X.; Chen, Q.Y. Regioselective synthesis of fluoroalkylated [1,2,3]-triazoles by Huisgen cycloaddition. J. Fluor. Chem., 2004, 125(10), 1415-1423.
[http://dx.doi.org/10.1016/j.jfluchem.2004.02.016]
[108]
Li, H.; Riva, R.; Jérôme, R.; Lecomte, P. combination of ring-opening polymerization and “click” chemistry for the synthesis of an amphiphilic tadpole-shaped Poly(ε-Caprolactone) Grafted by PEO. Macromolecules, 2007, 40(4), 824-831.
[http://dx.doi.org/10.1021/ma062488f]
[109]
Riva, R.; Schmeits, S.; Jérôme, C.; Jérôme, R.; Lecomte, P. Combination of ring-opening polymerization and “Click Chemistry”: Toward functionalization and grafting of poly(ε-caprolactone). Macromolecules, 2007, 40(4), 796-803.
[http://dx.doi.org/10.1021/ma0624090]
[110]
Tejler, J.; Tullberg, E.; Frejd, T.; Leffler, H.; Nilsson, U.J. Synthesis of multivalent lactose derivatives by 1,3-dipolar cycloadditions: selective galectin-1 inhibition. Carbohydr. Res., 2006, 341(10), 1353-1362.
[http://dx.doi.org/10.1016/j.carres.2006.04.028] [PMID: 16697988]
[111]
Kacprzak, K. Efficient one-pot synthesis of 1,2,3-Triazoles from benzyl and alkyl halides. Synlett, 2005, 2005(6), 0943-0946.
[http://dx.doi.org/10.1055/s-2005-864809]
[112]
Opsteen, J.A.; van Hest, J.C.M. Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. Chem. Commun. (Camb.), 2005, 11(1), 57-59.
[http://dx.doi.org/10.1039/b412930j] [PMID: 15614371]
[113]
Bodine, K.D.; Gin, D.Y.; Gin, M.S. Highly convergent synthesis of C3- or C2-symmetric carbohydrate macrocycles. Org. Lett., 2005, 7(20), 4479-4482.
[http://dx.doi.org/10.1021/ol051818y] [PMID: 16178563]
[114]
Bodine, K.D.; Gin, D.Y.; Gin, M.S. Synthesis of readily modifiable cyclodextrin analogues via cyclodimerization of an alkynyl-azido trisaccharide. J. Am. Chem. Soc., 2004, 126(6), 1638-1639.
[http://dx.doi.org/10.1021/ja039374t] [PMID: 14871087]
[115]
Slater, M.; Snauko, M.; Svec, F.; Fréchet, J.M.J. “Click chemistry” in the preparation of porous polymer-based particulate stationary phases for μ-HPLC separation of peptides and proteins. Anal. Chem., 2006, 78(14), 4969-4975.
[http://dx.doi.org/10.1021/ac060006s] [PMID: 16841919]
[116]
Díaz, D.D.; Punna, S.; Holzer, P.; McPherson, A.K.; Sharpless, K.B.; Fokin, V.V.; Finn, M.G. Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. J. Polym. Sci. A Polym. Chem., 2004, 42(17), 4392-4403.
[http://dx.doi.org/10.1002/pola.20330]
[117]
Yoo, E.J.; Ahlquist, M.; Kim, S.H.; Bae, I.; Fokin, V.V.; Sharpless, K.B.; Chang, S. Copper-catalyzed synthesis of N-Sulfonyl-1,2,3-triazoles: Controlling selectivity. Angew. Chem. Int. Ed., 2007, 46(10), 1730-1733.
[http://dx.doi.org/10.1002/anie.200604241] [PMID: 17397087]
[118]
Li, Z.; Seo, T.S.; Ju, J. 1,3-Dipolar cycloaddition of azides with electron-deficient alkynes under mild condition in water. Tetrahedron Lett., 2004, 45(15), 3143-3146.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.089]
[119]
Chowdhury, C.; Mandal, S.B.; Achari, B. Palladium–copper catalysed heteroannulation of acetylenic compounds: An expeditious synthesis of isoindoline fused with triazoles. Tetrahedron Lett., 2005, 46(49), 8531-8534.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.006]
[120]
Zhang, Z.; Fan, E. Solid phase synthesis of peptidotriazoles with multiple cycles of triazole formation. Tetrahedron Lett., 2006, 47(5), 665-669.
[http://dx.doi.org/10.1016/j.tetlet.2005.11.111]
[121]
Marik, J.; Sutcliffe, J.L. Click for PET: Rapid preparation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett., 2006, 47(37), 6681-6684.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.176]
[122]
Bertrand, P.; Gesson, J.P. Click chemistry with O-dimethylpropargylcarbamate for preparation of pH-sensitive functional groups. A case study. J. Org. Chem., 2007, 72(9), 3596-3599.
[http://dx.doi.org/10.1021/jo070131j] [PMID: 17385923]
[123]
Billing, J.F.; Nilsson, U.J. C2-symmetric macrocyclic carbohydrate/amino acid hybrids through copper(I)-catalyzed formation of 1,2,3-triazoles. J. Org. Chem., 2005, 70(12), 4847-4850.
[http://dx.doi.org/10.1021/jo050585l] [PMID: 15932327]
[124]
Luo, S.; Xu, H.; Mi, X.; Li, J.; Zheng, X.; Cheng, J.P. Evolution of pyrrolidine-type asymmetric organocatalysts by “click” chemistry. J. Org. Chem., 2006, 71(24), 9244-9247.
[http://dx.doi.org/10.1021/jo061657r] [PMID: 17109558]
[125]
Patterson, A.W.; Wood, W.J.L.; Hornsby, M.; Lesley, S.; Spraggon, G.; Ellman, J.A. Identification of selective, nonpeptidic nitrile inhibitors of cathepsin s using the substrate activity screening method. J. Med. Chem., 2006, 49(21), 6298-6307.
[http://dx.doi.org/10.1021/jm060701s] [PMID: 17034136]
[126]
Wood, W.J.L.; Patterson, A.W.; Tsuruoka, H.; Jain, R.K.; Ellman, J.A. Substrate activity screening: A fragment-based method for the rapid identification of nonpeptidic protease inhibitors. J. Am. Chem. Soc., 2005, 127(44), 15521-15527.
[http://dx.doi.org/10.1021/ja0547230] [PMID: 16262416]
[127]
Reck, F.; Zhou, F.; Girardot, M.; Kern, G.; Eyermann, C.J.; Hales, N.J.; Ramsay, R.R.; Gravestock, M.B. Identification of 4-substituted 1,2,3-triazoles as novel oxazolidinone antibacterial agents with reduced activity against monoamine oxidase A. J. Med. Chem., 2005, 48(2), 499-506.
[http://dx.doi.org/10.1021/jm0400810] [PMID: 15658863]
[128]
Díaz, D.D.; Rajagopal, K.; Strable, E.; Schneider, J.; Finn, M.G. “Click” chemistry in a supramolecular environment: Stabilization of organogels by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc., 2006, 128(18), 6056-6057.
[http://dx.doi.org/10.1021/ja061251w] [PMID: 16669673]
[129]
Horne, W.S.; Stout, C.D.; Ghadiri, M.R. A heterocyclic peptide nanotube. J. Am. Chem. Soc., 2003, 125(31), 9372-9376.
[http://dx.doi.org/10.1021/ja034358h] [PMID: 12889966]
[130]
Horne, W.S.; Yadav, M.K.; Stout, C.D.; Ghadiri, M.R. Heterocyclic peptide backbone modifications in an α-helical coiled coil. J. Am. Chem. Soc., 2004, 126(47), 15366-15367.
[http://dx.doi.org/10.1021/ja0450408] [PMID: 15563148]
[131]
Coady, D.J.; Bielawski, C.W. N-Heterocyclic Carbenes: Versatile reagents for postpolymerization modification. Macromolecules, 2006, 39(26), 8895-8897.
[http://dx.doi.org/10.1021/ma062030d]
[132]
Narsaiah, B.; Reiser, O.; Gheorghe, A.; Cuevas-Yañez, E.; Horn, J.; Bannwarth, W. A facile strategy to a new fluorous-tagged, Immobilized TEMPO catalyst using a click reaction, and its catalytic activity. Synlett, 2006, 2006(17), 2767-2770.
[http://dx.doi.org/10.1055/s-2006-950256]
[133]
Goess, B.C.; Hannoush, R.N.; Chan, L.K.; Kirchhausen, T.; Shair, M.D. Synthesis of a 10,000-membered library of molecules resembling carpanone and discovery of vesicular traffic inhibitors. J. Am. Chem. Soc., 2006, 128(16), 5391-5403.
[http://dx.doi.org/10.1021/ja056338g] [PMID: 16620111]
[134]
Fazio, F.; Bryan, M.C.; Blixt, O.; Paulson, J.C.; Wong, C.H. Synthesis of sugar arrays in microtiter plate. J. Am. Chem. Soc., 2002, 124(48), 14397-14402.
[http://dx.doi.org/10.1021/ja020887u] [PMID: 12452714]
[135]
Bryan, M.C.; Fazio, F.; Lee, H.K.; Huang, C.Y.; Chang, A.; Best, M.D.; Calarese, D.A.; Blixt, O.; Paulson, J.C.; Burton, D.; Wilson, I.A.; Wong, C.H. Covalent display of oligosaccharide arrays in microtiter plates. J. Am. Chem. Soc., 2004, 126(28), 8640-8641.
[http://dx.doi.org/10.1021/ja048433f] [PMID: 15250702]
[136]
Fu, X.; Albermann, C.; Zhang, C.; Thorson, J.S. Diversifying vancomycin via chemoenzymatic strategies. Org. Lett., 2005, 7(8), 1513-1515.
[http://dx.doi.org/10.1021/ol0501626] [PMID: 15816740]
[137]
Gopi, H.N.; Tirupula, K.C.; Baxter, S.; Ajith, S.; Chaiken, I.M. Click chemistry on azidoproline: high-affinity dual antagonist for HIV-1 envelope glycoprotein gp120. ChemMedChem, 2006, 1(1), 54-57.
[http://dx.doi.org/10.1002/cmdc.200500037] [PMID: 16892335]
[138]
Chen, B.; Yang, D.; Fu, N.; Liu, Z.; Li, Y. A convenient synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles via 1,3-Dipolar cycloaddition/coupling of alkynes, phenylboronic acids, and sodium azide catalyzed by Cu(I)/Cu(II). Synlett, 2007, 2007(2), 0278-0282.
[http://dx.doi.org/10.1055/s-2007-968007]
[139]
Tanaka, K.; Kageyama, C.; Fukase, K. Acceleration of Cu(I)-mediated Huisgen 1,3-dipolar cycloaddition by histidine derivatives. Tetrahedron Lett., 2007, 48(37), 6475-6479.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.055]
[140]
Sreedhar, B.; Surendra Reddy, P. Sonochemical synthesis of 1,4‐disubstituted 1,2,3‐triazoles in aqueous medium. Synth. Commun., 2007, 37(5), 805-812.
[http://dx.doi.org/10.1080/00397910601133599]
[141]
Mason, B.P.; Bogdan, A.R.; Goswami, A.; McQuade, D.T. A general approach to creating soluble catalytic polymers heterogenized in microcapsules. Org. Lett., 2007, 9(17), 3449-3451.
[http://dx.doi.org/10.1021/ol071360v] [PMID: 17645350]
[142]
Wu, P.; Malkoch, M.; Hunt, J.N.; Vestberg, R.; Kaltgrad, E.; Finn, M.G.; Fokin, V.V.; Sharpless, K.B.; Hawker, C.J. Multivalent, bifunctional dendrimers prepared by click chemistry. Chem. Commun. (Camb.), 2005, 2005(46), 5775-5777.
[http://dx.doi.org/10.1039/b512021g] [PMID: 16307142]
[143]
Parrish, B.; Emrick, T. Soluble camptothecin derivatives prepared by click cycloaddition chemistry on functional aliphatic polyesters. Bioconjug. Chem., 2007, 18(1), 263-267.
[http://dx.doi.org/10.1021/bc060201d] [PMID: 17226981]
[144]
Gruijters, B.W.T.; Broeren, M.A.C.; van Delft, F.L.; Sijbesma, R.P.; Hermkens, P.H.H.; Rutjes, F.P.J.T. Catalyst recycling via hydrogen-bonding-based affinity tags. Org. Lett., 2006, 8(15), 3163-3166.
[http://dx.doi.org/10.1021/ol0607387] [PMID: 16836356]
[145]
Temelkoff, D.P.; Zeller, M.; Norris, P. N-Glycoside neoglycotrimers from 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl azide. Carbohydr. Res., 2006, 341(9), 1081-1090.
[http://dx.doi.org/10.1016/j.carres.2006.04.011] [PMID: 16678807]
[146]
O’Reilly, R.K.; Joralemon, M.J.; Hawker, C.J.; Wooley, K.L. Fluorogenic 1,3-dipolar cycloaddition within the hydrophobic core of a shell cross-linked nanoparticle. Chemistry, 2006, 12(26), 6776-6786.
[http://dx.doi.org/10.1002/chem.200600467] [PMID: 16800009]
[147]
Sieczkowska, B.; Millaruelo, M.; Messerschmidt, M.; Voit, B. New photolabile functional polymers for patterning onto gold obtained by click chemistry. Macromolecules, 2007, 40(7), 2361-2370.
[http://dx.doi.org/10.1021/ma062410z]
[148]
Malkoch, M.; Thibault, R.J.; Drockenmuller, E.; Messerschmidt, M.; Voit, B.; Russell, T.P.; Hawker, C.J. Orthogonal approaches to the simultaneous and cascade functionalization of macromolecules using click chemistry. J. Am. Chem. Soc., 2005, 127(42), 14942-14949.
[http://dx.doi.org/10.1021/ja0549751] [PMID: 16231951]
[149]
Miner, P.L.; Wagner, T.R.; Norris, P. Cu (I)-catalyzed formation of d-mannofuranosyl 1, 4-disubstituted 1, 2, 3-triazolecarbohybrids. Heterocycles, 2005, 65, 1035-1049.
[http://dx.doi.org/10.3987/COM-04-10246]
[150]
Bock, V.D.; Speijer, D.; Hiemstra, H.; van Maarseveen, J.H. 1,2,3-Triazoles as peptide bond isosteres: Synthesis and biological evaluation of cyclotetrapeptide mimics. Org. Biomol. Chem., 2007, 5(6), 971-975.
[http://dx.doi.org/10.1039/b616751a] [PMID: 17340013]
[151]
Bock, V.D.; Perciaccante, R.; Jansen, T.P.; Hiemstra, H.; van Maarseveen, J.H. Click chemistry as a route to cyclic tetrapeptide analogues: Synthesis of cyclo-[Pro-Val-psi(triazole)-Pro-Tyr]. Org. Lett., 2006, 8(5), 919-922.
[http://dx.doi.org/10.1021/ol053095o] [PMID: 16494474]
[152]
Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C.J.; Russell, T.P.; Wu, P.; Fokin, V.V. Structurally diverse dendritic libraries: A highly efficient functionalization approach using click chemistry. Macromolecules, 2005, 38(9), 3663-3678.
[http://dx.doi.org/10.1021/ma047657f]
[153]
Binder, W.H.; Kluger, C. Combining ring-opening metathesis polymerization (ROMP) with sharpless-type “click” reactions: an easy method for the preparation of side chain functionalized poly(oxynorbornenes). Macromolecules, 2004, 37(25), 9321-9330.
[http://dx.doi.org/10.1021/ma0480087]
[154]
Marmuse, L.; Nepogodiev, S.A.; Field, R.A. “Click chemistry”en route to pseudo-starch. Org. Biomol. Chem., 2005, 3(12), 2225-2227.
[http://dx.doi.org/10.1039/b504293c] [PMID: 16010351]
[155]
Ladmiral, V.; Mantovani, G.; Clarkson, G.J.; Cauet, S.; Irwin, J.L.; Haddleton, D.M. Synthesis of neoglycopolymers by a combination of “click chemistry” and living radical polymerization. J. Am. Chem. Soc., 2006, 128(14), 4823-4830.
[http://dx.doi.org/10.1021/ja058364k] [PMID: 16594719]
[156]
Punna, S.; Kaltgrad, E.; Finn, M.G. “Clickable” agarose for affinity chromatography. Bioconjug. Chem., 2005, 16(6), 1536-1541.
[http://dx.doi.org/10.1021/bc0501496] [PMID: 16287252]
[157]
Rutjes, F.P.; Kuijpers, B.H.; Dijkmans, G.C.; Groothuys, S.; Quaedflieg, P.J.; Blaauw, R.H.; van Delft, F.L. Copper(I)-mediated synthesis of Trisubstituted 1,2,3-Triazoles. Synlett, 2005, 2005(20), 3059-3062.
[http://dx.doi.org/10.1055/s-2005-921919]
[158]
Cavalli, S.; Tipton, A.R.; Overhand, M.; Kros, A. The chemical modification of liposome surfaces via a copper-mediated [3 + 2] azide–alkyne cycloaddition monitored by a colorimetric assay. Chem. Commun. (Camb.), 2006, 2006(30), 3193-3195.
[http://dx.doi.org/10.1039/B606930D] [PMID: 17028740]
[159]
Zeng, Q.; Li, T.; Cash, B.; Li, S.; Xie, F.; Wang, Q. Chemoselective derivatization of a bionanoparticle by click reaction and ATRP reaction. Chem. Commun. (Camb.), 2007, 2007(14), 1453-1455.
[http://dx.doi.org/10.1039/b617534a] [PMID: 17389990]
[160]
Zhang, X.; Li, H.; You, L.; Tang, Y.; Hsung, R.P. Copper salt-catalyzed azide-[3+2] cycloadditions of ynamides and bis-ynamides. Adv. Synth. Catal., 2006, 348(16-17), 2437-2442.
[http://dx.doi.org/10.1002/adsc.200600404]
[161]
Zhang, X.; Hsung, R.P.; Li, H. A triazole-templated ring-closing metathesis for constructing novel fused and bridged triazoles. Chem. Commun. (Camb.), 2007, 2007(23), 2420-2422.
[http://dx.doi.org/10.1039/b701040k] [PMID: 17844766]
[162]
Altintas, O.; Yankul, B.; Hizal, G.; Tunca, U. A3-type star polymers via click chemistry. J. Polym. Sci. A Polym. Chem., 2006, 44(21), 6458-6465.
[http://dx.doi.org/10.1002/pola.21728]
[163]
Vogt, A.P.; Sumerlin, B.S. An efficient route to macromonomers via ATRP and click chemistry. Macromolecules, 2006, 39(16), 5286-5292.
[http://dx.doi.org/10.1021/ma0610461]
[164]
Altintas, O.; Hizal, G.; Tunca, U. ABC-type hetero-arm star terpolymers through “Click” chemistry. J. Polym. Sci. A Polym. Chem., 2006, 44(19), 5699-5707.
[http://dx.doi.org/10.1002/pola.21633]
[165]
Liu, Q.; Chen, Y. Synthesis of well-defined macromonomers by the combination of atom transfer radical polymerization and a click reaction. J. Polym. Sci. A Polym. Chem., 2006, 44(20), 6103-6113.
[http://dx.doi.org/10.1002/pola.21699]
[166]
Lutz, J.F.; Börner, H.G.; Weichenhan, K. Combining ATRP and “Click” chemistry: A promising platform toward functional biocompatible polymers and polymer bioconjugates. Macromolecules, 2006, 39(19), 6376-6383.
[http://dx.doi.org/10.1021/ma061557n]
[167]
Gao, H.; Louche, G.; Sumerlin, B.S.; Jahed, N.; Golas, P.; Matyjaszewski, K. Gradient polymer elution chromatographic analysis of αω-Dihydroxypolystyrene synthesized via ATRP and click chemistry. Macromolecules, 2005, 38(22), 8979-8982.
[http://dx.doi.org/10.1021/ma051566g]
[168]
Sumerlin, B.S.; Tsarevsky, N.V.; Louche, G.; Lee, R.Y.; Matyjaszewski, K. Highly efficient “Click” functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP. Macromolecules, 2005, 38(18)
[http://dx.doi.org/10.1021/ma0511245]
[169]
Gao, H.; Matyjaszewski, K. Synthesis of star polymers by a combination of ATRP and the “Click”. Coupling Method. Macromolecules, 2006, 39(15), 4960-4965.
[http://dx.doi.org/10.1021/ma060926c]
[170]
Gondi, S.R.; Vogt, A.P.; Sumerlin, B.S. Versatile pathway to functional telechelics via RAFT polymerization and Click Chemistry. Macromolecules, 2007, 40(3), 474-481.
[http://dx.doi.org/10.1021/ma061959v]
[171]
Gierlich, J.; Burley, G.A.; Gramlich, P.M.E.; Hammond, D.M.; Carell, T. Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA. Org. Lett., 2006, 8(17), 3639-3642.
[http://dx.doi.org/10.1021/ol0610946] [PMID: 16898780]
[172]
Johnson, J.A.; Lewis, D.R.; Díaz, D.D.; Finn, M.G.; Koberstein, J.T.; Turro, N.J. Synthesis of degradable model networks via ATRP and click chemistry. J. Am. Chem. Soc., 2006, 128(20), 6564-6565.
[http://dx.doi.org/10.1021/ja0612910] [PMID: 16704249]
[173]
Link, A.J.; Vink, M.K.S.; Tirrell, D.A. Presentation and detection of azide functionality in bacterial cell surface proteins. J. Am. Chem. Soc., 2004, 126(34), 10598-10602.
[http://dx.doi.org/10.1021/ja047629c] [PMID: 15327317]
[174]
Sawa, M.; Hsu, T.L.; Itoh, T.; Sugiyama, M.; Hanson, S.R.; Vogt, P.K.; Wong, C.H. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc. Natl. Acad. Sci. USA, 2006, 103(33), 12371-12376.
[http://dx.doi.org/10.1073/pnas.0605418103] [PMID: 16895981]
[175]
Thomsen, A.D.; Malmström, E.; Hvilsted, S. Novel polymers with a high carboxylic acid loading. J. Polym. Sci. A Polym. Chem., 2006, 44(21), 6360-6377.
[http://dx.doi.org/10.1002/pola.21730]
[176]
Hasegawa, T.; Umeda, M.; Numata, M.; Li, C.; Bae, A.H.; Fujisawa, T.; Haraguchi, S.; Sakurai, K.; Shinkai, S. ‘Click chemistry’ on polysaccharides: a convenient, general, and monitorable approach to develop (1→3)-β-d-glucans with various functional appendages. Carbohydr. Res., 2006, 341(1), 35-40.
[http://dx.doi.org/10.1016/j.carres.2005.10.009] [PMID: 16289495]
[177]
Hasegawa, T.; Umeda, M.; Numata, M.; Fujisawa, T.; Haraguchi, S.; Sakurai, K.; Shinkai, S. Click chemistry on curdlan: a regioselective and quantitative approach to develop artificial β-1, 3-glucans with various functional appendages. Chem. Lett., 2006, 35(1), 82-83.
[http://dx.doi.org/10.1246/cl.2006.82]
[178]
Deiters, A.; Schultz, P.G. In vivo incorporation of an alkyne into proteins in Escherichia coli. Bioorg. Med. Chem. Lett., 2005, 15(5), 1521-1524.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.065] [PMID: 15713420]
[179]
Bonnet, D.; Ilien, B.; Galzi, J.L.; Riché, S.; Antheaune, C.; Hibert, M. A rapid and versatile method to label receptor ligands using “click” chemistry: Validation with the muscarinic M1 antagonist pirenzepine. Bioconjug. Chem., 2006, 17(6), 1618-1623.
[http://dx.doi.org/10.1021/bc060140j] [PMID: 17105244]
[180]
Gopin, A.; Ebner, S.; Attali, B.; Shabat, D. Enzymatic activation of second-generation dendritic prodrugs: Conjugation of self-immolative dendrimers with poly(ethylene glycol) via click chemistry. Bioconjug. Chem., 2006, 17(6), 1432-1440.
[http://dx.doi.org/10.1021/bc060180n] [PMID: 17105221]
[181]
Lu, G.; Lam, S.; Burgess, K. An iterative route to “decorated” ethylene glycol-based linkers. Chem. Commun. (Camb.), 2006, 2006(15), 1652-1654.
[http://dx.doi.org/10.1039/b518061a] [PMID: 16583009]
[182]
Bew, S.P.; Brimage, R.A.; L’Hermit, N.; Sharma, S.V. Upper rim appended hybrid calixarenes via click chemistry. Org. Lett., 2007, 9(19), 3713-3716.
[http://dx.doi.org/10.1021/ol071047t] [PMID: 17696438]
[183]
Ballell, L.; Alink, K.J.; Slijper, M.; Versluis, C.; Liskamp, R.M.J.; Pieters, R.J. A new chemical probe for proteomics of carbohydrate-binding proteins. ChemBioChem, 2005, 6(2), 291-295.
[http://dx.doi.org/10.1002/cbic.200400209] [PMID: 15578642]
[184]
Quader, S.; Boyd, S.E.; Jenkins, I.D.; Houston, T.A. Multisite modification of neomycin B: combined Mitsunobu and click chemistry approach. J. Org. Chem., 2007, 72(6), 1962-1979.
[http://dx.doi.org/10.1021/jo0620967] [PMID: 17298096]
[185]
Ermolate’v, D.; Dehaen, W.; Van Der Eycken, E. Indirect Coupling of the 2(1H)-pyrazinone scaffold with various (oligo)-saccharides via “click chemistry”: en route towards glycopeptidomimetics. QSAR Comb. Sci., 2004, 23, 915-918.
[http://dx.doi.org/10.1002/qsar.200420049]
[186]
Deiters, A.; Cropp, T.A.; Mukherji, M.; Chin, J.W.; Anderson, J.C.; Schultz, P.G. Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J. Am. Chem. Soc., 2003, 125(39), 11782-11783.
[http://dx.doi.org/10.1021/ja0370037] [PMID: 14505376]
[187]
Kaval, N.; Ermolat’ev, D.; Appukkuttan, P.; Dehaen, W.; Kappe, C.O.; Van der Eycken, E. The application of “click chemistry” for the decoration of 2(1H)-pyrazinone scaffold: generation of templates. J. Comb. Chem., 2005, 7(3), 490-502.
[http://dx.doi.org/10.1021/cc0498377] [PMID: 15877478]
[188]
Ramachary, D.B.; Barbas, C.F. III Towards organo-click chemistry: development of organocatalytic multicomponent reactions through combinations of aldol, Wittig, Knoevenagel, Michael, Diels-Alder and Huisgen cycloaddition reactions. Chemistry, 2004, 10(21), 5323-5331.
[http://dx.doi.org/10.1002/chem.200400597] [PMID: 15390208]
[189]
Lee, L.V.; Mitchell, M.L.; Huang, S.J.; Fokin, V.V.; Sharpless, K.B.; Wong, C.H. A potent and highly selective inhibitor of human α-1,3-fucosyltransferase via click chemistry. J. Am. Chem. Soc., 2003, 125(32), 9588-9589.
[http://dx.doi.org/10.1021/ja0302836] [PMID: 12904015]
[190]
Chandrasekhar, S.; Rao, C.L.; Nagesh, C.; Reddy, C.R.; Sridhar, B. Inter and intramolecular copper(I)-catalyzed 1,3-dipolar cycloaddition of azido-alkynes: synthesis of furanotriazole macrocycles. Tetrahedron Lett., 2007, 48(33), 5869-5872.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.062]
[191]
David, O.; Maisonneuve, S.; Xie, J. Generation of new fluorophore by Click chemistry: synthesis and properties of β-cyclodextrin substituted by 2-pyridyl triazole. Tetrahedron Lett., 2007, 48(37), 6527-6530.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.071]
[192]
Pachón, L.D.; van Maarseveen, J.H.; Rothenberg, G. Click chemistry: copper clusters catalyse the cycloaddition of azides with terminal alkynes. Adv. Synth. Catal., 2005, 347(6), 811-815.
[http://dx.doi.org/10.1002/adsc.200404383]
[193]
Molteni, G.; Bianchi, C.L.; Marinoni, G.; Santo, N.; Ponti, A. Cu/Cu-oxide nanoparticles as catalyst in the “click” azide–alkyne cycloaddition. New J. Chem., 2006, 30(8), 1137-1139.
[http://dx.doi.org/10.1039/B604297J]
[194]
Orgueira, H.A.; Fokas, D.; Isome, Y.; Chan, P.C.M.; Baldino, C.M. Regioselective synthesis of [1,2,3]-triazoles catalyzed by Cu(I) generated in situ from Cu(0) nanosize activated powder and amine hydrochloride salts. Tetrahedron Lett., 2005, 46(16), 2911-2914.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.127]
[195]
Knochel, P.; Gommermann, N.; Gehrig, A. Enantioselective synthesis of chiral α-Aminoalkyl-1,2,3-triazoles using a three-component reaction. Synlett, 2005, 2005(18), 2796-2798.
[http://dx.doi.org/10.1055/s-2005-918931]
[196]
Kantam, M.L.; Jaya, V.S.; Sreedhar, B.; Rao, M.M.; Choudary, B.M. Preparation of alumina supported copper nanoparticles and their application in the synthesis of 1,2,3-triazoles. J. Mol. Catal. Chem., 2006, 256(1-2), 273-277.
[http://dx.doi.org/10.1016/j.molcata.2006.04.054]
[197]
Malow, M.; Wehrstedt, K.D.; Neuenfeld, S. On the explosive properties of 1H-benzotriazole and 1H-1,2,3-triazole. Tetrahedron Lett., 2007, 48(7), 1233-1235.
[http://dx.doi.org/10.1016/j.tetlet.2006.12.046]
[198]
Luxenhofer, R.; Jordan, R. Click Chemistry with Poly(2-oxazoline)s. Macromolecules, 2006, 39(10), 3509-3516.
[http://dx.doi.org/10.1021/ma052515m]
[199]
Sirion, U.; Kim, H.J.; Lee, J.H.; Seo, J.W.; Lee, B.S.; Lee, S.J.; Oh, S.J.; Chi, D.Y. An efficient F-18 labeling method for PET study: Huisgen 1,3-dipolar cycloaddition of bioactive substances and F-18-labeled compounds. Tetrahedron Lett., 2007, 48(23), 3953-3957.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.048]
[200]
Yan, Z.Y.; Niu, Y.N.; Wei, H.L.; Wu, L.Y.; Zhao, Y.B.; Liang, Y.M. Combining proline and ‘click chemistry’: A class of versatile organocatalysts for the highly diastereo- and enantioselective Michael addition in water. Tetrahedron Asymmetry, 2006, 17(23), 3288-3293.
[http://dx.doi.org/10.1016/j.tetasy.2006.12.003]
[201]
Li, Y.; Huffman, J.C.; Flood, A.H. Can terdentate 2,6-bis(1,2,3-triazol-4-yl)pyridines form stable coordination compounds? Chem. Commun. (Camb.), 2007, 2007(26), 2692-2694.
[http://dx.doi.org/10.1039/b703301j] [PMID: 17594022]
[202]
Kosiova, I.; Kovackova, S.; Kois, P. Synthesis of coumarin–nucleoside conjugates via Huisgen 1,3-dipolar cycloaddition. Tetrahedron, 2007, 63(2), 312-320.
[http://dx.doi.org/10.1016/j.tet.2006.10.075]
[203]
Gracias, V.; Darczak, D.; Gasiecki, A.F.; Djuric, S.W. Synthesis of fused triazolo-imidazole derivatives by sequential van Leusen/alkyne–azide cycloaddition reactions. Tetrahedron Lett., 2005, 46(52), 9053-9056.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.090]
[204]
Malkoch, M.; Vestberg, R.; Gupta, N.; Mespouille, L.; Dubois, P.; Mason, A.F.; Hedrick, J.L.; Liao, Q.; Frank, C.W.; Kingsbury, K.; Hawker, C.J. Synthesis of well-defined hydrogel networks using Click chemistry. Chem. Commun. (Camb.), 2006, 2006(26), 2774-2776.
[http://dx.doi.org/10.1039/b603438a] [PMID: 17009459]
[205]
Zhu, Y.; Huang, Y.; Meng, W.D.; Li, H.; Qing, F.L. Novel perfluorocyclobutyl (PFCB)-containing polymers formed by click chemistry. Polymer (Guildf.), 2006, 47(18), 6272-6279.
[http://dx.doi.org/10.1016/j.polymer.2006.06.066]
[206]
Li, C.; Finn, M.G. Click chemistry in materials synthesis. II. Acid-swellable crosslinked polymers made by copper-catalyzed azide-alkyne cycloaddition. J. Polym. Sci. A Polym. Chem., 2006, 44(19), 5513-5518.
[http://dx.doi.org/10.1002/pola.21623]
[207]
Paul, A.; Bittermann, H.; Gmeiner, P. Triazolopeptides: chirospecific synthesis and cis/trans prolyl ratios of structural isomers. Tetrahedron, 2006, 62(38), 8919-8927.
[http://dx.doi.org/10.1016/j.tet.2006.07.007]
[208]
Dolhem, F.; Johansson, M.J.; Antonsson, T.; Kann, N. Modular synthesis of ChiraClick ligands: a library of P-chirogenic phosphines. J. Comb. Chem., 2007, 9(3), 477-486.
[http://dx.doi.org/10.1021/cc0601635] [PMID: 17348714]
[209]
O’Neil, E.J.; DiVittorio, K.M.; Smith, B.D. Phosphatidylcholine-derived bolaamphiphiles via click chemistry. Org. Lett., 2007, 9(2), 199-202.
[http://dx.doi.org/10.1021/ol062557a] [PMID: 17217264]
[210]
Chen, S.; Galan, M.C.; Coltharp, C.; O’Connor, S.E. Redesign of a central enzyme in alkaloid biosynthesis. Chem. Biol., 2006, 13(11), 1137-1141.
[http://dx.doi.org/10.1016/j.chembiol.2006.10.009] [PMID: 17113995]
[211]
Joralemon, M.J.; O’Reilly, R.K.; Hawker, C.J.; Wooley, K.L. Shell click-crosslinked (SCC) nanoparticles: A new methodology for synthesis and orthogonal functionalization. J. Am. Chem. Soc., 2005, 127(48), 16892-16899.
[http://dx.doi.org/10.1021/ja053919x] [PMID: 16316235]
[212]
Beckmann, H.S.G.; Wittmann, V. One-pot procedure for diazo transfer and azide-alkyne cycloaddition: triazole linkages from amines. Org. Lett., 2007, 9(1), 1-4.
[http://dx.doi.org/10.1021/ol0621506] [PMID: 17192070]
[213]
Loethen, S.; Ooya, T.; Choi, H.S.; Yui, N.; Thompson, D.H. Synthesis, characterization, and pH-triggered dethreading of α-cyclodextrin-poly(ethylene glycol) polyrotaxanes bearing cleavable endcaps. Biomacromolecules, 2006, 7(9), 2501-2506.
[http://dx.doi.org/10.1021/bm0602076] [PMID: 16961310]
[214]
Parrish, B.; Breitenkamp, R.B.; Emrick, T. PEG- and peptide-grafted aliphatic polyesters by click chemistry. J. Am. Chem. Soc., 2005, 127(20), 7404-7410.
[http://dx.doi.org/10.1021/ja050310n] [PMID: 15898789]
[215]
Sun, X.L.; Stabler, C.L.; Cazalis, C.S.; Chaikof, E.L. Carbohydrate and protein immobilization onto solid surfaces by sequential Diels-Alder and azide-alkyne cycloadditions. Bioconjug. Chem., 2006, 17(1), 52-57.
[http://dx.doi.org/10.1021/bc0502311] [PMID: 16417251]
[216]
Zhan, W.; Barnhill, H.N.; Sivakumar, K.; Tian, H.; Wang, Q. Synthesis of hemicyanine dyes for ‘click’ bioconjugation. Tetrahedron Lett., 2005, 46(10), 1691-1695.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.066]
[217]
Fernandez-Megia, E.; Correa, J.; Riguera, R. “Clickable” PEG-dendritic block copolymers. Biomacromolecules, 2006, 7(11), 3104-3111.
[http://dx.doi.org/10.1021/bm060580d] [PMID: 17096538]
[218]
Oh, K.; Guan, Z. A convergent synthesis of new β-turn mimics by click chemistry. Chem. Commun. (Camb.), 2006, 2006(29), 3069-3071.
[http://dx.doi.org/10.1039/B606185K] [PMID: 16855688]
[219]
Xia, Y.; Fan, Z.; Yao, J.; Liao, Q.; Li, W.; Qu, F.; Peng, L. Discovery of bitriazolyl compounds as novel antiviral candidates for combating the tobacco mosaic virus. Bioorg. Med. Chem. Lett., 2006, 16(10), 2693-2698.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.023] [PMID: 16504509]
[220]
Xia, Y.; Li, W.; Qu, F.; Fan, Z.; Liu, X.; Berro, C.; Rauzy, E.; Peng, L. Synthesis of bitriazolyl nucleosides and unexpectedly different reactivity of azidotriazole nucleoside isomers in the Huisgen reaction. Org. Biomol. Chem., 2007, 5(11), 1695-1701.
[http://dx.doi.org/10.1039/b703420b] [PMID: 17520136]
[221]
Rijkers, D.T.S.; van Esse, G.W.; Merkx, R.; Brouwer, A.J.; Jacobs, H.J.F.; Pieters, R.J.; Liskamp, R.M.J. Efficient microwave-assisted synthesis of multivalent dendrimeric peptides using cycloaddition reaction (click) chemistry. Chem. Commun. (Camb.), 2005, 2005(36), 4581-4583.
[http://dx.doi.org/10.1039/b507975f] [PMID: 16158121]
[222]
Pore, V.S.; Aher, N.G.; Kumar, M.; Shukla, P.K. Design and synthesis of fluconazole/bile acid conjugate using click reaction. Tetrahedron, 2006, 62(48), 11178-11186.
[http://dx.doi.org/10.1016/j.tet.2006.09.021]
[223]
Ciampi, S.; Böcking, T.; Kilian, K.A.; James, M.; Harper, J.B.; Gooding, J.J. Functionalization of acetylene-terminated monolayers on Si(100) surfaces: a click chemistry approach. Langmuir, 2007, 23(18), 9320-9329.
[http://dx.doi.org/10.1021/la701035g] [PMID: 17655337]
[224]
Li, J.; Zheng, M.; Tang, W.; He, P.L.; Zhu, W.; Li, T.; Zuo, J.P.; Liu, H.; Jiang, H. Syntheses of triazole-modified zanamivir analogues via click chemistry and anti-AIV activities. Bioorg. Med. Chem. Lett., 2006, 16(19), 5009-5013.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.047] [PMID: 16876409]
[225]
Ballell, L.; van Scherpenzeel, M.; Buchalova, K.; Liskamp, R.M.J.; Pieters, R.J. A new chemical probe for the detection of the cancer-linked galectin-3. Org. Biomol. Chem., 2006, 4(23), 4387-4394.
[http://dx.doi.org/10.1039/b611050a] [PMID: 17102885]
[226]
Gouin, S.G.; Bultel, L.; Falentin, C.; Kovensky, J. A Simple procedure for connecting two Carbohydrate moieties by click chemistry techniques. Eur. J. Org. Chem., 2007, 2007(7), 1160-1167.
[http://dx.doi.org/10.1002/ejoc.200600814]
[227]
Chen, W.Z.; Fanwick, P.E.; Ren, T. Dendronized diruthenium compounds via the copper(I)-catalyzed click reaction. Inorg. Chem., 2007, 46(9), 3429-3431.
[http://dx.doi.org/10.1021/ic0702623] [PMID: 17397147]
[228]
Ornelas, C.; Ruiz Aranzaes, J.; Cloutet, E.; Alves, S.; Astruc, D. Click assembly of 1,2,3-triazole-linked dendrimers, including ferrocenyl dendrimers, which sense both oxo anions and metal cations. Angew. Chem. Int. Ed., 2007, 46(6), 872-877.
[http://dx.doi.org/10.1002/anie.200602858] [PMID: 17031893]
[229]
Lee, J.W.; Kim, J.H.; Kim, B.K.; Kim, J.H.; Shin, W.S.; Jin, S.H. Convergent synthesis of PAMAM dendrimers using click chemistry of azide-functionalized PAMAM dendrons. Tetrahedron, 2006, 62(39), 9193-9200.
[http://dx.doi.org/10.1016/j.tet.2006.07.030]
[230]
Natarajan, A.; Du, W.; Xiong, C.Y.; DeNardo, G.L.; DeNardo, S.J.; Gervay-Hague, J. Construction of di-scFv through a trivalent alkyne–azide 1,3-dipolar cycloaddition. Chem. Commun. (Camb.), 2007, 2007(7), 695-697.
[http://dx.doi.org/10.1039/B611636A] [PMID: 17392953]
[231]
Miljanić O.Š.; Dichtel, W.R.; Khan, S.I.; Mortezaei, S.; Heath, J.R.; Stoddart, J.F. Structural and co-conformational effects of alkyne-derived subunits in charged donor-acceptor [2]catenanes. J. Am. Chem. Soc., 2007, 129(26), 8236-8246.
[http://dx.doi.org/10.1021/ja071319n] [PMID: 17559213]
[232]
Musiol, H.J.; Dong, S.; Kaiser, M.; Bausinger, R.; Zumbusch, A.; Bertsch, U.; Moroder, L. Toward semisynthetic lipoproteins by convergent strategies based on click and ligation chemistry. ChemBioChem, 2005, 6(4), 625-628.
[http://dx.doi.org/10.1002/cbic.200400351] [PMID: 15723440]
[233]
Kalia, J.; Raines, R.T. Reactivity of intein thioesters: appending a functional group to a protein. ChemBioChem, 2006, 7(9), 1375-1383.
[http://dx.doi.org/10.1002/cbic.200600150] [PMID: 16897799]
[234]
Decréau, R.A.; Collman, J.P.; Yang, Y.; Yan, Y.; Devaraj, N.K. Syntheses of hemoprotein models that can be covalently attached onto electrode surfaces by click chemistry. J. Org. Chem., 2007, 72(8), 2794-2802.
[http://dx.doi.org/10.1021/jo062349w] [PMID: 17375955]
[235]
Dirks, A.J.T.; van Berkel, S.S.; Hatzakis, N.S.; Opsteen, J.A.; van Delft, F.L.; Cornelissen, J.J.L.M.; Rowan, A.E.; van Hest, J.C.M.; Rutjes, F.P.J.T.; Nolte, R.J.M. Preparation of biohybrid amphiphiles via the copper catalysed Huisgen [3 + 2] dipolar cycloaddition reaction. Chem. Commun. (Camb.), 2005, 2005(33), 4172-4174.
[http://dx.doi.org/10.1039/b508428h] [PMID: 16100593]
[236]
Xie, J.; Seto, C.T. A two stage click-based library of protein tyrosine phosphatase inhibitors. Bioorg. Med. Chem., 2007, 15(1), 458-473.
[http://dx.doi.org/10.1016/j.bmc.2006.09.036] [PMID: 17046267]
[237]
Shang, Y.J.; Ren, L.B.; Wang, D.M. One-Pot Synthesis of 1,2,3-triazoles using polymer-supported propyne in aqueous solution. Chin. J. Chem., 2007, 25(8), 1202-1206.
[http://dx.doi.org/10.1002/cjoc.200790224]
[238]
Nepogodiev, S.A.; Dedola, S.; Marmuse, L.; de Oliveira, M.T.; Field, R.A. Synthesis of triazole-linked pseudo-starch fragments. Carbohydr. Res., 2007, 342(3-4), 529-540.
[http://dx.doi.org/10.1016/j.carres.2006.09.026] [PMID: 17084824]
[239]
Speers, A.E.; Cravatt, B.F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol., 2004, 11(4), 535-546.
[http://dx.doi.org/10.1016/j.chembiol.2004.03.012] [PMID: 15123248]
[240]
Bouillon, C.; Meyer, A.; Vidal, S.; Jochum, A.; Chevolot, Y.; Cloarec, J.P.; Praly, J.P.; Vasseur, J.J.; Morvan, F. Microwave assisted “click” chemistry for the synthesis of multiple labeled-carbohydrate oligonucleotides on solid support. J. Org. Chem., 2006, 71(12), 4700-4702.
[http://dx.doi.org/10.1021/jo060572n] [PMID: 16749812]
[241]
Wei, Q.; Seward, G.K.; Hill, P.A.; Patton, B.; Dimitrov, I.E.; Kuzma, N.N.; Dmochowski, I.J. Designing 129Xe NMR biosensors for matrix metalloproteinase detection. J. Am. Chem. Soc., 2006, 128(40), 13274-13283.
[http://dx.doi.org/10.1021/ja0640501] [PMID: 17017809]
[242]
Lee, B.Y.; Park, S.R.; Jeon, H.B.; Kim, K.S. A new solvent system for efficient synthesis of 1,2,3-triazoles. Tetrahedron Lett., 2006, 47(29), 5105-5109.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.079]
[243]
Moorhouse, A.D.; Santos, A.M.; Gunaratnam, M.; Moore, M.; Neidle, S.; Moses, J.E. Stabilization of G-quadruplex DNA by highly selective ligands via click chemistry. J. Am. Chem. Soc., 2006, 128(50), 15972-15973.
[http://dx.doi.org/10.1021/ja0661919] [PMID: 17165715]
[244]
Zhou, Z.; Fahrni, C.J. A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: modulation of the fluorescence emission via 3(n,pi)-1(pi,pi) inversion. J. Am. Chem. Soc., 2004, 126(29), 8862-8863.
[http://dx.doi.org/10.1021/ja049684r] [PMID: 15264794]
[245]
Lewis, W.G.; Magallon, F.G.; Fokin, V.V.; Finn, M.G. Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. J. Am. Chem. Soc., 2004, 126(30), 9152-9153.
[http://dx.doi.org/10.1021/ja048425z] [PMID: 15281783]
[246]
Feldman, A.K.; Colasson, B.; Fokin, V.V. One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated azides. Org. Lett., 2004, 6(22), 3897-3899.
[http://dx.doi.org/10.1021/ol048859z] [PMID: 15496058]
[247]
Chittaboina, S.; Xie, F.; Wang, Q. One-pot synthesis of triazole-linked glycoconjugates. Tetrahedron Lett., 2005, 46(13), 2331-2336.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.175]
[248]
Aucagne, V.; Hänni, K.D.; Leigh, D.A.; Lusby, P.J.; Walker, D.B. Catalytic “click” rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. J. Am. Chem. Soc., 2006, 128(7), 2186-2187.
[http://dx.doi.org/10.1021/ja056903f] [PMID: 16478152]
[249]
Binder, W.H.; Gloger, D.; Weinstabl, H.; Allmaier, G.; Pittenauer, E. Telechelic poly(N-isopropylacrylamides) via nitroxide-mediated controlled polymerization and “ click ” chemistry: livingness and “ grafting-from ” methodology. Macromolecules, 2007, 40(9), 3097-3107.
[http://dx.doi.org/10.1021/ma0628376]
[250]
Jean, M.; Le Roch, M.; Renault, J.; Uriac, P. Synthesis of a laterally branched polyamine from α-methylene-γ-butyrolactone. Org. Lett., 2005, 7(13), 2663-2665.
[http://dx.doi.org/10.1021/ol050803x] [PMID: 15957916]
[251]
Mobian, P.; Collin, J.P.; Sauvage, J.P. Efficient synthesis of a labile copper(I)-rotaxane complex using click chemistry. Tetrahedron Lett., 2006, 47(28), 4907-4909.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.024]
[252]
Thomas, J.R.; Liu, X.; Hergenrother, P.J. Size-specific ligands for RNA hairpin loops. J. Am. Chem. Soc., 2005, 127(36), 12434-12435.
[http://dx.doi.org/10.1021/ja051685b] [PMID: 16144359]
[253]
Aucagne, V.; Berná, J.; Crowley, J.D.; Goldup, S.M.; Hänni, K.D.; Leigh, D.A.; Lusby, P.J.; Ronaldson, V.E.; Slawin, A.M.Z.; Viterisi, A.; Walker, D.B. Catalytic “active-metal” template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition. J. Am. Chem. Soc., 2007, 129(39), 11950-11963.
[http://dx.doi.org/10.1021/ja073513f] [PMID: 17845039]
[254]
Smith, C.D.; Baxendale, I.R.; Lanners, S.; Hayward, J.J.; Smith, S.C.; Ley, S.V. [3 + 2] Cycloaddition of acetylenes with azides to give 1,4-disubstituted 1,2,3-triazoles in a modular flow reactor. Org. Biomol. Chem., 2007, 5(10), 1559-1561.
[http://dx.doi.org/10.1039/b702995k] [PMID: 17571184]
[255]
Guezguez, R.; Bougrin, K.; El Akri, K.; Benhida, R. A highly efficient microwave-assisted solvent-free synthesis of α- and β-2′-deoxy-1,2,3-triazolyl-nucleosides. Tetrahedron Lett., 2006, 47(28), 4807-4811.
[http://dx.doi.org/10.1016/j.tetlet.2006.05.050]
[256]
Zhang, G.; Fang, L.; Zhu, L.; Sun, D.; Wang, P.G. Syntheses and biological activity of bisdaunorubicins. Bioorg. Med. Chem., 2006, 14(2), 426-434.
[http://dx.doi.org/10.1016/j.bmc.2005.08.014] [PMID: 16182536]
[257]
Ortega-Muñoz, M.; Lopez-Jaramillo, J.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F. Synthesis of Glyco-Silicas by Cu(I)-Catalyzed “Click-Chemistry” and their applications in affinity chromatography. Adv. Synth. Catal., 2007, 349(3), 277-277.
[http://dx.doi.org/10.1002/adsc.200790005]
[258]
Casas-Solvas, J.M.; Vargas-Berenguel, A.; Capitán-Vallvey, L.F.; Santoyo-González, F. Convenient methods for the synthesis of ferrocene-carbohydrate conjugates. Org. Lett., 2004, 6(21), 3687-3690.
[http://dx.doi.org/10.1021/ol048665j] [PMID: 15469324]
[259]
Kamijo, S.; Jin, T.; Yamamoto, Y. Four-component coupling reactions of silylacetylenes, allyl carbonates, and trimethylsilyl azide catalyzed by a Pd(0)–Cu(I) bimetallic catalyst. Fully substituted triazole synthesis from seemingly internal alkynes. Tetrahedron Lett., 2004, 45(4), 689-691.
[http://dx.doi.org/10.1016/j.tetlet.2003.11.070]
[260]
Devaraj, N.K.; Decreau, R.A.; Ebina, W.; Collman, J.P.; Chidsey, C.E.D. Rate of interfacial electron transfer through the 1,2,3-triazole linkage. J. Phys. Chem. B, 2006, 110(32), 15955-15962.
[http://dx.doi.org/10.1021/jp057416p] [PMID: 16898751]
[261]
Wróblewski, A.E. Głowacka, I.E. Synthesis of four enantiomerically pure 4-(4-carbamoyl-1,2,3-triazol-1-yl)-2,3-dihydroxy-1-methoxybutylphosphonic acids. Tetrahedron Asymmetry, 2005, 16(24), 4056-4064.
[http://dx.doi.org/10.1016/j.tetasy.2005.11.010]
[262]
Löber, S.; Hübner, H.; Gmeiner, P. Synthesis and biological investigations of dopaminergic partial agonists preferentially recognizing the D4 receptor subtype. Bioorg. Med. Chem. Lett., 2006, 16(11), 2955-2959.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.075] [PMID: 16563764]
[263]
IJsselstijn, M.; Cintrat, J.C. Click chemistry with ynamides. Tetrahedron, 2006, 62(16), 3837-3842.
[http://dx.doi.org/10.1016/j.tet.2005.11.090]
[264]
van Steenis, D.J.V.C.; David, O.R.P.; van Strijdonck, G.P.F.; van Maarseveen, J.H.; Reek, J.N.H. Click-chemistry as an efficient synthetic tool for the preparation of novel conjugated polymers. Chem. Commun. (Camb.), 2005, 4333-4335(34), 4333-4335.
[http://dx.doi.org/10.1039/b507776a] [PMID: 16113739]
[265]
Kantam, M.; Reddy, K.; Rajgopal, K. Copper(II)-promoted regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles in water. Synlett, 2006, 2006(6), 957-959.
[http://dx.doi.org/10.1055/s-2006-933134]
[266]
Kaleta, Z.; Egyed, O.; Soós, T. Fluorous click chemistry as a practical tagging method. Org. Biomol. Chem., 2005, 3(12), 2228-2230.
[http://dx.doi.org/10.1039/b504973c] [PMID: 16010352]
[267]
Weller, R.L.; Rajski, S.R. DNA methyltransferase-moderated click chemistry. Org. Lett., 2005, 7(11), 2141-2144.
[http://dx.doi.org/10.1021/ol0504749] [PMID: 15901154]
[268]
Chassaing, S.; Kumarraja, M.; Sani Souna Sido, A.; Pale, P.; Sommer, J. Click chemistry in CuI-zeolites: The Huisgen [3 + 2]-cycloaddition. Org. Lett., 2007, 9(5), 883-886.
[http://dx.doi.org/10.1021/ol0631152] [PMID: 17286410]
[269]
Gupta, S.S.; Kuzelka, J.; Singh, P.; Lewis, W.G.; Manchester, M.; Finn, M.G. Accelerated bioorthogonal conjugation: A practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjug. Chem., 2005, 16(6), 1572-1579.
[http://dx.doi.org/10.1021/bc050147l] [PMID: 16287257]
[270]
Gupta, S.S.; Raja, K.S.; Kaltgrad, E.; Strable, E.; Finn, M.G. Virus–glycopolymer conjugates by copper(i) catalysis of atom transfer radical polymerization and azide–alkyne cycloaddition. Chem. Commun. (Camb.), 2005, 4315-4317(34), 4315-4317.
[http://dx.doi.org/10.1039/b502444g] [PMID: 16113733]
[271]
Pérez-Balderas, F.; Ortega-Muñoz, M.; Morales-Sanfrutos, J.; Hernández-Mateo, F.; Calvo-Flores, F.G.; Calvo-Asín, J.A.; Isac-García, J.; Santoyo-González, F. Multivalent neoglycoconjugates by regiospecific cycloaddition of Alkynes and Azides using organic-soluble copper catalysts. Org. Lett., 2003, 5(11), 1951-1954.
[http://dx.doi.org/10.1021/ol034534r] [PMID: 12762694]
[272]
Kuijpers, B.H.M.; Groothuys, S.; Keereweer, A.B.R.; Quaedflieg, P.J.L.M.; Blaauw, R.H.; van Delft, F.L.; Rutjes, F.P.J.T. Expedient synthesis of triazole-linked glycosyl amino acids and peptides. Org. Lett., 2004, 6(18), 3123-3126.
[http://dx.doi.org/10.1021/ol048841o] [PMID: 15330603]
[273]
Fu, N.; Wang, S.; Zhang, Y.; Zhang, C.; Yang, D.; Weng, L.; Zhao, B.; Wang, L. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans. Eur. J. Med. Chem., 2017, 136, 596-602.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.001] [PMID: 28551587]
[274]
Ay, K. Ispartaloğlu, B.; Halay, E.; Ay, E.; Yaşa, İ Karayıldırım, T. Synthesis and antimicrobial evaluation of sulfanilamide- and carbohydrate-derived 1,4-disubstitued-1,2,3-triazoles via click chemistry. Med. Chem. Res., 2017, 26(7), 1497-1505.
[http://dx.doi.org/10.1007/s00044-017-1864-3]
[275]
Pathigoolla, A.; Pola, R.P.; Sureshan, K.M. A versatile solvent-free azide–alkyne click reaction catalyzed by in situ generated copper nanoparticles. Appl. Catal. A Gen., 2013, 453, 151-158.
[http://dx.doi.org/10.1016/j.apcata.2012.12.025]
[276]
Kumar, A.S.; Datta, K.K.R.; Rao, T.S.; Raghavan, K.V.; Eswaramoorthy, M.; Reddy, B.V.S. Aminoclay-supported copper nanoparticles for 1,3-dipolar cycloaddition of azides with alkynes via click chemistry. J. Nanosci. Nanotechnol., 2013, 13(4), 3136-3141.
[http://dx.doi.org/10.1166/jnn.2013.7343] [PMID: 23763213]
[277]
Jiang, Y.; Kong, D.; Zhao, J.; Qi, Q.; Li, W.; Xu, G. Cu(OAc)2•H2O/NH2 NH2•H2O: An efficient catalyst system that in situ generates Cu2O nanoparticles and HOAc for Huisgen click reactions. RSC Advances, 2014, 4(2), 1010-1014.
[http://dx.doi.org/10.1039/C3RA45437A]
[278]
Jiang, Y.; Zhang, P.; Li, W.; Li, X.; Xu, G. An efficient synthesis of 1,4-disubstituted Triazoles in water via CuCl 2/Zn-Catalyzed Huisgen Cycloaddition. Z. Naturforsch. B. J. Chem. Sci., 2012, 67(3), 226-230.
[http://dx.doi.org/10.1515/znb-2012-0308]
[279]
Jiang, Y.; Chen, X.; Qu, L.; Wang, J.; Yuan, J.; Chen, S.; Li, X. An efficient ultrasound-assisted method for the synthesis of 1,4-Disubstituted Triazoles. Z. Naturforsch. B. J. Chem. Sci., 2011, 66(1), 77-82.
[http://dx.doi.org/10.1515/znb-2011-0113]
[280]
Jiang, Y.Q.; Wu, K.; Fan, L.M.; Zhao, J.L.; Yang, Y.Q.; Zhang, W-W.; Xu, G.Q. Cu(OAc)2•H2O/NH2OH•HCl/CH3 COONa: A facile and efficient catalyst system for Copper-catalyzed Azide-Alkyne click reactions in water. J. Chin. Chem. Soc. (Taipei), 2018, 65(5), 505-510.
[http://dx.doi.org/10.1002/jccs.201700339]
[281]
Moses, J.E.; Moorhouse, A.D. The growing applications of click chemistry. Chem. Soc. Rev., 2007, 36(8), 1249-1262.
[http://dx.doi.org/10.1039/B613014N] [PMID: 17619685]
[282]
Zheng, T.; Rouhanifard, S.H.; Jalloh, A.S.; Wu, P. Click triazoles for bioconjugation. Top. Heterocycl. Chem., 2012, 28, 163-183.
[http://dx.doi.org/10.1007/7081_2011_72] [PMID: 25431628]
[283]
Mogaddam, F.M.; Eslami, M.; Ayati, S.E. Copper (II) ions immobilized onto aminoquinoline-functionalized ferrite: A new efficient and recoverable catalyst for “in water” synthesis of triazole derivatives. ChemistrySelect, 2017, 2(36), 11942-11948.
[http://dx.doi.org/10.1002/slct.201701988]
[284]
Rangaswamy, A.; Prasad, A.N.; Reddy, B.M. Cu-based solid catalysts: applications in organic transformations for N-heterocyclic compounds. Curr. Org. Chem., 2017, 21(8), 660-673.
[http://dx.doi.org/10.2174/1385272820666160804155409]
[285]
Negishi, E. Transition metal-catalyzed organometallic reactions that have revolutionized organic synthesis. Bull. Chem. Soc. Jpn., 2007, 80(2), 233-257.
[http://dx.doi.org/10.1246/bcsj.80.233]
[286]
Tasca, E.; La Sorella, G.; Sperni, L.; Strukul, G.; Scarso, A. Micellar promoted multi-component synthesis of 1,2,3-triazoles in water at room temperature. Green Chem., 2015, 17(3), 1414-1422.
[http://dx.doi.org/10.1039/C4GC02248C]
[287]
Salamatmanesh, A.; Kazemi Miraki, M.; Yazdani, E.; Heydari, A. Copper(I)-caffeine complex immobilized on silica-coated magnetite nanoparticles: a recyclable and eco-friendly catalyst for Click chemistry from organic halides and epoxides. Catal. Lett., 2018, 148(10), 3257-3268.
[http://dx.doi.org/10.1007/s10562-018-2523-0]
[288]
Nunes, A.; Djakovitch, L.; Khrouz, L.; Felpin, F.X.; Dufaud, V. Copper(II)-phenanthroline hybrid material as efficient catalyst for the multicomponent synthesis of 1,2,3-triazoles via sequential Azide formation/1,3-dipolar cycloaddition. Mol. Catal., 2017, 437, 150-157.
[http://dx.doi.org/10.1016/j.molcata.2016.11.017]
[289]
Diz, P.; Pernas, P.; El Maatougui, A.; Tubio, C.R.; Azuaje, J.; Sotelo, E.; Guitián, F.; Gil, A.; Coelho, A. Sol–gel entrapped Cu in a silica matrix: An efficient heterogeneous nanocatalyst for Huisgen and Ullmann intramolecular coupling reactions. Appl. Catal. A Gen., 2015, 502, 86-95.
[http://dx.doi.org/10.1016/j.apcata.2015.05.025]
[290]
Horzum, N. Boyacı E.; Eroğlu, A.E.; Shahwan, T.; Demir, M.M. Sorption efficiency of chitosan nanofibers toward metal ions at low concentrations. Biomacromolecules, 2010, 11(12), 3301-3308.
[http://dx.doi.org/10.1021/bm100755x] [PMID: 21080700]
[291]
Gritsch, L.; Lovell, C.; Goldmann, W.H.; Boccaccini, A.R. Fabrication and characterization of copper(II)-chitosan complexes as antibiotic-free antibacterial biomaterial. Carbohydr. Polym., 2018, 179, 370-378.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.095] [PMID: 29111063]
[292]
Mahdavinia, G.R.; Soleymani, M.; Nikkhoo, M.; Farnia, S.M.F.; Amini, M. Magnetic (chitosan/laponite)-immobilized Copper(II) ions: An efficient heterogeneous catalyst for azide–alkyne cycloaddition. New J. Chem., 2017, 41(10), 3821-3828.
[http://dx.doi.org/10.1039/C6NJ03862J]
[293]
Jia, X.; Qian, W.; Wu, D.; Wei, D.; Xu, G.; Liu, X. Cuttlebone-derived organic matrix as a scaffold for assembly of silver nanoparticles and application of the composite films in surface-enhanced Raman scattering. Colloids Surf. B Biointerfaces, 2009, 68(2), 231-237.
[http://dx.doi.org/10.1016/j.colsurfb.2008.10.017] [PMID: 19095422]
[294]
Xiong, X.; Cai, L.; Jiang, Y.; Han, Q. Eco-efficient, green, and scalable synthesis of 1,2,3-Triazoles catalyzed by Cu(I) catalyst on waste oyster shell powders. ACS Sustain. Chem.& Eng., 2014, 2(4), 765-771.
[http://dx.doi.org/10.1021/sc400426x]
[295]
Aflak, N.; Ben El Ayouchia, H.; Bahsis, L.; El Mouchtari, E.M.; Julve, M.; Rafqah, S.; Anane, H.; Stiriba, S.E. Sustainable construction of heterocyclic 1,2,3-triazoles by strict click [3+2] cycloaddition reactions between azides and alkynes on copper/carbon in water. Front Chem., 2019, 7, 81.
[http://dx.doi.org/10.3389/fchem.2019.00081] [PMID: 30838201]
[296]
Ghodsinia, S.S.E.; Akhlaghinia, B.; Jahanshahi, R. Direct access to stabilized CuI using cuttlebone as a natural-reducing support for efficient CuAAC click reactions in water. RSC Advances, 2016, 6(68), 63613-63623.
[http://dx.doi.org/10.1039/C6RA13314B]
[297]
Elnagdy, H.M.F.; Gogoi, K.; Ali, A.A.; Sarma, D. Claycop/hydrazine: A new and highly efficient recyclable/reusable catalytic system for 1,4-disubstituted-1,2,3-triazole synthesis under solvent-free conditions. Appl. Organomet. Chem., 2018, 32(1), e3931.
[http://dx.doi.org/10.1002/aoc.3931]
[298]
Zhang, Z.; Song, P.; Zhou, J.; Chen, Y.; Lin, B.; Li, Y. Metathesis strategy for the immobilization of Copper(II) onto Carboxymethylcellulose/Fe3O4 nanohybrid supports: Efficient and recoverable magnetic catalyst for the CuAAC reaction. Ind. Eng. Chem. Res., 2016, 55(48), 12301-12308.
[http://dx.doi.org/10.1021/acs.iecr.6b03158]
[299]
Khodaei, M.M.; Bahrami, K.; Meibodi, F.S. Ferromagnetic nanoparticle-supported copper complex: A highly efficient and reusable catalyst for three-component syntheses of 1,4-disubstituted 1,2,3-triazoles and C-S coupling of aryl halides. Appl. Organomet. Chem., 2017, 31(10), e3714.
[http://dx.doi.org/10.1002/aoc.3714]
[300]
Dolatkhah, Z.; Javanshir, S.; Bazgir, A.; Mohammadkhani, A. Magnetic isinglass a nano‐bio support for copper immobilization: Cu–IG@Fe3O4 a heterogeneous catalyst for triazoles synthesis. ChemistrySelect, 2018, 3(19), 5486-5493.
[http://dx.doi.org/10.1002/slct.201800501]
[301]
Bonyasi, R.; Gholinejad, M.; Saadati, F.; Nájera, C. Copper ferrite nanoparticle modified starch as a highly recoverable catalyst for room temperature click chemistry: multicomponent synthesis of 1,2,3-triazoles in water. New J. Chem., 2018, 42(4), 3078-3086.
[http://dx.doi.org/10.1039/C7NJ03284F]
[302]
Vibhute, S.P.; Mhaldar, P.M.; Korade, S.N.; Gaikwad, D.S.; Shejawal, R.V.; Pore, D.M. Synthesis of magnetically separable catalyst Cu-ACP-Am-Fe3O4@SiO2 for Huisgen 1,3-dipolar cycloaddition. Tetrahedron Lett., 2018, 59(41), 3643-3652.
[http://dx.doi.org/10.1016/j.tetlet.2018.08.045]
[303]
Saeidian, H.; Sadighian, H.; Arabgari, M.; Mirjafary, Z.; Ayati, S.E.; Najafi, E.; Moghaddam, F.M. Organocopper-based magnetically recoverable and reusable nanocatalyst for efficient synthesis of novel 1,2,3-triazole-based sulfonamides in green medium. Res. Chem. Intermed., 2018, 44(1), 601-612.
[http://dx.doi.org/10.1007/s11164-017-3122-1]
[304]
Rezaei, F.; Ali Amrollahi, M.; Khalifeh, R. Design and synthesis of Fe3O4@SiO2/aza-crown ether-Cu(II) as a novel and highly efficient magnetic nanocomposite catalyst for the synthesis of 1,2,3-triazoles, 1-substituted 1H-tetrazoles and 5-substituted 1H-tetrazoles in green solvents. Inorg. Chim. Acta, 2019, 489, 8-18.
[http://dx.doi.org/10.1016/j.ica.2019.01.039]
[305]
Wang, J.; Gu, H. Novel metal nanomaterials and their catalytic applications. Molecules, 2015, 20(9), 17070-17092.
[http://dx.doi.org/10.3390/molecules200917070] [PMID: 26393550]
[306]
Nayal, O.S.; Thakur, M.S.; Kumar, M. Shaifali; Upadhyay, R.; Maurya, S.K. Sustainable and efficient cui-NPs-Catalyzed Cross-Coupling Approach for the Synthesis of Tertiary 3-Aminopropenoates, Triazoles, and ciprofloxacin. Asian J. Org. Chem., 2018, 7(4), 776-780.
[http://dx.doi.org/10.1002/ajoc.201700682]
[307]
Esmaeili-Shahri, H.; Eshghi, H.; Lari, J.; Rounaghi, S.A. Click approach to the three-component synthesis of novel β-hydroxy-1,2,3-triazoles catalysed by new (Cu/Cu 2 O) nanostructure as a ligand-free, green and regioselective nanocatalyst in water. Appl. Organomet. Chem., 2018, 32(1), e3947.
[http://dx.doi.org/10.1002/aoc.3947]
[308]
Dias, C.D.S.; Lima, T.D.M.; Lima, C.G.S.; Zuekrman-Schpector, J.; Schwab, R.S. CuO nanoparticles as an efficient heterogeneous catalyst for the 1,3-dipolar cycloaddition of dicarbonyl compounds to azides. ChemistrySelect, 2018, 3(22), 6195-6202.
[http://dx.doi.org/10.1002/slct.201800816]
[309]
Koishybay, A.; Shantz, D.F. Copper-gold nanoparticles encapsulated within surface-tethered dendrons as supported catalysts for the Click reaction. Appl. Catal., A, 2018, 563, 196-203.
[310]
Chetia, M.; Singh Gehlot, P.; Kumar, A.; Sarma, D. A recyclable/reusable hydrotalcite supported copper nano catalyst for 1,4-disubstituted-1,2,3-triazole synthesis via click chemistry approach. Tetrahedron Lett., 2018, 59(4), 397-401.
[http://dx.doi.org/10.1016/j.tetlet.2017.12.051]
[311]
Gupta, D.; Mishra, A.; Kundu, S. Cu (II)-β-CD as water-loving catalyst for one-pot synthesis of Triazoles and Biofuels intermediate at room temperature without any other additive. ChemistrySelect, 2017, 2(10), 2997-3008.
[http://dx.doi.org/10.1002/slct.201700020]
[312]
Deswal, S.; Tittal, R.K.; Yadav, P.; Lal, K.; Vikas, D. G.; Kumar, N. Cellulose‐supported CuI‐nanoparticles‐mediated green synthesis of Trifluoromethylbenzoate‐linked Triazoles for pharmacological & DFT study. ChemistrySelect, 2019, 4(2), 759-764.
[http://dx.doi.org/10.1002/slct.201803099]
[313]
Bahsis, L.; El Ayouchia, H.B.; Anane, H.; Benhamou, K.; Kaddami, H.; Julve, M.; Stiriba, S.E. Cellulose copper as bio-supported recyclable catalyst for the clickable azide-alkyne [3 + 2] cycloaddition reaction in water. Int. J. Biol. Macromol., 2018, 119, 849-856.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.200] [PMID: 30081123]
[314]
Gholinejad, M.; Oftadeh, E.; Sansano, J.M. Clinochlore‐supported copper nanoparticles as green and efficient catalyst for room‐temperature synthesis of 1,2,3‐Triazoles in water. ChemistrySelect, 2019, 4(11), 3151-3160.
[http://dx.doi.org/10.1002/slct.201803599]
[315]
Souza, J.F.; Costa, G.P.; Luque, R.; Alves, D.; Fajardo, A.R. Polysaccharide-based superporous hydrogel embedded with copper nanoparticles: A green and versatile catalyst for the synthesis of 1,2,3-triazoles. Catal. Sci. Technol., 2019, 9(1), 136-145.
[http://dx.doi.org/10.1039/C8CY01796D]
[316]
Ebrahimpour-Malamir, F.; Hosseinnejad, T.; Mirsafaei, R.; Heravi, M.M. Synthesis, characterization and computational study of CuI nanoparticles immobilized on modified poly (styrene-co-maleic anhydride) as a green, efficient and recyclable heterogeneous catalyst in the synthesis of 1,4-disubstituted 1,2,3-triazoles via click. Appl. Organomet. Chem., 2018, 32(1), e3913.
[http://dx.doi.org/10.1002/aoc.3913]
[317]
Ghosh, S.; Saha, S.; Sengupta, D.; Chattopadhyay, S.; De, G.; Basu, B. Stabilized Cu2O nanoparticles on macroporous polystyrene resins [Cu2O@ARF]: improved and reusable heterogeneous catalyst for on-water synthesis of triazoles via click reaction. Ind. Eng. Chem. Res., 2017, 56(41), 11726-11733.
[http://dx.doi.org/10.1021/acs.iecr.7b02656]
[318]
Fehér, K.; Nagy, E.; Szabó, P.; Juzsakova, T.; Srankó, D.; Gömöry, Á.; Kollár, L.; Skoda-Földes, R. Heterogeneous azide–alkyne cycloaddition in the presence of a copper catalyst supported on an ionic liquid polymer/silica hybrid material. Appl. Organomet. Chem., 2018, 32(6), e4343.
[http://dx.doi.org/10.1002/aoc.4343]
[319]
Ghosh, B.K.; Moitra, D.; Chandel, M.; Patra, M.K.; Vadera, S.R.; Ghosh, N.N. CuO nanoparticle immobilised mesoporous TiO2–Cobalt Ferrite nanocatalyst: A versatile, magnetically separable and reusable catalyst. Catal. Lett., 2017, 147(4), 1061-1076.
[http://dx.doi.org/10.1007/s10562-017-1993-9]
[320]
Sardarian, A.R.; Mohammadi, F.; Esmaeilpour, M. Dendrimer-encapsulated Copper(II) immobilized on Fe3O4@SiO2 NPs: A robust recoverable catalyst for click synthesis of 1,2,3-triazole derivatives in water under mild conditions. Res. Chem. Intermed., 2019, 45(3), 1437-1456.
[http://dx.doi.org/10.1007/s11164-018-3672-x]
[321]
Diez-Gonzalez, S. The use of ligands in copper-catalyzed [3+2] azide-alkyne cycloaddition: clicker than click chemistry? Curr. Org. Chem., 2011, 15(16), 2830-2845.
[http://dx.doi.org/10.2174/138527211796378488]
[322]
Díez-González, S. Well-defined copper(i) complexes for Click azide–alkyne cycloaddition reactions: one Click beyond. Catal. Sci. Technol., 2011, 1(2), 166-178.
[http://dx.doi.org/10.1039/c0cy00064g]
[323]
Ye, W.; Xiao, X.; Wang, L.; Hou, S.; Hu, C. Synthesis of mono- and binuclear Cu(II) complexes bearing unsymmetrical bipyridine–pyrazole–amine ligand and their applications in azide–alkyne cycloaddition. Organometallics, 2017, 36(11), 2116-2125.
[http://dx.doi.org/10.1021/acs.organomet.7b00154]
[324]
Golas, P.L.; Tsarevsky, N.V.; Sumerlin, B.S.; Matyjaszewski, K. Catalyst performance in “Click” Coupling reactions of polymers prepared by ATRP: Ligand and metal effects. Macromolecules, 2006, 39(19), 6451-6457.
[http://dx.doi.org/10.1021/ma061592u]
[325]
Humenik, M.; Huang, Y.; Wang, Y.; Sprinzl, M. C-terminal incorporation of bio-orthogonal azide groups into a protein and preparation of protein-oligodeoxynucleotide conjugates by Cu’-catalyzed cycloaddition. ChemBioChem, 2007, 8(10), 1103-1106.
[http://dx.doi.org/10.1002/cbic.200700070] [PMID: 17557370]
[326]
Rodionov, V.O.; Presolski, S.I.; Gardinier, S.; Lim, Y.H.; Finn, M.G. Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition. J. Am. Chem. Soc., 2007, 129(42), 12696-12704.
[http://dx.doi.org/10.1021/ja072678l] [PMID: 17914816]
[327]
Kalesh, K.A.; Liu, K.; Yao, S.Q. Rapid synthesis of Abelson tyrosine kinase inhibitors using click chemistry. Org. Biomol. Chem., 2009, 7(24), 5129-5136.
[http://dx.doi.org/10.1039/b913333j] [PMID: 20024108]
[328]
Zhang, J.; Zhang, H.; Cai, W.; Yu, L.; Zhen, X.; Zhang, A. ‘Click’ D1 receptor agonists with a 5-HT1A receptor pharmacophore producing D2 receptor activity. Bioorg. Med. Chem., 2009, 17(14), 4873-4880.
[http://dx.doi.org/10.1016/j.bmc.2009.06.019] [PMID: 19559623]
[329]
Dirks, A.T.J.; van Berkel, S.S.; Amatdjais-Groenen, H.I.V.; Rutjes, F.P.J.T.; Cornelissen, J.J.L.M.; Nolte, R.J.M. Synthesis and aggregation behavior of biohybrid amphiphiles composed of a tripeptidic head group and a polystyrene tail. Soft Matter, 2009, 5(8), 1692-1704.
[http://dx.doi.org/10.1039/b816615c]
[330]
Mantovani, G.; Ladmiral, V.; Tao, L.; Haddleton, D.M. One-pot tandem living radical polymerisation–Huisgens cycloaddition process (“click”) catalysed by N-alkyl-2-pyridylmethanimine/Cu(I)Br complexes. Chem. Commun. (Camb.), 2005, 2089-2091(16), 2089-2091.
[http://dx.doi.org/10.1039/B500558B] [PMID: 15846409]
[331]
Chen, G.; Tao, L.; Mantovani, G.; Geng, J.; Nyström, D.; Haddleton, D.M. A modular click approach to glycosylated polymeric beads: Design, synthesis and preliminary lectin, recognition studies. Macromolecules, 2007, 40(21), 7513-7520.
[http://dx.doi.org/10.1021/ma071362v]
[332]
Brotherton, W.S.; Michaels, H.A.; Simmons, J.T.; Clark, R.J.; Dalal, N.S.; Zhu, L.; Zhu, L. Apparent copper(II)-accelerated azide-alkyne cycloaddition. Org. Lett., 2009, 11(21), 4954-4957.
[http://dx.doi.org/10.1021/ol9021113] [PMID: 19810690]
[333]
Uttamapinant, C.; Tangpeerachaikul, A.; Grecian, S.; Clarke, S.; Singh, U.; Slade, P.; Gee, K.R.; Ting, A.Y. Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew. Chem. Int. Ed., 2012, 51(24), 5852-5856.
[http://dx.doi.org/10.1002/anie.201108181] [PMID: 22555882]
[334]
Bevilacqua, V.; King, M.; Chaumontet, M.; Nothisen, M.; Gabillet, S.; Buisson, D.; Puente, C.; Wagner, A.; Taran, F. Copper-chelating azides for efficient click conjugation reactions in complex media. Angew. Chem. Int. Ed., 2014, 53(23), 5872-5876.
[http://dx.doi.org/10.1002/anie.201310671] [PMID: 24788475]
[335]
Sallustrau, A.; Bregant, S.; Chollet, C.; Audisio, D.; Taran, F. Scalable and practical synthesis of clickable Cu-chelating azides. Chem. Commun. (Camb.), 2017, 53(56), 7890-7893.
[http://dx.doi.org/10.1039/C7CC03247A] [PMID: 28597902]
[336]
Flon, V.; Bénard, M.; Schapman, D.; Galas, L.; Renard, P.Y.; Sabot, C. Fluorophore-assisted click chemistry through Copper(I) complexation. Biomolecules, 2020, 10(4), 619.
[http://dx.doi.org/10.3390/biom10040619] [PMID: 32316290]
[337]
Urien, M.; Erothu, H.; Cloutet, E.; Hiorns, R.C.; Vignau, L.; Cramail, H. Poly(3-hexylthiophene) based block copolymers prepared by “click” chemistry. Macromolecules, 2008, 41(19), 7033-7040.
[http://dx.doi.org/10.1021/ma800659a]
[338]
Krieg, A.; Becer, C.R.; Hoogenboom, R.; Schubert, U.S. Tailor made side-chain functionalized macromolecules by combination of controlled radical polymerization and click chemistry. Macromol. Symp., 2009, 275-276(1), 73-81.
[http://dx.doi.org/10.1002/masy.200950109]
[339]
Rodionov, V.O.; Presolski, S.I.; Díaz Díaz, D.; Fokin, V.V.; Finn, M.G. Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J. Am. Chem. Soc., 2007, 129(42), 12705-12712.
[http://dx.doi.org/10.1021/ja072679d] [PMID: 17914817]
[340]
Zhu, Z.; Chen, H.; Li, S.; Yang, X.; Bittner, E.; Cai, C. Tripodal amine ligands for accelerating Cu-catalyzed azide–alkyne cycloaddition: efficiency and stability against oxidation and dissociation. Catal. Sci. Technol., 2017, 7(12), 2474-2485.
[http://dx.doi.org/10.1039/C7CY00587C] [PMID: 29129990]
[341]
Jagasia, R.; Holub, J.M.; Bollinger, M.; Kirshenbaum, K.; Finn, M.G. Peptide cyclization and cyclodimerization by Cu(I)-mediated azide-alkyne cycloaddition. J. Org. Chem., 2009, 74(8), 2964-2974.
[http://dx.doi.org/10.1021/jo802097m] [PMID: 19309103]
[342]
Sirivolu, V.R.; Chittepu, P.; Seela, F. DNA with branched internal side chains: synthesis of 5-tripropargylamine-dU and conjugation by an azide-alkyne double click reaction. ChemBioChem, 2008, 9(14), 2305-2316.
[http://dx.doi.org/10.1002/cbic.200800313] [PMID: 18780386]
[343]
Loukopoulos, E.; Abdul-Sada, A.; Csire, G.; Kállay, C.; Brookfield, A.; Tizzard, G.J.; Coles, S.J.; Lykakis, I.N.; Kostakis, G.E. Copper(II)-benzotriazole coordination compounds in click chemistry: a diagnostic reactivity study. Dalton Trans., 2018, 47(31), 10491-10508.
[http://dx.doi.org/10.1039/C8DT01256C] [PMID: 29796447]
[344]
Zheng, L.; Wang, Y.; Meng, X.; Chen, Y. Pyridinyl-triazole ligand systems for highly efficient CuI-catalyzed azide-alkyne cycloaddition. Catal. Commun., 2021, 148, 106165-106172.
[http://dx.doi.org/10.1016/j.catcom.2020.106165]
[345]
Papin, C.; Doisneau, G.; Beau, J.M. Fast access to robust C-sialoside multimers. Chemistry, 2009, 15(1), 53-57.
[http://dx.doi.org/10.1002/chem.200801810] [PMID: 19021183]
[346]
Shen, J.; Woodward, R.; Kedenburg, J.P.; Liu, X.; Chen, M.; Fang, L.; Sun, D.; Wang, P.G. Histone deacetylase inhibitors through click chemistry. J. Med. Chem., 2008, 51(23), 7417-7427.
[http://dx.doi.org/10.1021/jm8005355] [PMID: 19007204]
[347]
Gonda, Z.; Novák, Z. Highly active copper-catalysts for azide-alkynecycloaddition. Dalton Trans., 2010, 39(3), 726-729.
[http://dx.doi.org/10.1039/B920790M] [PMID: 20066217]
[348]
Campbell-Verduyn, L.S.; Mirfeizi, L.; Dierckx, R.A.; Elsinga, P.H.; Feringa, B.L. Phosphoramidite accelerated copper(i)-catalyzed [3 + 2] cycloadditions of azides and alkynes. Chem. Commun. (Camb.), 2009, 2139-2141(16), 2139-2141.
[http://dx.doi.org/10.1039/b822994e] [PMID: 19360172]
[349]
de Boer, S.Y.; Gloaguen, Y.; Lutz, M.; van der Vlugt, J.I. CuI click catalysis with cooperative noninnocent pyridylphosphine ligands. Inorg. Chim. Acta, 2012, 380, 336-342.
[http://dx.doi.org/10.1016/j.ica.2011.10.037]
[350]
Cheisson, T.; Auffrant, A. Versatile coordination chemistry of a bis(methyliminophosphoranyl)pyridine ligand on copper centres. Dalton Trans., 2014, 43(35), 13399-13409.
[http://dx.doi.org/10.1039/C4DT01794C] [PMID: 25076168]
[351]
Venderbosch, B.; Oudsen, J-P.H.; van der Vlugt, J.I.; Korstanje, T.J.; Tromp, M. Cationic Copper iminophosphorane complexes as CuAAC Catalysts: A mechanistic study. Organometallics, 2020, 39(19), 3480-3489.
[http://dx.doi.org/10.1021/acs.organomet.0c00348]
[352]
Herrmann, W.A. N-heterocyclic carbenes: A new concept in organometallic catalysis. Angew. Chem. Int. Ed., 2002, 41(8), 1290-1309.
[http://dx.doi.org/10.1002/1521-3773(20020415)41:8<1290:AID-ANIE1290>3.0.CO;2-Y] [PMID: 19750753]
[353]
Díez-González, S.; Marion, N.; Nolan, S.P. N-heterocyclic carbenes in late transition metal catalysis. Chem. Rev., 2009, 109(8), 3612-3676.
[http://dx.doi.org/10.1021/cr900074m] [PMID: 19588961]
[354]
Peris, E. Smart N-heterocyclic carbene ligands in catalysis. Chem. Rev., 2018, 118(19), 9988-10031.
[http://dx.doi.org/10.1021/acs.chemrev.6b00695] [PMID: 28151645]
[355]
González-Lainez, M.; Gallegos, M.; Munarriz, J.; Azpiroz, R.; Passarelli, V.; Jiménez, M.V.; Pérez-Torrente, J.J. Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) by functionalized NHC-based polynuclear catalysts: Scope and mechanistic insights. Organometallics, 2022, 41(15), 2154-2169.
[http://dx.doi.org/10.1021/acs.organomet.2c00246] [PMID: 35971402]
[356]
Collins, L.R.; Rookes, T.M.; Mahon, M.F.; Riddlestone, I.M.; Whittlesey, M.K. Use of ring-expanded diamino- and diamidocarbene ligands in copper catalyzed azide–alkyne “click” reactions. Organometallics, 2014, 33(20), 5882-5887.
[http://dx.doi.org/10.1021/om5004732]
[357]
Bidal, Y.D.; Lesieur, M.; Melaimi, M.; Nahra, F.; Cordes, D.B.; Athukorala Arachchige, K.S.; Slawin, A.M.Z.; Bertrand, G.; Cazin, C.S.J. Copper(I) complexes bearing Carbenes beyond classical N-Heterocyclic Carbenes: Synthesis and catalytic activity in “Click Chemistry”. Adv. Synth. Catal., 2015, 357(14-15), 3155-3161.
[http://dx.doi.org/10.1002/adsc.201500453]
[358]
Gu, S.; Du, J.; Huang, J.; Xia, H.; Yang, L.; Xu, W.; Lu, C. Bi- and trinuclear copper(I) complexes of 1,2,3-triazole-tethered NHC ligands: synthesis, structure, and catalytic properties. Beilstein J. Org. Chem., 2016, 12, 863-873.
[http://dx.doi.org/10.3762/bjoc.12.85] [PMID: 27340477]
[359]
Díez-González, S.; Correa, A.; Cavallo, L.; Nolan, S.P. (NHC)Copper(I)-catalyzed [3+2] cycloaddition of azides and mono- or disubstituted alkynes. Chemistry, 2006, 12(29), 7558-7564.
[http://dx.doi.org/10.1002/chem.200600961] [PMID: 16969776]
[360]
Díez-González, S.; Escudero-Adán, E.C.; Benet-Buchholz, J.; Stevens, E.D.; Slawin, A.M.Z.; Nolan, S.P. [(NHC)CuX] complexes: Synthesis, characterization and catalytic activities in reduction reactions and Click Chemistry. On the advantage of using well-defined catalytic systems. Dalton Trans., 2010, 39(32), 7595-7606.
[http://dx.doi.org/10.1039/c0dt00218f] [PMID: 20625598]
[361]
Pawar, G.M.; Bantu, B.; Weckesser, J.; Blechert, S.; Wurst, K.; Buchmeiser, M.R. Ring-opening metathesis polymerization-derived, polymer-bound Cu-catalysts for click-chemistry and hydrosilylation reactions under micellar conditions. Dalton Trans., 2009, 1009(41), 9043-9051.
[http://dx.doi.org/10.1039/b909180g] [PMID: 19826738]
[362]
Teyssot, M.L.; Chevry, A.; Traïkia, M.; El-Ghozzi, M.; Avignant, D.; Gautier, A. Improved copper(I)-NHC catalytic efficiency on huisgen reaction by addition of aromatic nitrogen donors. Chemistry, 2009, 15(26), 6322-6326.
[http://dx.doi.org/10.1002/chem.200900727] [PMID: 19462382]
[363]
Díez-González, S.; Nolan, S.P. [(NHC)2 Cu]X complexes as efficient catalysts for Azide-Alkyne click chemistry at low catalyst loadings. Angew. Chem. Int. Ed., 2008, 47(46), 8881-8884.
[http://dx.doi.org/10.1002/anie.200803289]
[364]
Wang, F.; Fu, H.; Jiang, Y.; Zhao, Y. Quick and highly efficient copper-catalyzed cycloaddition of aliphatic and aryl azides with terminal alkynes “on water”. Green Chem., 2008, 10(4), 452-456.
[http://dx.doi.org/10.1039/b718051a]
[365]
Fabbrizzi, P.; Cicchi, S.; Brandi, A.; Sperotto, E.; van Koten, G. An efficient (2-aminoarenethiolato)copper(I) complex for the copper-catalysed huisgen reaction (CuAAC). Eur. J. Org. Chem., 2009, 2009(31), 5423-5430.
[http://dx.doi.org/10.1002/ejoc.200900779]
[366]
McDonald, A.R.; Dijkstra, H.P.; Suijkerbuijk, B.M.J.M.; van Klink, G.P.M.; van Koten, G. “Click” immobilization of organometallic pincer catalysts for C−C Coupling Reactions. Organometallics, 2009, 28(16), 4689-4699.
[http://dx.doi.org/10.1021/om900237g]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy