Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Characterization and Antibacterial Activity of Melanin Pigment from Marine Bacterium Actinoalloteichus cyanogriseus

Author(s): Muddukrishnaiah Kotakonda, Makesh Marappan* and Bhaskar Biswas

Volume 21, Issue 5, 2024

Published on: 14 February, 2023

Page: [938 - 947] Pages: 10

DOI: 10.2174/1570180820666230131093932

Price: $65

Abstract

Introduction: Marine microbes are known to produce novel bioactive compounds. In this work, the bacterium Actinoalloteichus cyanogriseus, AU-RM-4, isolated from marine soil sediment, capable of producing high amounts of black extracellular melanin pigment when grown on anaerobic actinomycetes agar is reported. The maximum melanin production was approximately 2.5 mg/mL.

Methods: The melanin pigment was recovered using acid treatment and the characteristic melanin absorption peaks at 253 nm and 291 nm were observed in the UV range. The antibacterial activity of the melanin pigment against a range of clinically infectious bacteria was assayed in vitro by disc diffusion and serial dilution methods.

Results: The A. cyanogriseus melanin showed antimicrobial activity against Staphylococcus aureus and Klebsiella pneumoniae (MIC value -500 μg/mL). The effects of the AU-RM-4 melanin on the morphology of pathogenic bacteria were observed under scanning (SEM) and transmission electron microscopy (TEM). It is concluded that A. cyanogriseus isolate AU-RM-4 is a promising melanin-producing marine bacterium, whose melanin pigment has antibacterial activity against certain pathogenic bacteria (S. aureus and K. pneumoniae).

Conclusion: Melanin produced by A. cyanogriseus AU-RM-4 could have commercial potential in the pharmaceutical and cosmetic industries for the production of pharmaceutical formulations, and also in the food industries as a colouring and antibacterial agent.

Graphical Abstract

[1]
Mohammadi, M.; Burbank, L.; Roper, M.C. Biological role of pigment production for the bacterial phytopathogen Pantoea stewartii subsp. stewartii. Appl. Environ. Microbiol., 2012, 78(19), 6859-6865.
[http://dx.doi.org/10.1128/AEM.01574-12] [PMID: 22820327]
[2]
Solano, F. Melanin and melanin-related polymers as materials with biomedical and biotechnological applications cuttlefish ink and mussel foot proteins as inspired biomolecules. Int. J. Mol. Sci., 2017, 18(7), 1561.
[http://dx.doi.org/10.3390/ijms18071561] [PMID: 28718807]
[3]
Tarangini, K.; Mishra, S. Production of melanin by soil microbial isolate on fruit waste extract: Two step optimization of key parameters. Biotechnol. Rep., 2014, 4, 139-46.
[http://dx.doi.org/10.1016/j.btre.2014.10.001] [PMID: 28626673]
[4]
Tran-Ly, A.N.; Reyes, C.; Schwarze, F.W.M.R.; Ribera, J. Microbial production of melanin and its various applications. World J. Microbiol. Biotechnol., 2020, 36(11), 170.
[http://dx.doi.org/10.1007/s11274-020-02941-z] [PMID: 33043393]
[5]
Suryanarayanan, T.S.; Ravishankar, J.P.; Venkatesan, G.; Murali, T.S. Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Mycol. Res., 2004, 108(8), 974-978.
[http://dx.doi.org/10.1017/S0953756204000619] [PMID: 15449603]
[6]
Suwannarach, N.; Kumla, J.; Watanabe, B.; Matsui, K.; Lumyong, S. Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica SDBR-CMU319. PLoS One, 2019, 14(9), e0222187.
[http://dx.doi.org/10.1371/journal.pone.0222187] [PMID: 31498821]
[7]
Hu, W.L.; Dai, D.H.; Huang, G.R.; Zhang, Z.D. Isolation and characterization of extracellular melanin produced by Chroogomphus rutilus D447. Am. J. Food Technol., 2015, 10(2), 68-77.
[http://dx.doi.org/10.3923/ajft.2015.68.77]
[8]
Deepthi, A.; Rosamma, P. Actinomycete isolates from Arabian Sea and Bay of Bengal: biochemical, molecular and functional characterization. Thesis, Cochin University of Science and Technology, Cochin, Kerala., 2014.
[9]
Ruan, L.; Yu, Z.; Fang, B.; He, W.; Wang, Y.; Shen, P. Melanin pigment formation and increased UV resistance in Bacillus thuringiensis following high temperature induction. Syst. Appl. Microbiol., 2004, 27(3), 286-289.
[http://dx.doi.org/10.1078/0723-2020-00265] [PMID: 15214633]
[10]
Setiyono, E.; Adhiwibawa, M.A.S. An Indonesian marine bacterium, Pseudoalteromonas rubra., produces antimicrobial prodiginine pigments. ACS Omega, 2020, 5(9), 4626-4635.
[PMID: 32175509]
[11]
Edwards, U.; Rogall, T.; Blöcker, H.; Emde, M.; Böttger, E.C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res., 1989, 17(19), 7843-7853.
[http://dx.doi.org/10.1093/nar/17.19.7843] [PMID: 2798131]
[12]
Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol., 2000, 7(1-2), 203-214.
[http://dx.doi.org/10.1089/10665270050081478] [PMID: 10890397]
[13]
El-Naggar, N.E.A.; El-Ewasy, S.M. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Sci. Rep., 2017, 7(1), 42129.
[http://dx.doi.org/10.1038/srep42129] [PMID: 28195138]
[14]
Moussa, S.H.; Tayel, A.A.; Al-Hassan, A.A.; Farouk, A. Tetrazolium/formazan test as an efficient method to determine fungal chitosan antimicrobial activity. J. Mycol., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/753692]
[15]
Tamura, T.; Zhiheng, L.; Yamei, Z.; Hatano, K. Actinoalloteichus cyanogriseus gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol., 2000, 50(4), 1435-1440.
[http://dx.doi.org/10.1099/00207713-50-4-1435] [PMID: 10939647]
[16]
Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 2018, 35(6), 1547-1549.
[http://dx.doi.org/10.1093/molbev/msy096] [PMID: 29722887]
[17]
Saratha, M.; Angappan, K.; Karthikeyan, S.; Marimuthu, S.; Chozhan, K. Actinoalloteichus cyanogriseus: A broad spectrum bio-agent against mulberry root rot pathogens. Egypt. J. Biol. Pest Control, 2022, 32(1), 33.
[http://dx.doi.org/10.1186/s41938-022-00532-8]
[18]
Soliev, A.B.; Hosokawa, K.; Enomoto, K. Bioactive pigments from marine bacteria: Applications and physiological roles. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-17.
[http://dx.doi.org/10.1155/2011/670349] [PMID: 21961023]
[19]
Ben, T. Characterization of a nontoxic pyomelanin pigment produced by the yeast Yarrowia lipolytica. Biotechnol, 2020, 36(2), e2912.
[20]
Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.K. Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. Int. J. Biol. Macromol., 2013, 58, 263-274.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.041] [PMID: 23603071]
[21]
Coates, J. Interpretation of infrared spectra, a practical approach. In: Encyclopedia Anal Chem; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, 2000.
[22]
Sajjan, S.; Kulkarni, G.; Yaligara, V.; Kyoung, L.; Karegoudar, T.B. Purification and physiochemical characterization of melanin pigment from Klebsiella sp. GSK. J. Microbiol. Biotechnol., 2010, 20(11), 1513-1520.
[http://dx.doi.org/10.4014/jmb.1002.02006] [PMID: 21124055]
[23]
Hewedy, M.; Ashour, S. Production of a melanin like pigment by Kluyveromyces marxianus and Streptomyces chibaensis. Aust. J. Basic Appl. Sci., 2009, 3, 920-927.
[24]
Zerrad, A.; Anissi, J.; Ghanam, J.; Sendide, K.; Hassouni, E.l. Antioxidant and antimicrobial activities of melanin produced by a Pseudomonas balearica strain. J. Biotechnol. Lett, 2014, 5, 87-94.
[25]
V, V.; R, L.; S, J. Melanin production from marine Streptomyces. Afr. J. Biotechnol., 2011, 10(54), 11224-11234.
[http://dx.doi.org/10.5897/AJB11.296]
[26]
Senyuk, O.F.; Gorovoj, L.F.; Beketova, G.V.; Savichuk, N.O.; Rytik, P.G.; Kucherov, I.I.; Prilutckaya, A.B.; Prilutsky, A.I. Anti-infective properties of the melanin-glucan complex obtained from medicinal tinder bracket mushroom, Fomes fomentarius (L.: Fr.) Fr. (Aphyllophoromycetideae). Int. J. Med. Mushrooms, 2011, 13(1), 7-18.
[http://dx.doi.org/10.1615/IntJMedMushr.v13.i1.20] [PMID: 22135899]
[27]
El-Naggar, N.E.A.; Saber, W.I.A. Natural melanin: Current trends, and future approaches, with especial reference to microbial source. Polymers, 2022, 14(7), 1339.
[http://dx.doi.org/10.3390/polym14071339] [PMID: 35406213]
[28]
Bashir, S.; Numan, M.; Shinwari, Z.K. Selective isolation of bioactive-pigmented bacteria from saline agricultural soil and assessment of their antimicrobial potential against plant pathogens. Sustainability, 2022, 14(20), 13574.
[http://dx.doi.org/10.3390/su142013574]
[29]
Lakshminarayanan, A.; Pravalika, A.; Sivaperumal, P. Isolation of melanin pigment producing marine actinobacterium of streptomyces isolated from marine sediment samples and their antibacterial activity. J. Res. Med. Dent. Sci., 2022, 10(5), 53-60.
[30]
Xu, C.; Li, J.; Yang, L.; Shi, F.; Yang, L.; Ye, M. Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food Control, 2017, 73, 1445-1451.
[http://dx.doi.org/10.1016/j.foodcont.2016.10.048]

© 2025 Bentham Science Publishers | Privacy Policy