Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Steroid and Triterpenoid Compounds with Antiparasitic Properties

Author(s): Ivana Z. Kuzminac, Marina P. Savić, Jovana. J. Ajduković* and Andrea R. Nikolić

Volume 23, Issue 9, 2023

Published on: 16 February, 2023

Page: [791 - 815] Pages: 25

DOI: 10.2174/1568026623666230126162419

Price: $65

conference banner
Abstract

Parasitic diseases affect millions of people and animals, predominantly in the tropics, including visitors to tropical countries and other areas. Efficient and low-cost treatments for infections caused by various parasites are not yet available. Antiparasitic drugs have some drawbacks, such as toxicity and the development of resistance by parasites. This has motivated many researchers to focus on the discovery of safe, effective and affordable antiparasitic drugs, both among drugs already available for other diseases and new compounds synthesized or isolated from natural sources. Furthermore, steroid and triterpenoid compounds attract the attention of pharmacologists, chemists and biochemists owing to their broad application in the treatment of various diseases. Isolation of steroid and triterpenoid compounds from natural sources with antiparasitic efficacy is an attractive choice for scientists. On the other hand, these compounds can be transformed into more potent forms by modifying the basic skeleton. This review presents a collection of isolated and synthesized steroid and triterpenoid compounds from 2018 to 2021 that have been reported to be effective against certain parasitic protozoa and helminths. A total of 258 compounds have been identified with antimalarial, antitrypanosomal, antileishmanial, anti-Toxoplasma, and/or anthelmintic activity. The described investigations of antiparasitic compounds may be helpful for further drug development.

Graphical Abstract

[1]
Pink, R.; Hudson, A.; Mouriès, M.A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov., 2005, 4(9), 727-740.
[http://dx.doi.org/10.1038/nrd1824] [PMID: 16138106]
[2]
Woods, D.J.; Williams, T.M. The challenges of developing novel antiparasitic drugs. Invert. Neurosci., 2007, 7(4), 245-250.
[http://dx.doi.org/10.1007/s10158-007-0055-1] [PMID: 18004600]
[3]
Wink, M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules, 2012, 17(11), 12771-12791.
[http://dx.doi.org/10.3390/molecules171112771] [PMID: 23114614]
[4]
Murray, C.J.L.; Rosenfeld, L.C.; Lim, S.S.; Andrews, K.G.; Foreman, K.J.; Haring, D.; Fullman, N.; Naghavi, M.; Lozano, R.; Lopez, A.D. Global malaria mortality between 1980 and 2010: A systematic analysis. Lancet, 2012, 379(9814), 413-431.
[http://dx.doi.org/10.1016/S0140-6736(12)60034-8] [PMID: 22305225]
[5]
Kappagoda, S.; Singh, U.; Blackburn, B.G. Antiparasitic therapy. Mayo Clin. Proc., 2011, 86(6), 561-583.
[http://dx.doi.org/10.4065/mcp.2011.0203] [PMID: 21628620]
[6]
Kayser, O.; Kiderlen, A.F.; Croft, S.L. Natural products as antiparasitic drugs. Parasitol. Res., 2003, 90(S2), S55-S62.
[http://dx.doi.org/10.1007/s00436-002-0768-3] [PMID: 12937967]
[7]
Ndjonka, D.; Rapado, L.; Silber, A.; Liebau, E.; Wrenger, C. Natural products as a source for treating neglected parasitic diseases. Int. J. Mol. Sci., 2013, 14(2), 3395-3439.
[http://dx.doi.org/10.3390/ijms14023395] [PMID: 23389040]
[8]
Mäser, P.; Wittlin, S.; Rottmann, M.; Wenzler, T.; Kaiser, M.; Brun, R. Antiparasitic agents: new drugs on the horizon. Curr. Opin. Pharmacol., 2012, 12(5), 562-566.
[http://dx.doi.org/10.1016/j.coph.2012.05.001] [PMID: 22652215]
[9]
Watts, K.R.; Tenney, K.; Crews, P. The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules. Curr. Opin. Biotechnol., 2010, 21(6), 808-818.
[http://dx.doi.org/10.1016/j.copbio.2010.09.015] [PMID: 20956079]
[10]
Abdelmohsen, U.R.; Balasubramanian, S.; Oelschlaeger, T.A.; Grkovic, T.; Pham, N.B.; Quinn, R.J.; Hentschel, U. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infect. Dis., 2017, 17(2), e30-e41.
[http://dx.doi.org/10.1016/S1473-3099(16)30323-1] [PMID: 27979695]
[11]
Nweze, J.A.; Mbaoji, F.N.; Li, Y.M.; Yang, L.Y.; Huang, S.S.; Chigor, V.N.; Eze, E.A.; Pan, L.X.; Zhang, T.; Yang, D.F. Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: a review of recent articles. Infect. Dis. Poverty, 2021, 10(1), 9.
[http://dx.doi.org/10.1186/s40249-021-00796-6] [PMID: 33482912]
[12]
Mostafa, O.; Al-Shehri, M.; Moustafa, M. Promising antiparasitic agents from marine sponges. Saudi J. Biol. Sci., 2022, 29(1), 217-227.
[http://dx.doi.org/10.1016/j.sjbs.2021.08.068] [PMID: 35002412]
[13]
Bekono, B.D.; Ntie-Kang, F.; Onguéné, P.A.; Lifongo, L.L.; Sippl, W.; Fester, K.; Owono, L.C.O. The potential of anti-malarial compounds derived from African medicinal plants: a review of pharmacological evaluations from 2013 to 2019. Malar. J., 2020, 19(1), 183.
[http://dx.doi.org/10.1186/s12936-020-03231-7] [PMID: 32423415]
[14]
Santos, S.S.; de Araújo, R.V.; Giarolla, J.; Seoud, O.E.; Ferreira, E.I. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. Int. J. Antimicrob. Agents, 2020, 55(4), 105906.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105906] [PMID: 31987883]
[15]
Gupta, A.; Sathish Kumar, B.; Negi, A.S. Current status on development of steroids as anticancer agents. J. Steroid Biochem. Mol. Biol., 2013, 137, 242-270.
[http://dx.doi.org/10.1016/j.jsbmb.2013.05.011] [PMID: 23727548]
[16]
Savić M.P.; Sakač M.N.; Kuzminac, I.Z.; Ajduković J.J. Structural diversity of bioactive steroid compounds isolated from soft corals in the period 2015–2020. J. Steroid Biochem. Mol. Biol., 2022, 218, 106061.
[http://dx.doi.org/10.1016/j.jsbmb.2022.106061] [PMID: 35031429]
[17]
Kuzminac, I.Z.; Jakimov, D.S.; Bekić, S.S.; Ćelić, A.S.; Marinović, M.A.; Savić, M.P.; Raičević, V.N.; Kojić, V.V.; Sakač, M.N Synthesis and anticancer potential of novel 5,6-oxygenated and/or halogenated steroidal d-homo lactones. Bioorg. Med. Chem., 2021, 30, 115935.
[http://dx.doi.org/10.1016/j.bmc.2020.115935] [PMID: 33340938]
[18]
Savić, M.P.; Škorić, D.Đ.; Kuzminac, I.Z.; Jakimov, D.S.; Kojić, V.V.; Rárová, L.; Strnad, M.; Djurendić, E.A. New A-homo lactam D-homo lactone androstane derivative: Synthesis and evaluation of cytotoxic and anti-inflammatory activities in vitro. Steroids, 2020, 157, 108596.
[http://dx.doi.org/10.1016/j.steroids.2020.108596] [PMID: 32068078]
[19]
Nikolić, A.R.; Kuzminac, I.Z.; Jovanović-Šanta, S.S.; Jakimov, D.S.; Aleksić, L.D.; Sakač, M.N. Anticancer activity of novel steroidal 6-substituted 4-en-3-one D-seco dinitriles. Steroids, 2018, 135, 101-107.
[http://dx.doi.org/10.1016/j.steroids.2018.03.009] [PMID: 29604312]
[20]
Ajduković, J.J.; Jakimov, D.S.; Rárová, L.; Strnad, M.; Dzichenka, Y.U.; Usanov, S.; Škorić, D.Đ.; Jovanović-Šanta, S.S.; Sakač, M.N. Novel alkylaminoethyl derivatives of androstane 3-oximes as anticancer candidates: synthesis and evaluation of cytotoxic effects. RSC Advances, 2021, 11(59), 37449-37461.
[http://dx.doi.org/10.1039/D1RA07613B] [PMID: 35496404]
[21]
Correa, G.M.; Abreu, V.G.C.; Martins, D.A.A.; Takahashi, J.A.; Fontoura, H.S.; Cara, D.C.; Piló-Veloso, D.; Alcântara, A.F.C. Antiinflammatory and antimicrobial activities of steroids and triterpenes isolated from aerial parts of Justicia acuminatissima (Acanthaceae). Int. J. Pharm. Pharm. Sci., 2014, 6(6), 75-81.
[22]
Shamsabadipour, S.; Ghanadian, M.; Saeedi, H.; Rahimnejad, M.R.; Mohammadi-Kamalabadi, M.; Ayatollahi, S.M.; Salimzadeh, L. Triterpenes and steroids from Euphorbia denticulata Lam. with anti-herpes symplex virus activity. Iran. J. Pharm. Res., 2013, 12(4), 759-767.
[PMID: 24523756]
[23]
Lenzi, J.; Costa, T.M.; Alberton, M.D.; Goulart, J.A.G.; Tavares, L.B.B. Medicinal fungi: A source of antiparasitic secondary metabolites. Appl. Microbiol. Biotechnol., 2018, 102(14), 5791-5810.
[http://dx.doi.org/10.1007/s00253-018-9048-8] [PMID: 29749562]
[24]
a) Vil, V.A.; Gloriozova, T.A.; Poroikov, V.V.; Terent’ev, A.O.; Savidov, N.; Dembitsky, V.M. Peroxy steroids derived from plant and fungi and their biological activities. Appl. Microbiol. Biotechnol., 2018, 102(18), 7657-7667.
[http://dx.doi.org/10.1007/s00253-018-9211-2] [PMID: 29987343];
b) Ungogo, M.A.; Ebiloma, G.U.; Ichoron, N.; Igoli, J.O.; de Koning, H.P.; Balogun, E.O. A review of the antimalarial, antitrypanosomal, and antileishmanial activities of natural compounds isolated from Nigerian flora. Front Chem., 2020, 8, 617448.
[http://dx.doi.org/10.3389/fchem.2020.617448] [PMID: 33425860]
[25]
Panda, S.K.; Luyten, W. Antiparasitic activity in asteraceae with special attention to ethnobotanical use by the tribes of Odisha, India. Parasite, 2018, 25, 10.
[http://dx.doi.org/10.1051/parasite/2018008] [PMID: 29528842]
[26]
World Health Organization (WHO). World malaria report World Health Organization; Geneva, 2021. Available from: https://www.who.int/publications/i/item/9789240040496 [Accessed on: Jun 17, 2022].
[27]
Muhoro, A.M.; Farkas, E.É. Insecticidal and antiprotozoal properties of lichen secondary metabolites on insect vectors and their transmitted protozoal diseases to humans. Diversity, 2021, 13(8), 342.
[http://dx.doi.org/10.3390/d13080342]
[28]
Kozlov, M. Resistance to front-line malaria drugs confirmed in Africa. Nature, 2021, 597(7878), 604.
[http://dx.doi.org/10.1038/d41586-021-02592-6]
[29]
Nogueira, C.R.; Lopes, L.M.X. Antiplasmodial natural products. Molecules, 2011, 16(3), 2146-2190.
[http://dx.doi.org/10.3390/molecules16032146]
[30]
Bialangi, N.; Mustapa, A.; Salimi, Y.; Widiantoro, A.; Situmeang, B. Isolation of steroid compounds from Suruhan (Peperomia pellucida L. Kunth) and their antimalarial activity. Asian J. Chem., 2018, 30(8), 1751-1754.
[http://dx.doi.org/10.14233/ajchem.2018.21285]
[31]
Perumal, P.; Sowmiya, R. Prasanna kumar, S.; Ravikumar, S.; Deepak, P.; Balasubramani, G. Isolation, structural elucidation and antiplasmodial activity of fucosterol compound from brown seaweed, sargassum linearifolium against malarial parasite plasmodium falciparum. Nat. Prod. Res., 2018, 32(11), 1316-1319.
[http://dx.doi.org/10.1080/14786419.2017.1342081] [PMID: 28637390]
[32]
Aydin, T. In vitro and in silico evaluation of some natural molecules as potent glutathione reductase inhibitors. Int. J. Second. Metabol., 2019, 6, 310-316.
[http://dx.doi.org/10.21448/ijsm.628043]
[33]
Indriani, I.; Aminah, N.S.; Puspaningsih, N.N.T. Antiplasmodial activity of stigmastane steroids from Dryobalanops oblongifolia stem bark. Open Chem., 2020, 18(1), 259-264.
[http://dx.doi.org/10.1515/chem-2020-0027]
[34]
Murtihapsari, M.; Salam, S.; Kurnia, D.; Darwati, D.; Kadarusman, K.; Abdullah, F.F.; Herlina, T.; Husna, M.H.; Awang, K.; Shiono, Y.; Azmi, M.N.; Supratman, U. A new antiplasmodial sterol from Indonesian marine sponge, Xestospongia sp. Nat. Prod. Res., 2021, 35(6), 937-944.
[http://dx.doi.org/10.1080/14786419.2019.1611815] [PMID: 31210054]
[35]
Fröhlich, T.; Kiss, A.; Wölfling, J.; Mernyák, E.; Kulmány, Á.E.; Minorics, R.; Zupkó, I.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Hahn, F.; Marschall, M.; Schneider, G.; Tsogoeva, S.B. Synthesis of artemisinin-estrogen hybrids highly active against HCMV, P. falciparum, and cervical and breast cancer. ACS Med. Chem. Lett., 2018, 9(11), 1128-1133.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00381] [PMID: 30429957]
[36]
Krieg, R.; Jortzik, E.; Goetz, A.A.; Blandin, S.; Wittlin, S.; Elhabiri, M.; Rahbari, M.; Nuryyeva, S.; Voigt, K.; Dahse, H.M.; Brakhage, A.; Beckmann, S.; Quack, T.; Grevelding, C.G.; Pinkerton, A.B.; Schönecker, B.; Burrows, J.; Davioud-Charvet, E.; Rahlfs, S.; Becker, K. Arylmethylamino steroids as antiparasitic agents. Nat. Commun., 2019, 10(1), 2997.
[http://dx.doi.org/10.1038/s41467-019-11018-x] [PMID: 31285434]
[37]
a) Sharma, B.; Singh, P.; Singh, A.K.; Awasthi, S.K. Advancement of chimeric hybrid drugs to cure malaria infection: An overview with special emphasis on endoperoxide pharmacophores. Eur. J. Med. Chem., 2021, 219, 113408.
[http://dx.doi.org/10.1016/j.ejmech.2021.113408] [PMID: 33989911];
b) Yamansarov, E.Y.; Kazakov, D.V.; Medvedeva, N.I.; Khusnutdinova, E.F.; Kazakova, O.B.; Legostaeva, Y.V.; Ishmuratov, G.Y.; Huong, L.M.; Ha, T.T.H.; Huong, D.T.; Suponitsky, K.Y. Synthesis and antimalarial activity of 3'-trifluoromethylated 1,2,4-trioxolanes and 1,2,4,5-tetraoxane based on deoxycholic acid. Steroids, 2018, 129, 17-23.
[http://dx.doi.org/10.1016/j.steroids.2017.11.008] [PMID: 29180289]
[38]
Jeong, H.; Latif, A.; Kong, C.S.; Seo, Y.; Lee, Y.J.; Dalal, S.R.; Cassera, M.B.; Kingston, D.G.I. Isolation and characterization of antiplasmodial constituents from the marine sponge Coscinoderma sp. Z. Naturforsch. C J. Biosci., 2019, 74(11-12), 313-318.
[http://dx.doi.org/10.1515/znc-2019-0039] [PMID: 31393837]
[39]
Gunatilaka, A.A.L.; Gopichand, Y.; Schmitz, F.J.; Djerassi, C. Minor and trace sterols in marine invertebrates. 26. Isolation and structure elucidation of nine new 5.α,8.α-epidoxy sterols from four marine organisms. J. Org. Chem., 1981, 46(19), 3860-3866.
[http://dx.doi.org/10.1021/jo00332a020]
[40]
Iguchi, K.; Shimura, H.; Yang, Z.; Yamada, Y. A new 5α8α-epidioxy sterol from the okinawan marine sponge of the Axinyssa genus. Steroids, 1993, 58(9), 410-413.
[http://dx.doi.org/10.1016/0039-128X(93)90080-7] [PMID: 8236326]
[41]
Sera, Y.; Adachi, K.; Shizuri, Y. A new epidioxy sterol as an antifouling substance from a palauan marine sponge, lendenfeldia chondrodes. J. Nat. Prod., 1999, 62(1), 152-154.
[http://dx.doi.org/10.1021/np980263v] [PMID: 9917306]
[42]
Ioannou, E.; Abdel-Razik, A.F.; Zervou, M.; Christofidis, D.; Alexi, X.; Vagias, C.; Alexis, M.N.; Roussis, V. 5α8α-Epidioxysterols from the gorgonian Eunicella cavolini and the ascidian Trididemnum inarmatum: Isolation and evaluation of their antiproliferative activity. Steroids, 2009, 74(1), 73-80.
[http://dx.doi.org/10.1016/j.steroids.2008.09.007] [PMID: 18851985]
[43]
Sangsopha, W.; Kanokmedhakul, K.; Lekphrom, R.; Kanokmedhakul, S. Chemical constituents and biological activities from branches of Colubrina asiatica. Nat. Prod. Res., 2018, 32(10), 1176-1179.
[http://dx.doi.org/10.1080/14786419.2017.1320787] [PMID: 28441887]
[44]
Phonkerd, N.; Kanokmedhakul, S.; Kanokmedhakul, K.; Soytong, K.; Prabpai, S.; Kongsearee, P. Bis-spiro-azaphilones and azaphilones from the fungi Chaetomium cochliodes VTh01 and C. cochliodes CTh05. Tetrahedron, 2008, 64(40), 9636-9645.
[http://dx.doi.org/10.1016/j.tet.2008.07.040]
[45]
Du, Y.; Martin, B.A.; Valenciano, A.L.; Clement, J.A.; Goetz, M.; Cassera, M.B.; Kingston, D.G.I. Galtonosides A-E: Antiproliferative and antiplasmodial cholestane glycosides from Galtonia regalis. J. Nat. Prod., 2020, 83(4), 1043-1050.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01064] [PMID: 32227943]
[46]
Babanezhad Harikandei, K.; Salehi, P.; Ebrahimi, S.N.; Bararjanian, M.; Kaiser, M.; Al-Harrasi, A. Synthesis, in-vitro antiprotozoal activity and molecular docking study of isothiocyanate derivatives. Bioorg. Med. Chem., 2020, 28(1), 115185.
[http://dx.doi.org/10.1016/j.bmc.2019.115185] [PMID: 31784198]
[47]
Ayyari, M.; Salehi, P.; Ebrahimi, S.; Zimmermann, S.; Portmann, L.; Krauth-Siegel, R.; Kaiser, M.; Brun, R.; Rezadoost, H.; Rezazadeh, S.; Hamburger, M. Antitrypanosomal isothiocyanate and thiocarbamate glycosides from Moringa peregrina. Planta Med., 2013, 80(1), 86-89.
[http://dx.doi.org/10.1055/s-0033-1351102] [PMID: 24310210]
[48]
Ma’mag, L.K.; Zintchem, A.A.A.; Théodora, K.K.; Atchadé, A.T.; Lauve, T.Y.; Frédérich, M.; Bikobo, D.S.N.; Pegnyemb, D.E. Antiplasmodial and antileishmanial inhibitory activity of triterpenes and steroidal alkaloid from the leaves of Funtumia elastica (Preuss) Stapf (Apocynaceae). Fitoterapia, 2021, 151, 104869.
[http://dx.doi.org/10.1016/j.fitote.2021.104869] [PMID: 33657429]
[49]
Zirihi, G.N.; Grellier, P.; Guédé-Guina, F.; Bodo, B.; Mambu, L. Isolation, characterization and antiplasmodial activity of steroidal alkaloids from Funtumia elastica (Preuss). Stapf. Bioorg. Med. Chem. Lett., 2005, 15(10), 2637-2640.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.021] [PMID: 15863333]
[50]
Murtihapsari; Kurnia, D.; Herlina, T.; Katja, D.; Kadarusman; Awang, K.; Shiono, Y.; Supratman, U. Antiplasmodial compounds from indonesian marine sponge, xestospongia sp, against plasmodium falciparum 3D7. Chiang Mai Univ. J. Nat. Sci., 2020, 19(3), 487-497.
[http://dx.doi.org/10.12982/CMUJNS.2020.0032]
[51]
Roy, A.; Saraf, S. Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol. Pharm. Bull., 2006, 29(2), 191-201.
[http://dx.doi.org/10.1248/bpb.29.191] [PMID: 16462017]
[52]
Manners, G.D. Citrus limonoids: Analysis, bioactivity, and biomedical prospects. J. Agric. Food Chem., 2007, 55(21), 8285-8294.
[http://dx.doi.org/10.1021/jf071797h] [PMID: 17892257]
[53]
Lv, M.; Xu, P.; Tian, Y.; Liang, J.; Gao, Y.; Xu, F.; Zhang, Z.; Sun, J. Medicinal uses, phytochemistry and pharmacology of the genus Dictamnus (Rutaceae). J. Ethnopharmacol., 2015, 171, 247-263.
[http://dx.doi.org/10.1016/j.jep.2015.05.053] [PMID: 26068434]
[54]
Sidjui, L.S.; Nganso, Y.O.D.; Toghueo, R.M.K.; Wakeu, B.N.K.; Dameue, J.T.; Mkounga, P.; Adhikari, A.; Lateef, M.; Folefoc, G.N.; Ali, M.S. Kostchyienones A and B, new antiplasmodial and cytotoxicity of limonoids from the roots of Pseudocedrela kotschyi (Schweinf.) Harms. Z. Naturforsch. C J. Biosci., 2018, 73(3-4), 153-160.
[http://dx.doi.org/10.1515/znc-2017-0102] [PMID: 28917086]
[55]
Isaka, M.; Chinthanom, P.; Rachtawee, P.; Choowong, W.; Choeyklin, R.; Thummarukcharoen, T. Lanostane triterpenoids from cultivated fruiting bodies of the wood-rot basidiomycete Ganoderma casuarinicola. Phytochemistry, 2020, 170, 112225.
[http://dx.doi.org/10.1016/j.phytochem.2019.112225] [PMID: 31855780]
[56]
Isaka, M.; Sappan, M.; Choowong, W.; Boonpratuang, T.; Choeyklin, R.; Feng, T.; Liu, J.K. Antimalarial lanostane triterpenoids from cultivated fruiting bodies of the basidiomycete Ganoderma sp. J. Antibiot., 2020, 73(10), 702-710.
[http://dx.doi.org/10.1038/s41429-020-0357-7] [PMID: 32733078]
[57]
Isaka, M.; Chinthanom, P.; Choeyklin, R.; Thummarukcharoen, T.; Rachtawee, P.; Sappan, M.; Srichomthong, K.; Fujii, R.; Kawashima, K.; Mori, S. Highly modified lanostane triterpenes from the wood-rot basidiomycete Ganoderma colossus: Comparative chemical investigations of natural and artificially cultivated fruiting bodies and mycelial cultures. J. Nat. Prod., 2020, 83(7), 2066-2075.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00947] [PMID: 32639735]
[58]
Singh, A.; Mukhtar, H.M.; Kaur, H.; Kaur, L. Investigation of antiplasmodial efficacy of lupeol and ursolic acid isolated from Ficus benjamina leaves extract. Nat. Prod. Res., 2020, 34(17), 2514-2517.
[http://dx.doi.org/10.1080/14786419.2018.1540476] [PMID: 30600705]
[59]
Oluyemi, W.M.; Samuel, B.B.; Kaehlig, H.; Zehl, M.; Parapini, S.; D’Alessandro, S.; Taramelli, D.; Krenn, L. Antiplasmodial activity of triterpenes isolated from the methanolic leaf extract of Combretum racemosum P. Beauv. J. Ethnopharmacol., 2020, 247, 112203.
[http://dx.doi.org/10.1016/j.jep.2019.112203] [PMID: 31472271]
[60]
Kaur, G.; Pavadai, E.; Wittlin, S.; Chibale, K. 3D-QSAR modeling and synthesis of new fusidic acid derivatives as antiplasmodial agents. J. Chem. Inf. Model., 2018, 58(8), 1553-1560.
[http://dx.doi.org/10.1021/acs.jcim.8b00105] [PMID: 30040885]
[61]
Samuel, B.; Adekunle, Y.A. Isolation and structure elucidation of anti-malarial principles from Terminalia mantaly H. Perrier stem bark. Int. J. Biol. Chem. Sci., 2021, 15(1), 282-292.
[http://dx.doi.org/10.4314/ijbcs.v15i1.25]
[62]
Wisetsai, A.; Schevenels, F.T.; Lekphrom, R. Chemical constituents and their biological activities from the roots of Diospyros filipendula. Nat. Prod. Res., 2021, 35(16), 2739-2743.
[http://dx.doi.org/10.1080/14786419.2019.1656630] [PMID: 31510803]
[63]
Sangsopha, W.; Lekphrom, R.; Schevenels, F.T.; Kanokmedhakul, K.; Kanokmedhakul, S. Two new bioactive triterpenoids from the roots of Colubrina asiatica. Nat. Prod. Res., 2020, 34(4), 482-488.
[http://dx.doi.org/10.1080/14786419.2018.1489385] [PMID: 30445837]
[64]
World Health Organization (WHO). Home/Health topics/Leishmaniasis. Available from: https://www.who.int/health-topics/leishmaniasis#tab=tab_1 [Accessed on: Jun 17, 2022].
[65]
Abreu Miranda, M.; Tiossi, R.F.J.; da Silva, M.R.; Rodrigues, K.C.; Kuehn, C.C.; Rodrigues Oliveira, L.G.; Albuquerque, S.; McChesney, J.D.; Lezama-Davila, C.M.; Isaac-Marquez, A.P.; Kenupp Bastos, J. In vitro leishmanicidal and cytotoxic activities of the glycoalkaloids from Solanum lycocarpum (Solanaceae) fruits. Chem. Biodivers., 2013, 10(4), 642-648.
[http://dx.doi.org/10.1002/cbdv.201200063] [PMID: 23576350]
[66]
Guimarães, E.T.; Lima, M.S.; Santos, L.A.; Ribeiro, I.M.; Tomassini, T.B.C.; Ribeiro dos Santos, R.; dos Santos, W.L.C.; Soares, M.B.P. Activity of physalins purified from Physalis angulata in in vitro and in vivo models of cutaneous leishmaniasis. J. Antimicrob. Chemother., 2009, 64(1), 84-87.
[http://dx.doi.org/10.1093/jac/dkp170] [PMID: 19454526]
[67]
Pan, L.; Lezama-Davila, C.M.; Isaac-Marquez, A.P.; Calomeni, E.P.; Fuchs, J.R.; Satoskar, A.R.; Kinghorn, A.D. Sterols with antileishmanial activity isolated from the roots of Pentalinon andrieuxii. Phytochemistry, 2012, 82, 128-135.
[http://dx.doi.org/10.1016/j.phytochem.2012.06.012] [PMID: 22840389]
[68]
Clementino, L.C.; Velásquez, A.M.A.; Passalacqua, T.G.; de Almeida, L.; Graminha, M.A.S.; Martins, G.Z.; Salgueiro, L.; Cavaleiro, C.; Sousa, M.C.; Moreira, R.R.D. In vitro activities of glycoalkaloids from the Solanum lycocarpum against Leishmania infantum. Rev. Bras. Farmacogn., 2018, 28(6), 673-677.
[http://dx.doi.org/10.1016/j.bjp.2018.07.008]
[69]
Abdelkrim, Y.Z.; Harigua-Souiai, E.; Barhoumi, M.; Banroques, J.; Blondel, A.; Guizani, I.; Tanner, N.K. The steroid derivative 6-aminocholestanol inhibits the DEAD-box helicase eIF4A (LieIF4A) from the Trypanosomatid parasite Leishmania by perturbing the RNA and ATP binding sites. Mol. Biochem. Parasitol., 2018, 226, 9-19.
[http://dx.doi.org/10.1016/j.molbiopara.2018.10.001] [PMID: 30365976]
[70]
Lima, S.; Pacheco, J.; Marques, A.; Veltri, E.; Almeida-Lafetá, R.; Figueiredo, M.; Kaplan, M.; Torres-Santos, E. Leishmanicidal activity of withanolides from Aureliana fasciculata var. fasciculata. Molecules, 2018, 23(12), 3160.
[http://dx.doi.org/10.3390/molecules23123160] [PMID: 30513673]
[71]
Almeida-Lafetá, R.C.; Ferreira, M.J.P.; Emerenciano, V.P.; Kaplan, M.A.C. Withanolides from Aureliana fasciculata var. fasciculata. Helv. Chim. Acta, 2010, 93(12), 2478-2487.
[http://dx.doi.org/10.1002/hlca.201000126]
[72]
Rezaee, F.; Zolfaghari, B.; Dinani, M.S. Isolation of dioscin-related steroidal saponin from the bulbs of Allium paradoxum L. with leishmanicidal activity. Res. Pharm. Sci., 2018, 13(5), 469-475.
[http://dx.doi.org/10.4103/1735-5362.236875] [PMID: 30271449]
[73]
Majid Shah, S.; Ullah, F.; Ayaz, M.; Sadiq, A.; Hussain, S.; Ali Shah, A.H.; Adnan Ali Shah, S. wadood, A.; Nadhman, A. β-Sitosterol from Ifloga spicata (Forssk.) Sch. Bip. as potential anti-leishmanial agent against leishmania tropica: Docking and molecular insights. Steroids, 2019, 148, 56-62.
[http://dx.doi.org/10.1016/j.steroids.2019.05.001] [PMID: 31085212]
[74]
Pham, G.N.; Kang, D.Y.; Kim, M.J.; Han, S.J.; Lee, J.H.; Na, M. Isolation of sesquiterpenoids and steroids from the soft coral Sinularia brassica and determination of their absolute configuration. Mar. Drugs, 2021, 19(9), 523.
[http://dx.doi.org/10.3390/md19090523] [PMID: 34564185]
[75]
Li, R.; Shao, C.L.; Qi, X.; Li, X.B.; Li, J.; Sun, L.L.; Wang, C.Y. Polyoxygenated sterols from the South China Sea soft coral Sinularia sp. Mar. Drugs, 2012, 10(12), 1422-1432.
[http://dx.doi.org/10.3390/md10071422] [PMID: 22851916]
[76]
Wonkam, A.K.N.; Ngansop, C.A.N.; Tchuenmogne, M.A.T.; Tchegnitegni, B.T.; Bitchagno, G.T.M.; Awantu, A.F.; Bankeu, J.J.K.; Boyom, F.F.; Sewald, N.; Lenta, B.N. Chemical constituents from Baphia leptobotrys Harms (Fabaceae) and their chemophenetic significance. Biochem. Syst. Ecol., 2021, 96, 104260.
[http://dx.doi.org/10.1016/j.bse.2021.104260]
[77]
Aguilera, E.; Perdomo, C.; Espindola, A.; Corvo, I.; Faral-Tello, P.; Robello, C.; Serna, E.; Benítez, F.; Riveros, R.; Torres, S.; Vera de Bilbao, N.I.; Yaluff, G.; Alvarez, G. A nature-inspired design yields a new class of steroids against Trypanosomatids. Molecules, 2019, 24(20), 3800.
[http://dx.doi.org/10.3390/molecules24203800] [PMID: 31652542]
[78]
da Trindade Granato, J.; dos Santos, J.A.; Calixto, S.L.; Prado da Silva, N.; da Silva Martins, J.; da Silva, A.D.; Coimbra, E.S. Novel steroid derivatives: Synthesis, antileishmanial activity, mechanism of action, and in silico physicochemical and pharmacokinetics studies. Biomed. Pharmacother., 2018, 106, 1082-1090.
[http://dx.doi.org/10.1016/j.biopha.2018.07.056] [PMID: 30119174]
[79]
Valerino-Díaz, A.B.; Zanatta, A.C.; Gamiotea-Turro, D.; Candido, A.C.B.B.; Magalhães, L.G.; Vilegas, W.; Santos, L.C.; dos Santos, L.C. An enquiry into antileishmanial activity and quantitative analysis of polyhydroxylated steroidal saponins from Solanum paniculatum L. leaves. J. Pharm. Biomed. Anal., 2020, 191, 113635.
[http://dx.doi.org/10.1016/j.jpba.2020.113635] [PMID: 32998105]
[80]
Halder, A.; Shukla, D.; Das, S.; Roy, P.; Mukherjee, A.; Saha, B. Lactoferrin-modified betulinic acid-loaded PLGA nanoparticles are strong anti-leishmanials. Cytokine, 2018, 110, 412-415.
[http://dx.doi.org/10.1016/j.cyto.2018.05.010] [PMID: 29784509]
[81]
Mehrizi, T.Z.; Ardestani, M.S.; Hoseini, M.H.M.; Khamesipour, A.; Mosaffa, N.; Ramezan, A. Novel nanosized chitosan-betulinic acid against resistant Leishmania major and first clinical observation of such parasite in kidney. Sci. Rep.-UK, 2018, 8, 11759.
[http://dx.doi.org/10.1038/s41598-018-30103-7]
[82]
Machado, V.R.; Sandjo, L.P.; Pinheiro, G.L.; Moraes, M.H.; Steindel, M.; Pizzolatti, M.G.; Biavatti, M.W. Synthesis of lupeol derivatives and their antileishmanial and antitrypanosomal activities. Nat. Prod. Res., 2018, 32(3), 275-281.
[http://dx.doi.org/10.1080/14786419.2017.1353982] [PMID: 28715940]
[83]
Bilbao-Ramos, P.; Serrano, D.R.; Ruiz Saldaña, H.K.; Torrado, J.J.; Bolás-Fernández, F.; Dea-Ayuela, M.A. Evaluating the potential of ursolic acid as bioproduct for cutaneous and visceral Leishmaniasis. Molecules, 2020, 25(6), 1394.
[http://dx.doi.org/10.3390/molecules25061394] [PMID: 32204358]
[84]
Greve, H.L.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Boswellic acids show in vitro activity against Leishmania donovani. Molecules, 2021, 26(12), 3651.
[http://dx.doi.org/10.3390/molecules26123651] [PMID: 34203815]
[85]
Bouzeko, I.L.T.; Dongmo, F.L.M.; Ndontsa, B.L.; Ngansop, C.A.N.; Keumoe, R.; Bitchagno, G.T.M.; Jouda, J.B.; Mbouangouere, R.; Tchegnitegni, B.T.; Boyom, F.F.; Sewald, N.; Lenta, B.N.; Tane, P.; Ngouela, S.A.; Tene, M. Chemical constituents of Mussaenda erythrophylla Schumach. & Thonn. (Rubiaceae) and their chemophenetic significance. Biochem. Syst. Ecol., 2021, 98, 104329.
[http://dx.doi.org/10.1016/j.bse.2021.104329]
[86]
Garba Koffi, J.; Keumoe, R.; Ngansop, C.A.N.; Kagho, D.U.K.; Tchegnitegni, B.T.; Fotsing, Y.S.F.; Bankeu, J.J.K.; Boyom, F.F.; Sewald, N.; Lenta, B.N. Constituents of Endodesmia calophylloides Benth. and Adenia lobata (Jacq.) Engl. with antileihsmanial activities. Chem. Data Collect., 2021, 35, 100751.
[http://dx.doi.org/10.1016/j.cdc.2021.100751]
[87]
López-Huerta, F.A.; Nieto-Camacho, A.; Morales-Flores, F.; Hernández-Ortega, S.; Chávez, M.I.; Méndez Cuesta, C.A.; Martínez, I.; Espinoza, B.; Espinosa-García, F.J.; Delgado, G. Hopane-type triterpenes from Cnidoscolus spinosus and their bioactivities. Bioorg. Chem., 2020, 100, 103919.
[http://dx.doi.org/10.1016/j.bioorg.2020.103919] [PMID: 32417524]
[88]
Khattab, R.A.; Elbandy, M.; Lawrence, A.; Paget, T.; Rae-Rho, J.; Binnaser, Y.S.; Ali, I. Extraction, identification and biological activities of saponins in sea cucumber Pearsonothuria graeffei. Comb. Chem. High Throughput Screen., 2018, 21(3), 222-231.
[http://dx.doi.org/10.2174/1386207321666180212165448] [PMID: 29437000]
[89]
Kitagawa, I.; Nishino, T.; Kyogoku, Y. Structure of holothurin A a biologically active triterpene-oligoglycoside from the sea cucumber Holothuria leucospilota brandt. Tetrahedron Lett., 1979, 20(16), 1419-1422.
[http://dx.doi.org/10.1016/S0040-4039(01)86166-9]
[90]
Kitagawa, I.; Kobayashi, M.; Inamoto, T.; Fuchida, M.; Kyogoku, Y. Marine natural products. XIV. Structures of echinosides A and B, antifungal lanostane-oligosides from the sea cucumber Actinopyga echinites (Jaeger). Chem. Pharm. Bull., 1985, 33(12), 5214-5224.
[http://dx.doi.org/10.1248/cpb.33.5214] [PMID: 3833380]
[91]
Bailen, M.; Martínez-Díaz, R.A.; Hoffmann, J.J.; Gonzalez-Coloma, A. Molecular diversity from arid-land plants: Valorization of terpenes and biotransformation products. Chem. Biodivers., 2020, 17(3), e1900663.
[http://dx.doi.org/10.1002/cbdv.201900663] [PMID: 31943724]
[92]
Maatooq, G.T. Microbiological and chemical transformations of argentatin B. Z. Naturforsch. C J. Biosci., 2003, 58(3-4), 249-255.
[http://dx.doi.org/10.1515/znc-2003-3-419] [PMID: 12710737]
[93]
Steverding, D.; Sidjui, L.S.; Ferreira, É.R.; Ngameni, B.; Folefoc, G.N.; Mahiou-Leddet, V.; Ollivier, E.; Stephenson, G.R.; Storr, T.E.; Tyler, K.M. Trypanocidal and leishmanicidal activity of six limonoids. J. Nat. Med., 2020, 74(3), 606-611.
[http://dx.doi.org/10.1007/s11418-020-01408-7] [PMID: 32277328]
[94]
Leaver, D. Synthesis and biological activity of sterol 14α-demethylase and sterol C24-methyltransferase inhibitors. Molecules, 2018, 23(7), 1753.
[http://dx.doi.org/10.3390/molecules23071753] [PMID: 30018257]
[95]
Fredo Naciuk, F.; do Nascimento Faria, J.; Gonçalves Eufrásio, A.; Torres Cordeiro, A.; Bruder, M. Development of selective steroid inhibitors for the glucose-6-phosphate dehydrogenase from Trypanosoma cruzi. ACS Med. Chem. Lett., 2020, 11(6), 1250-1256.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00106] [PMID: 32551008]
[96]
Rodriguez, C.; Ibáñez, R.; Mojica, L.; Ng, M.; Spadafora, C.; Durant-Archibold, A.A.; Gutiérrez, M. Bufadienolides from the skin secretions of the neotropical toad Rhinella alata (Anura: Bufonidae): Antiprotozoal Activity against Trypanosoma cruzi. Molecules, 2021, 26(14), 4217.
[http://dx.doi.org/10.3390/molecules26144217] [PMID: 34299492]
[97]
Domínguez-Díaz, L.R.; Eugenia Ochoa, M.; Soto-Castro, D.; Farfán, N.; Morales-Chamorro, M.; Yépez-Mulia, L.; Pérez-Campos, E.; Santillan, R.; Moreno-Rodríguez, A. In vitro, ex vivo and in vivo short-term screening of DHEA nitrate derivatives activity over Trypanosoma cruzi Ninoa and TH strains from Oaxaca State, México. Bioorg. Med. Chem., 2021, 48, 116417.
[http://dx.doi.org/10.1016/j.bmc.2021.116417] [PMID: 34571489]
[98]
Nnadi, C.O.; Nwodo Ngozi, J.; Brun, R.; Kaiser, M.; Schmidt, T.J. Antitrypanosomal alkaloids from Holarrhena africana. Planta Med., 2016, 81(S 01), S1-S381.
[http://dx.doi.org/10.1055/s-0036-1596866]
[99]
Nnadi, C.O.; Nwodo, N.J.; Kaiser, M.; Brun, R.; Schmidt, T.J. Steroid alkaloids from Holarrhena africana with strong activity against Trypanosoma brucei rhodesiense. Molecules, 2017, 22(7), 1129.
[http://dx.doi.org/10.3390/molecules22071129] [PMID: 28684718]
[100]
Nnadi, C.; Althaus, J.; Nwodo, N.; Schmidt, T. A 3D-QSAR study on the antitrypanosomal and cytotoxic activities of steroid alkaloids by comparative molecular field analysis. Molecules, 2018, 23(5), 1113.
[http://dx.doi.org/10.3390/molecules23051113] [PMID: 29738470]
[101]
Nnadi, C.; Ebiloma, G.; Black, J.; Nwodo, N.; Lemgruber, L.; Schmidt, T.; de Koning, H. Potent antitrypanosomal activities of 3-aminosteroids against African trypanosomes: investigation of cellular effects and of cross-resistance with existing drugs. Molecules, 2019, 24(2), 268.
[http://dx.doi.org/10.3390/molecules24020268] [PMID: 30642032]
[102]
Umeyama, A. Ohta, C.; Shino, Y.; Okada, M.; Nakamura, Y.; Hamagaki, T.; Imagawa, H.; Tanaka, M.; Ishiyama, A.; Iwatsuki, M.; Otoguro, K.; Ōmura, S.; Hashimoto, T. Three lanostane triterpenoids with antitrypanosomal activity from the fruiting body of Hexagonia tenuis. Tetrahedron, 2014, 70(44), 8312-8315.
[http://dx.doi.org/10.1016/j.tet.2014.09.013]
[103]
Naranmandakh, S.; Murata, T.; Odonbayar, B.; Suganuma, K.; Batkhuu, J.; Sasaki, K. Lanostane triterpenoids from Fomitopsis officinalis and their trypanocidal activity. J. Nat. Med., 2018, 72(2), 523-529.
[http://dx.doi.org/10.1007/s11418-018-1182-1] [PMID: 29417466]
[104]
Carothers, S.; Nyamwihura, R.; Collins, J.; Zhang, H.; Park, H.; Setzer, W.; Ogungbe, I. Bauerenol acetate, the pentacyclic triterpenoid from Tabernaemontana longipes, is an antitrypanosomal agent. Molecules, 2018, 23(2), 355.
[http://dx.doi.org/10.3390/molecules23020355] [PMID: 29419735]
[105]
Osman, A.G.; Ali, Z.; Fantoukh, O.; Raman, V.; Kamdem, R.S.T.; Khan, I. Glycosides of ursane-type triterpenoid, benzophenone, and iridoid from Vangueria agrestis (Fadogia agrestis) and their anti-infective activities. Nat. Prod. Res., 2020, 34(5), 683-691.
[http://dx.doi.org/10.1080/14786419.2018.1497031] [PMID: 30325205]
[106]
Ma, B.; Xi, Z.; Li, J.; Gao, T.; Liao, R.; Wang, S.; Li, X.; Tang, Y.; Wang, Z.; Hou, S.; Jiang, J.; Deng, M.; Duan, Z.; Tang, X.; Jiang, L. Vasodilator and hypotensive effects of the spider peptide Lycosin-I in vitro and in vivo. Peptides, 2018, 99, 108-114.
[http://dx.doi.org/10.1016/j.peptides.2017.12.011] [PMID: 29248696]
[107]
Hou, S.; Liu, Y.; Tang, Y.; Wu, M.; Guan, J.; Li, X.; Wang, Z.; Jiang, J.; Deng, M.; Duan, Z.; Tang, X.; Han, X.; Jiang, L. Anti-Toxoplasma gondii effect of two spider venoms in vitro and in vivo. Toxicon, 2019, 166, 9-14.
[http://dx.doi.org/10.1016/j.toxicon.2019.05.003]
[108]
Gazzonis, A.L.; Zanzani, S.A.; Villa, L.; Manfredi, M.T. Toxoplasma gondii in naturally infected goats: Monitoring of specific IgG levels in serum and milk during lactation and parasitic DNA detection in milk. Prev. Vet. Med., 2019, 170, 104738.
[http://dx.doi.org/10.1016/j.prevetmed.2019.104738] [PMID: 31421505]
[109]
Kashyap, D.; Tuli, H.S.; Sharma, A.K. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci., 2016, 146, 201-213.
[http://dx.doi.org/10.1016/j.lfs.2016.01.017] [PMID: 26775565]
[110]
a) Choi, W.; Lee, I. Evaluation of anti-Toxoplasma gondii effect of ursolic acid as a novel toxoplasmosis inhibitor. Pharmaceuticals, 2018, 11(2), 43.
[http://dx.doi.org/10.3390/ph11020043] [PMID: 29747388];
b) Deng, Y.; Wu, T.; Zhai, S.Q.; Li, C.H. Recent progress on anti-toxoplasma drugs discovery: Design, synthesis and screening. Eur. J. Med. Chem., 2019, 183, 111711.
[http://dx.doi.org/10.1016/j.ejmech.2019.111711] [PMID: 31585276]
[111]
Luan, T.; Jin, C.; Jin, C.M.; Gong, G.H.; Quan, Z.S. Synthesis and biological evaluation of ursolic acid derivatives bearing triazole moieties as potential anti-Toxoplasma gondii agents. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 761-772.
[http://dx.doi.org/10.1080/14756366.2019.1584622] [PMID: 30836795]
[112]
Zhang, L.H.; Jin, L.L.; Liu, F.; Jin, C.; Jin, C.M.; Wei, Z.Y. Evaluation of ursolic acid derivatives with potential anti-Toxoplasma gondii activity. Exp. Parasitol., 2020, 216, 107935.
[http://dx.doi.org/10.1016/j.exppara.2020.107935] [PMID: 32569599]
[113]
Endo, M.; Shigetomi, K.; Mitsuhashi, S.; Igarashi, M.; Ubukata, M. Isolation, structure determination and structure–activity relationship of anti-toxoplasma triterpenoids from Quercus crispula Blume outer bark. J. Wood Sci., 2019, 65(1), 3.
[http://dx.doi.org/10.1186/s10086-019-1782-8]
[114]
Whiteland, H.L.; Chakroborty, A.; Forde-Thomas, J.E.; Crusco, A.; Cookson, A.; Hollinshead, J.; Fenn, C.A.; Bartholomew, B.; Holdsworth, P.A.; Fisher, M.; Nash, R.J.; Hoffmann, K.F. An abies procera-derived tetracyclic triterpene containing a steroid-like nucleus core and a lactone side chain attenuates in vitro survival of both Fasciola hepatica and Schistosoma mansoni. Int. J. Parasitol. Drugs Drug Resist., 2018, 8(3), 465-474.
[http://dx.doi.org/10.1016/j.ijpddr.2018.10.009] [PMID: 30399512]
[115]
Korolev, K.G.; Lomovskii, O.I.; Rozhanskaya, O.A.; Vasil’ev, V.G. Mechanochemical preparation of water-soluble forms of triterpene acids. Chem. Nat. Compd., 2003, 39(4), 366-372.
[http://dx.doi.org/10.1023/B:CONC.0000003418.28517.f6]
[116]
Keiser, J.; Koch, V.; Deckers, A.; Cheung, H.T.A.; Jung, N.; Bräse, S. Naturally occurring cardenolides affecting Schistosoma mansoni. ACS Infect. Dis., 2020, 6(7), 1922-1927.
[http://dx.doi.org/10.1021/acsinfecdis.0c00175] [PMID: 32364372]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy