Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

A Review: Exploring Synthetic Schemes and Structure-activity Relationship (SAR) Studies of Mono-carbonyl Curcumin Analogues for Cytotoxicity Inhibitory Anticancer Activity

Author(s): Shashikant Vasantarao Bhandari*, Pranali Kuthe, Shital Manoj Patil, Om Nagras and Aniket Pardip Sarkate

Volume 20, Issue 8, 2023

Published on: 31 March, 2023

Page: [821 - 837] Pages: 17

DOI: 10.2174/1570179420666230126142238

Price: $65

conference banner
Abstract

Introduction: Cancer is the major cause of death globally. Cancer can be treated with naturally occurring Curcumin nuclei. Curcumin has a wide range of biological actions, including anti-inflammatory and anti-cancer properties. Even though it is an effective medicinal entity, it has some limitations such as instability at physiological pH and a weak pharmacokinetic profile due to the β-diketone moiety present in it. To overcome this drawback, research was carried out on monoketone moieties in curcumin, popularly known as mono-carbonyl curcumin.

Objective: The present review focuses on different synthetic schemes and Mono-carbonyl curcumin derivative's Structure-Activity Relationship (SAR) as a cytotoxic inhibitory anticancer agent. The various synthetic schemes published by researchers were compiled.

Methods: Findings of different researchers working on mono-carbonyl curcumin as an anticancer have been reviewed, analyzed and the outcomes were summarized.

Results: The combination of all of these approaches serves as a one-stop solution for mono-carbonyl curcumin synthesis. The important groups on different positions of mono-carbonyl curcumin were discovered by a SAR study focused on cytotoxicity, which could be useful in the designing of its derivatives.

Conclusion: Based on our examination of the literature, we believe that this review will help researchers design and develop powerful mono-carbonyl curcumin derivatives that can be proven essential for anticancer activity.

Next »
Graphical Abstract

[1]
Cancer, 2013. Available from: Cancer (who.int) [accessed on 21/03/2022].
[2]
Azizmohammadi, M.; Khoobi, M.; Ramazani, A.; Emami, S.; Zarrin, A.; Firuzi, O.; Miri, R.; Shafiee, A. 2H-chromene derivatives bearing thiazolidine-2,4-dione, rhodanine or hydantoin moieties as potential anticancer agents. EJMC, 2013, 59, 15-22.
[PMID: 23202485]
[3]
De Greef, D.; Barton, E.M.; Sandberg, E.N.; Croley, C.R.; Pumarol, J.; Wong, T.L.; Das, N.; Bishayee, A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin. Cancer Biol., 2021, 73, 219-264.
[http://dx.doi.org/10.1016/j.semcancer.2020.11.020] [PMID: 33301861]
[4]
Miller, S.C. Echinacea: a miracle herb against aging and cancer? Evidence in vivo in mice. Evid. Based Complement. Alternat. Med., 2005, 2(3), 309-314.
[http://dx.doi.org/10.1093/ecam/neh118] [PMID: 16136209]
[5]
Schaffer, M.; Schaffer, P.M.; Zidan, J.; Sela, G.B. Curcuma as a functional food in the control of cancer and inflammation. Curr. Opin. Clin. Nutr. Metab. Care, 2011, 14(6), 588-597.
[http://dx.doi.org/10.1097/MCO.0b013e32834bfe94] [PMID: 21986478]
[6]
Han, Y.H.; Mun, J.G.; Jeon, H.D.; Yoon, D.H.; Choi, B.M.; Kee, J.Y.; Hong, S.H. The extract of Arctium lappa L. Fruit (Arctii Fructus) improves cancer-induced cachexia by inhibiting weight loss of skeletal muscle and adipose tissue. Nutrients, 2020, 12(10), 3195.
[http://dx.doi.org/10.3390/nu12103195] [PMID: 33086629]
[7]
Liu, J.; Xing, J.; Fei, Y. Green tea (Camellia sinensis) and cancer prevention: a systematic review of randomized trials and epidemiological studies. Chin. Med., 2008, 3(1), 12.
[http://dx.doi.org/10.1186/1749-8546-3-12] [PMID: 18940008]
[8]
Yennurajalingam, S.; Reddy, A.; Tannir, N.M.; Chisholm, G.B.; Lee, R.T.; Lopez, G.; Escalante, C.P.; Manzullo, E.F.; Frisbee Hume, S.; Williams, J.L.; Cohen, L.; Bruera, E. High-dose asian ginseng (panax ginseng) for cancer-related fatigue. Integr. Cancer Ther., 2015, 14(5), 419-427.
[http://dx.doi.org/10.1177/1534735415580676] [PMID: 25873296]
[9]
Palliyaguru, D.L.; Singh, S.V.; Kensler, T.W. Withania somnifera: From prevention to treatment of cancer. Mol. Nutr. Food Res., 2016, 60(6), 1342-1353.
[http://dx.doi.org/10.1002/mnfr.201500756] [PMID: 26718910]
[10]
Chan, L.L.; George, S.; Ahmad, I.; Gosangari, S.L.; Abbasi, A.; Cunningham, B.T.; Watkin, K.L. Cytotoxicity Effects of Amoora rohituka and chittagongaon Breast and pancreatic cancer cells. Evid. -. Based Complement. Altern. Med., 2011, 2011, 1-8.
[11]
Mohanakumara, P.; Sreejayan, N.; Priti, V.; Ramesha, B.T.; Ravikanth, G.; Ganeshaiah, K.N.; Vasudeva, R.; Mohan, J.; Santhoshkumar, T.R.; Mishra, P.D.; Ram, V.; Shaanker, R.U. Dysoxylum binectariferum Hook.f (Meliaceae), a rich source of rohitukine. Fitoterapia, 2010, 81(2), 145-148.
[http://dx.doi.org/10.1016/j.fitote.2009.08.010] [PMID: 19686817]
[12]
Déziel, B.; MacPhee, J.; Patel, K.; Catalli, A.; Kulka, M.; Neto, C.; Gottschall-Pass, K.; Hurta, R. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators. Food Funct., 2012, 3(5), 556-564.
[http://dx.doi.org/10.1039/c2fo10145a] [PMID: 22388548]
[13]
Shareef, M.; Ashraf, M.A.; Sarfraz, M. Natural cures for breast cancer treatment. Saudi Pharm. J., 2016, 24(3), 233-240.
[http://dx.doi.org/10.1016/j.jsps.2016.04.018] [PMID: 27275107]
[14]
Zhu, T.; Chen, Z.; Chen, G.; Wang, D.; Tang, S.; Deng, H.; Li, C. Curcumin attenuates asthmatic airway inflammation and mucus hypersecretion involving a PPARγ-dependent NF-κB signalling pathway in vivo and in vitro; Mediat. Inflamm, 2019, pp. 1-15.
[15]
Kurup, V.P.; Barrios, C.S. Immunomodulatory effects of curcumin in allergy. Mol. Nutr. Food Res., 2008, 52(9), 1031-1039.
[http://dx.doi.org/10.1002/mnfr.200700293] [PMID: 18398870]
[16]
Gupta, H.; Gupta, M.; Bhargava, S. Potential use of turmeric in COVID-19. Clin. Exp. Dermatol., 2020, 45(7), 902-903.
[http://dx.doi.org/10.1111/ced.14357] [PMID: 32608046]
[17]
Vera-Ramirez, L.; Pérez-Lopez, P.; Varela-Lopez, A.; Ramirez-Tortosa, M.C.; Battino, M.; Quiles, J.L. Curcumin and liver disease. Biofactors, 2013, 39(1), 88-100.
[http://dx.doi.org/10.1002/biof.1057] [PMID: 23303639]
[18]
Jennings, M.R.; Parks, R.J. Curcumin as an antiviral agent. Viruses, 2020, 12(11), 1242.
[http://dx.doi.org/10.3390/v12111242] [PMID: 33142686]
[19]
Martins, C.V.B.; da Silva, D.L.; Neres, A.T.M.; Magalhães, T.F.F.; Watanabe, G.A.; Modolo, L.V.; Sabino, A.A.; de Fátima, A.; de Resende, M.A. Curcumin as a promising antifungal of clinical interest. J. Antimicrob. Chemother., 2008, 63(2), 337-339.
[http://dx.doi.org/10.1093/jac/dkn488] [PMID: 19038979]
[20]
Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des. Devel. Ther., 2021, 15, 4503-4525.
[http://dx.doi.org/10.2147/DDDT.S327378] [PMID: 34754179]
[21]
Venkatesan, N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br. J. Pharmacol., 1998, 124(3), 425-427.
[http://dx.doi.org/10.1038/sj.bjp.0701877] [PMID: 9647462]
[22]
Srivastava, R.; Dikshit, M.; Srimal, R.C.; Dhawan, B.N. Anti-thrombotic effect of curcumin. Thromb. Res., 1985, 40(3), 413-417.
[http://dx.doi.org/10.1016/0049-3848(85)90276-2] [PMID: 4082116]
[23]
Deodhar, S.D.; Sethi, R.; Srimal, R.C. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J. Med. Res., 1980, 71, 632-634.
[PMID: 7390600]
[24]
Sun, Y.; Dai, M.; Wang, Y.; Wang, W.; Sun, Q.; Yang, G.Y.; Bian, L. Neuroprotection and sensorimotor functional improvement by curcumin after intracerebral hemorrhage in mice. J. Neurotrauma, 2011, 28(12), 2513-2521.
[http://dx.doi.org/10.1089/neu.2011.1958] [PMID: 21770745]
[25]
Chen, A.; Xu, J.; Johnson, A.C. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene, 2006, 25(2), 278-287.
[http://dx.doi.org/10.1038/sj.onc.1209019] [PMID: 16170359]
[26]
Chen, J.; Tang, X.Q.; Zhi, J.L.; Cui, Y.; Yu, H.M.; Tang, E.H.; Sun, S.N.; Feng, J.Q.; Chen, P.X. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis, 2006, 11(6), 943-953.
[http://dx.doi.org/10.1007/s10495-006-6715-5] [PMID: 16547587]
[27]
Divya, C.S.; Pillai, M.R. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol. Carcinog., 2006, 45(5), 320-332.
[http://dx.doi.org/10.1002/mc.20170] [PMID: 16526022]
[28]
Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer, 2011, 10(1), 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[29]
Wang, Y.J.; Pan, M.H.; Cheng, A.L.; Lin, L.I.; Ho, Y.S.; Hsieh, C.Y.; Lin, J.K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal., 1997, 15(12), 1867-1876.
[http://dx.doi.org/10.1016/S0731-7085(96)02024-9] [PMID: 9278892]
[30]
Lee, W.H.; Loo, C.Y.; Bebawy, M.; Luk, F.; Mason, R.; Rohanizadeh, R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol., 2013, 11(4), 338-378.
[http://dx.doi.org/10.2174/1570159X11311040002] [PMID: 24381528]
[31]
Boyanapalli, S.S.S.; Kong, A.N.T. “Curcumin, the King of Spices”: Epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr. Pharmacol. Rep., 2015, 1(2), 129-139.
[http://dx.doi.org/10.1007/s40495-015-0018-x] [PMID: 26457241]
[32]
Ramasamy, T.S.; Ayob, A.Z.; Myint, H.H.L.; Thiagarajah, S.; Amini, F. Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy. Cancer Cell Int., 2015, 15(1), 96.
[http://dx.doi.org/10.1186/s12935-015-0241-x] [PMID: 26457069]
[33]
Giri, R.K.; Rajagopal, V.; Kalra, V.K. Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. J. Neurochem., 2004, 91(5), 1199-1210.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02800.x] [PMID: 15569263]
[34]
Srivastava, R.K.; Chen, Q.; Siddiqui, I.; Sarva, K.; Shankar, S. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21(/WAF1/CIP1). Cell Cycle, 2007, 6(23), 2953-2961.
[http://dx.doi.org/10.4161/cc.6.23.4951] [PMID: 18156803]
[35]
Liu, H.T.; Ho, Y.S. Anticancer effect of curcumin on breast cancer and stem cells. Food Sci. Hum. Wellness, 2018, 7(2), 134-137.
[http://dx.doi.org/10.1016/j.fshw.2018.06.001]
[36]
Wang, J.; Qi, L.; Zheng, S.; Wu, T. Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells. J. Zhejiang Univ. Sci. B, 2009, 10(2), 93-102.
[http://dx.doi.org/10.1631/jzus.B0820238] [PMID: 19235267]
[37]
Walker, C.; Mojares, E.; del Río Hernández, A. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci., 2018, 19(10), 3028.
[http://dx.doi.org/10.3390/ijms19103028] [PMID: 30287763]
[38]
Gali-Muhtasib, H.; Hmadi, R.; Kareh, M.; Tohme, R.; Darwiche, N. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis. Apoptosis, 2015, 20(12), 1531-1562.
[http://dx.doi.org/10.1007/s10495-015-1169-2] [PMID: 26362468]
[39]
Hackler, L., Jr; Ózsvári, B.; Gyuris, M.; Sipos, P.; Fábián, G.; Molnár, E.; Marton, A.; Faragó, N.; Mihály, J.; Nagy, L.I.; Szénási, T.; Diron, A.; Párducz, Á.; Kanizsai, I.; Puskás, L.G. The curcumin analog C-150, influencing NF-κB, UPR and Akt/notch pathways has potent anticancer activity In Vitro and In Vivo. PLoS One, 2016, 11(3), e0149832.
[http://dx.doi.org/10.1371/journal.pone.0149832] [PMID: 26943907]
[40]
Grynkiewicz, G. Ślifirski, P. Curcumin and curcuminoids in quest for medicinal status. Acta Biochim. Pol., 2012, 59(2), 201-212.
[http://dx.doi.org/10.18388/abp.2012_2139] [PMID: 22590694]
[41]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398.
[PMID: 12680238]
[42]
Sun, Y.S.; Zhao, Z.; Yang, Z.N.; Xu, F.; Lu, H.J.; Zhu, Z.Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci., 2017, 13(11), 1387-1397.
[http://dx.doi.org/10.7150/ijbs.21635] [PMID: 29209143]
[43]
Ravindranath, V.; Chandrasekhara, N. In vitro studies on the intestinal absorption of curcumin in rats. Toxicology, 1981, 20(2-3), 251-257.
[http://dx.doi.org/10.1016/0300-483X(81)90056-1] [PMID: 7256789]
[44]
Ireson, C.R.; Jones, D.J.; Orr, S.; Coughtrie, M.W.; Boocock, D.J.; Williams, M.L.; Farmer, P.B.; Steward, W.P.; Gescher, A.J. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol. Biomarkers Prev., 2002, 11(1), 105-111.
[PMID: 11815407]
[45]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[46]
Stohs, S.J.; Chen, O.; Ray, S.D.; Ji, J.; Bucci, L.R.; Preuss, H.G. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: a review. Molecules, 2020, 25(6), 1397.
[http://dx.doi.org/10.3390/molecules25061397] [PMID: 32204372]
[47]
Tomren, M.A.; Másson, M.; Loftsson, T.; Tønnesen, H.H. Studies on curcumin and curcuminoids. Int. J. Pharm., 2007, 338(1-2), 27-34.
[http://dx.doi.org/10.1016/j.ijpharm.2007.01.013] [PMID: 17298869]
[48]
Zam, W. Gut microbiota as a prospective therapeutic target for curcumin: a review of mutual influence. J. Nutr. Metab., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/1367984] [PMID: 30647970]
[49]
Di Meo, F.; Margarucci, S.; Galderisi, U.; Crispi, S.; Peluso, G. Curcumin, gut microbiota, and neuroprotection. Nutrients, 2019, 11(10), 2426.
[http://dx.doi.org/10.3390/nu11102426] [PMID: 31614630]
[50]
Straganz, G.D.; Glieder, A.; Brecker, L.; Ribbons, D.W.; Steiner, W. Acetylacetone-cleaving enzyme Dke1: a novel C-C-bond-cleaving enzyme from Acinetobacter johnsonii. Biochem. J., 2003, 369(3), 573-581.
[http://dx.doi.org/10.1042/bj20021047] [PMID: 12379146]
[51]
Robinson, T.P.; Hubbard, R.B., IV; Ehlers, T.J.; Arbiser, J.L.; Goldsmith, D.J.; Bowen, J.P. Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorg. Med. Chem., 2005, 13(12), 4007-4013.
[http://dx.doi.org/10.1016/j.bmc.2005.03.054] [PMID: 15911313]
[52]
Ohtsu, H.; Xiao, Z.; Ishida, J.; Nagai, M.; Wang, H.K.; Itokawa, H.; Su, C.Y.; Shih, C.; Chiang, T.; Chang, E.; Lee, Y.; Tsai, M.Y.; Chang, C.; Lee, K.H. Antitumor agents. 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents. J. Med. Chem., 2002, 45(23), 5037-5042.
[http://dx.doi.org/10.1021/jm020200g] [PMID: 12408714]
[53]
Shetty, D.; Kim, Y.; Shim, H.; Snyder, J. Eliminating the heart from the curcumin molecule: monocarbonyl curcumin mimics (MACs). Molecules, 2014, 20(1), 249-292.
[http://dx.doi.org/10.3390/molecules20010249] [PMID: 25547726]
[54]
Chen, L.; Magesh, S.; Wang, H.; Yang, C.S.; Kong, A.N.T.; Hu, L. Design and synthesis of novel iminothiazinylbutadienols and divinylpyrimidinethiones as ARE inducers. Bioorg. Med. Chem. Lett., 2014, 24(3), 940-943.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.072] [PMID: 24398297]
[55]
Brown, F.C.; Jones, R.S.; Kent, M. The aldol condensation with 2, 3-diphenyl-4-thiazolidinone. Can. J. Chem., 1963, 41(4), 817-820.
[http://dx.doi.org/10.1139/v63-117]
[56]
Liang, G.; Yang, S.; Jiang, L.; Zhao, Y.; Shao, L.; Xiao, J.; Ye, F.; Li, Y.; Li, X. Synthesis and anti-bacterial properties of mono-carbonyl analogues of curcumin. Chem. Pharm. Bull., 2008, 56(2), 162-167.
[http://dx.doi.org/10.1248/cpb.56.162] [PMID: 18239300]
[57]
Qiu, C.; Hu, Y.; Wu, K.; Yang, K.; Wang, N.; Ma, Y.; Zhu, H.; Zhang, Y.; Zhou, Y.; Chen, C.; Li, S.; Fu, L.; Zhang, X.; Liu, Z. Synthesis and biological evaluation of allylated mono-carbonyl analogues of curcumin (MACs) as anti-cancer agents for cholangiocarcinoma. Bioorg. Med. Chem. Lett., 2016, 26(24), 5971-5976.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.080] [PMID: 27825763]
[58]
Subhedar, D.D.; Shaikh, M.H.; Nawale, L.; Sarkar, D.; Khedkar, V.M.; Shingate, B.B. Quinolidene based monocarbonyl curcumin analogues as promising antimycobacterial agents: Synthesis and molecular docking study. Bioorg. Med. Chem. Lett., 2017, 27(4), 922-928.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.004] [PMID: 28110868]
[59]
Zhu, H.; Xu, T.; Qiu, C.; Wu, B.; Zhang, Y.; Chen, L.; Xia, Q.; Li, C.; Zhou, B.; Liu, Z.; Liang, G. Synthesis and optimization of novel allylated mono-carbonyl analogs of curcumin (MACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI) in rats. Eur. J. Med. Chem., 2016, 121, 181-193.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.041] [PMID: 27240273]
[60]
Feng, J.; Xiao, B.; Chen, W.; Ding, T.; Chen, L.; Yu, P.; Xu, F.; Zhang, H.; Liu, Z.; Liang, G. Synthesis and anti-inflammatory evaluation of novel C66 analogs for the treatment of LPS-induced acute lung injury. Chem. Biol. Drug Des., 2015, 86(4), 753-763.
[http://dx.doi.org/10.1111/cbdd.12548] [PMID: 25727339]
[61]
Mohd Aluwi, M.F.F.; Rullah, K.; Yamin, B.M.; Leong, S.W.; Abdul Bahari, M.N.; Lim, S.J.; Mohd Faudzi, S.M.; Jalil, J.; Abas, F.; Mohd Fauzi, N.; Ismail, N.H.; Jantan, I.; Lam, K.W. Synthesis of unsymmetrical monocarbonyl curcumin analogues with potent inhibition on prostaglandin E2 production in LPS-induced murine and human macrophages cell lines. Bioorg. Med. Chem. Lett., 2016, 26(10), 2531-2538.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.092] [PMID: 27040659]
[62]
Xu, Y.Y.; Cao, Y.; Ma, H.; Li, H.Q.; Ao, G.Z. Design, synthesis and molecular docking of αβ-unsaturated cyclohexanone analogous of curcumin as potent EGFR inhibitors with antiproliferative activity. Bioorg. Med. Chem., 2013, 21(2), 388-394.
[http://dx.doi.org/10.1016/j.bmc.2012.11.031] [PMID: 23245570]
[63]
Li, Q.; Chen, J.; Luo, S.; Xu, J.; Huang, Q.; Liu, T. Synthesis and assessment of the antioxidant and antitumor properties of asymmetric curcumin analogues. Eur. J. Med. Chem., 2015, 93, 461-469.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.005] [PMID: 25728027]
[64]
Nagargoje, A.A.; Akolkar, S.V.; Siddiqui, M.M.; Bagade, A.V.; Kodam, K.M.; Sangshetti, J.N.; Damale, M.G.; Shingate, B.B. Synthesis and evaluation of pyrazole-incorporated monocarbonyl curcumin analogues as antiproliferative and antioxidant agents. J. Chin. Chem. Soc. (Taipei), 2019, 66(12), 1658-1665.
[http://dx.doi.org/10.1002/jccs.201800405]
[65]
Khor, P.Y.; Mohd Aluwi, M.F.F.; Rullah, K.; Lam, K.W. Insights on the synthesis of asymmetric curcumin derivatives and their biological activities. Eur. J. Med. Chem., 2019, 183, 111704.
[http://dx.doi.org/10.1016/j.ejmech.2019.111704] [PMID: 31557608]
[66]
Liu, Z.; Sun, Y.; Ren, L.; Huang, Y.; Cai, Y.; Weng, Q.; Shen, X.; Li, X.; Liang, G.; Wang, Y. Evaluation of a curcumin analog as an anti-cancer agent inducing ER stress-mediated apoptosis in non-small cell lung cancer cells. BMC Cancer, 2013, 13(1), 494.
[http://dx.doi.org/10.1186/1471-2407-13-494] [PMID: 24156374]
[67]
Min, Z.; Zhu, Y.; Hong, X.; Yu, Z.; Ye, M.; Yuan, Q.; Hu, X. Synthesis and biological evaluations of monocarbonyl curcumin inspired pyrazole analogues as potential anti-colon cancer agent. Drug Des. Devel. Ther., 2020, 14, 2517-2534.
[http://dx.doi.org/10.2147/DDDT.S244865] [PMID: 32636614]
[68]
Luo, C.; Li, Y.; Zhou, B.; Yang, L.; Li, H.; Feng, Z.; Li, Y.; Long, J.; Liu, J. A monocarbonyl analogue of curcumin, 1,5-bis(3-hydroxyphenyl)-1,4-pentadiene-3-one (Ca 37), exhibits potent growth suppressive activity and enhances the inhibitory effect of curcumin on human prostate cancer cells. Apoptosis, 2014, 19(3), 542-553.
[http://dx.doi.org/10.1007/s10495-013-0947-y] [PMID: 24297639]
[69]
Mandalapu, D.; Singh, D.K.; Gupta, S.; Balaramnavar, V.M.; Shafiq, M.; Banerjee, D.; Sharma, V.L. Discovery of monocarbonyl curcumin hybrids as a novel class of human DNA ligase I inhibitors: in silico design, synthesis and biology. RSC Advances, 2016, 6(31), 26003-26018.
[http://dx.doi.org/10.1039/C5RA25853G]
[70]
Rajamanickam, V.; Zhu, H.; Feng, C.; Chen, X.; Zheng, H.; Xu, X.; Zhang, Q.; Zou, P.; He, G.; Dai, X.; Yang, X.; Wang, Y.; Liu, Z.; Liang, G.; Guo, G. Novel allylated monocarbonyl analogs of curcumin induce mitotic arrest and apoptosis by reactive oxygen species-mediated endoplasmic reticulum stress and inhibition of STAT3. Oncotarget, 2017, 8(60), 101112-101129.
[http://dx.doi.org/10.18632/oncotarget.20924] [PMID: 29254150]
[71]
Van de Walle, T.; Theppawong, A.; Grootaert, C.; De Jonghe, S.; Persoons, L.; Daelemans, D.; D’hooghe, M. Synthesis and cytotoxic evaluation of mono-carbonyl curcuminoids and their pyrazoline derivatives. Monatshefte Für Chemie-Chemical Monthly, 2019, 150(12)
[72]
Wiji Prasetyaningrum, P.; Bahtiar, A.; Hayun, H. Synthesis and cytotoxicity evaluation of novel asymmetrical mono-carbonyl analogs of curcumin (AMACs) against Vero, HeLa, and MCF7 cell lines. Sci. Pharm., 2018, 86(2), 25.
[http://dx.doi.org/10.3390/scipharm86020025] [PMID: 29880783]
[73]
Kurnia, A.; Saputri, F.C.; Hayun, H. Synthesis and anticancer potential of aminomethyl derivatives of methyl-substituted asymmetrical curcumin mono-carbonyl. J. Appl. Pharm. Sci., 2019, 9(08), 18-24.
[74]
Pan, Z.; Chen, C.; Zhou, Y.; Xu, F.; Xu, Y. Synthesis and cytotoxic evaluation of Monocarbonyl analogs of curcumin as potential anti-tumor agents. Drug Dev. Res., 2016, 77(1), 43-49.
[http://dx.doi.org/10.1002/ddr.21291] [PMID: 26846154]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy