Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

A Review on the Natural Components Applied as Lead Compounds for Potential Multi-target Anti-AD Theranostic Agents

Author(s): Xiaodi Kou, Xuli Shi, Zi Pang, Aihong Yang*, Rui Shen* and Lihua Zhao*

Volume 30, Issue 40, 2023

Published on: 02 March, 2023

Page: [4586 - 4604] Pages: 19

DOI: 10.2174/0929867330666230125153027

Price: $65

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease that seriously affects the health and quality of life of the elderly. Its pathogenesis is very complex and there is still a lack of effective clinical drugs to treat or control the development of AD. Studies have shown that β-amyloid (Aβ) deposition, tau protein hyperphosphorylation, reduced levels of brain cholinergic transmitters, and oxidative stress are the main causes of AD. Furthermore, recent studies showed that metal dyshomeostasis could relate to all the above pathogenesis of AD and was a key factor in the development of AD. Natural compounds and their derivatives have multi-target therapeutic effects on AD, and they also have the advantages of low toxicity, and low cost, which are important directions for anti- AD drugs. Meanwhile, early detection may play an important role in preventing the development of AD. The concept of “theranostic agent” combining molecular imaging probes and therapeutic drugs has emerged in recent years. Fluorescence imaging has been widely studied and applied because of its non-invasive, high resolution, high sensitivity, rapid imaging, and low cost. However, at present, most of the research methods in this field use individual therapeutic or diagnostic reagents, which is not conducive to exploring the optimal treatment time window and drug efficacy. Therefore, this work reviewed the natural compounds and their derivatives which all have been studied for both the in vitro and in vivo therapeutic and diagnostic anti-AD activities. At last, structure and activity relationship (SAR) was discussed and potential AD theranostic natural agents were put forwarded to provide a more detailed theoretical basis for the further development of drugs with diagnostic and therapeutic effects in AD.

[1]
Ferreira, J.P.S.; Albuquerque, H.M.T.; Cardoso, S.M.; Silva, A.M.S.; Silva, V.L.M. Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur. J. Med. Chem., 2021, 221, 113492.
[http://dx.doi.org/10.1016/j.ejmech.2021.113492] [PMID: 33984802]
[2]
Liu, X.; Zhao, J. GPCR, a rider of Alzheimer’s disease. Front. Biol. (Beijing), 2011, 6(4), 282.
[http://dx.doi.org/10.1007/s11515-011-1129-3]
[3]
Karran, E.; Mercken, M.; Strooper, B.D. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov., 2011, 10(9), 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[4]
Atlante, A.; Valenti, D.; Latina, V.; Amadoro, G. Role of oxygen radicals in Alzheimer’s disease: Focus on tau protein. Oxygen, 2021, 1(2), 96-120.
[http://dx.doi.org/10.3390/oxygen1020010]
[5]
Hernandez, C.M.; Dineley, K.T. α7 nicotinic acetylcholine receptors in Alzheimer’s disease: neuroprotective, neurotrophic or both? Curr. Drug Targets, 2012, 13(5), 613-622.
[http://dx.doi.org/10.2174/138945012800398973] [PMID: 22300028]
[6]
Agostinho, P.; Cunha, R.A.; Oliveira, C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des., 2010, 16(25), 2766-2778.
[http://dx.doi.org/10.2174/138161210793176572] [PMID: 20698820]
[7]
Bush, A.I. The metal theory of Alzheimer’s disease. J. Alzheimers Dis., 2012, 33(33)(Suppl. 1), S277-S281.
[http://dx.doi.org/10.3233/JAD-2012-129011] [PMID: 22635102]
[8]
Gu, X.; Zhou, J.; Zhou, Y.; Wang, H.; Si, N.; Ren, W.; Zhao, W.; Fan, X.; Gao, W.; Wei, X.; Yang, J.; Bian, B.; Zhao, H. Huanglian Jiedu decoction remodels the periphery microenvironment to inhibit Alzheimer’s disease progression based on the “brain-gut” axis through multiple integrated omics. Alzheimers Res. Ther., 2021, 13(1), 44.
[http://dx.doi.org/10.1186/s13195-021-00779-7] [PMID: 33579351]
[9]
Graham, W.V.; Bonito-Oliva, A.; Sakmar, T.P. Update on Alzheimer’s disease therapy and prevention strategies. Annu. Rev. Med., 2017, 68(1), 413-430.
[http://dx.doi.org/10.1146/annurev-med-042915-103753] [PMID: 28099083]
[10]
Damar, U.; Gersner, R.; Johnstone, J.T.; Schachter, S.; Rotenberg, A.; Huperzine, A. Huperzine A: A promising anticonvulsant, disease modifying, and memory enhancing treatment option in Alzheimer’s disease. Med. Hypotheses, 2017, 99, 57-62.
[http://dx.doi.org/10.1016/j.mehy.2016.12.006] [PMID: 28110700]
[11]
Khoury, R.; Patel, K.; Gold, J.; Hinds, S.; Grossberg, G.T. Recent progress in the pharmacotherapy of Alzheimer’s disease. Drugs Aging, 2017, 34(11), 811-820.
[http://dx.doi.org/10.1007/s40266-017-0499-x] [PMID: 29116600]
[12]
Wu, J.; Kou, X.; Ju, H.; Zhang, H.; Yang, A.; Shen, R. Design, synthesis and biological evaluation of naringenin carbamate derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2021, 49, 128316.
[http://dx.doi.org/10.1016/j.bmcl.2021.128316] [PMID: 34391893]
[13]
Kou, X.; Liu, J.; Chen, Y.; Yang, A.; Shen, R. Emodin derivatives with multi-factor anti-AD activities: AChE inhibitor, anti-oxidant and metal chelator. J. Mol. Struct., 2021, 1239, 130459.
[http://dx.doi.org/10.1016/j.molstruc.2021.130459]
[14]
Hamulakova, S.; Kozurkova, M.; Kuca, K. Coumarin derivatives in pharmacotherapy of Alzheimer´s disease. Curr. Org. Chem., 2017, 21(7), 602-612.
[http://dx.doi.org/10.2174/1385272820666160601155411]
[15]
Ege, D. Action mechanisms of curcumin in Alzheimer’s disease and its brain targeted delivery. Materials (Basel), 2021, 14(12), 3332.
[http://dx.doi.org/10.3390/ma14123332] [PMID: 34208692]
[16]
Noori, T.; Dehpour, A.R.; Sureda, A.; Sobarzo-Sanchez, E.; Shirooie, S. Role of natural products for the treatment of Alzheimer’s disease. Eur. J. Pharmacol., 2021, 898, 173974.
[http://dx.doi.org/10.1016/j.ejphar.2021.173974] [PMID: 33652057]
[17]
Gopalan, D.; Pandey, A.; Alex, A.T.; Kalthur, G.; Pandey, S.; Udupa, N.; Mutalik, S. Nanoconstructs as a versatile tool for detection and diagnosis of Alzheimer biomarkers. Nanotechnology, 2021, 32(14), 142002.
[http://dx.doi.org/10.1088/1361-6528/abcdcb] [PMID: 33238254]
[18]
Vijayan, D.; Chandra, R. Amyloid beta hypothesis in Alzheimer’s disease: major culprits and recent therapeutic strategies Curr. Drug Targets, 2020, 21(2), 148-166.
[http://dx.doi.org/10.2174/1389450120666190806153206] [PMID: 31385768]
[19]
Uddin, M.S.; Kabir, M.T.; Tewari, D.; Mamun, A.A.; Mathew, B.; Aleya, L.; Barreto, G.E.; Bin-Jumah, M.N.; Abdel-Daim, M.M.; Ashraf, G.M. Revisiting the role of brain and peripheral Aβ in the pathogenesis of Alzheimer’s disease. J. Neurol. Sci., 2020, 416, 116974.
[http://dx.doi.org/10.1016/j.jns.2020.116974] [PMID: 32559516]
[20]
Guo, T.; Noble, W.; Hanger, D.P. Roles of tau protein in health and disease. Acta Neuropathol., 2017, 133(5), 665-704.
[http://dx.doi.org/10.1007/s00401-017-1707-9] [PMID: 28386764]
[21]
Köpke, E.; Tung, Y.C.; Shaikh, S.; Alonso, A.C.; Iqbal, K.; Grundke-Iqbal, I. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J. Biol. Chem., 1993, 268(32), 24374-24384.
[http://dx.doi.org/10.1016/S0021-9258(20)80536-5] [PMID: 8226987]
[22]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[23]
Muralidar, S.; Ambi, S.V.; Sekaran, S.; Thirumalai, D.; Palaniappan, B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol., 2020, 163, 1599-1617.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.327] [PMID: 32784025]
[24]
Sinsky, J.; Pichlerova, K.; Hanes, J. Tau protein interaction partners and their roles in Alzheimer’s disease and other tauopathies. Int. J. Mol. Sci., 2021, 22(17), 9207.
[http://dx.doi.org/10.3390/ijms22179207] [PMID: 34502116]
[25]
Russo, P.; Kisialiou, A.; Moroni, R.; Prinzi, G.; Fini, M. Effect of genetic polymorphisms (SNPs) in CHRNA7 gene on response to acetylcholinesterase inhibitors (AChEI) in patients with Alzheimer’s disease. Curr. Drug Targets, 2017, 18(10), 1179-1190.
[PMID: 26424395]
[26]
Whitehouse, P.J.; Price, D.L.; Clark, A.W.; Coyle, J.T.; DeLong, M.R. Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol., 1981, 10(2), 122-126.
[http://dx.doi.org/10.1002/ana.410100203] [PMID: 7283399]
[27]
Grimaldi, M.; Marino, S.D.; Florenzano, F.; Ciotta, M.T.; Nori, S.L.; Rodriquez, M.; Sorrentino, G.; D’Ursi, A.M.; Scrima, M. β-Amyloid-acetylcholine molecular interaction: new role of cholinergic mediators in anti-Alzheimer therapy? Future Med. Chem., 2016, 8(11), 1179-1189.
[http://dx.doi.org/10.4155/fmc-2016-0006] [PMID: 27402297]
[28]
Moss, D.E.; Perez, R.G. Anti-neurodegenerative benefits of acetylcholinesterase inhibitors in Alzheimer’s disease: Nexus of cholinergic and nerve growth factor dysfunction. Curr. Alzheimer Res., 2021, 18(13), 1010-1022.
[http://dx.doi.org/10.2174/1567205018666211215150547] [PMID: 34911424]
[29]
Cioffi, F.; Adam, R.H.I.; Bansal, R.; Broersen, K. A review of oxidative stress products and related genes in early Alzheimer’s disease. J. Alzheimers Dis., 2021, 83(3), 977-1001.
[http://dx.doi.org/10.3233/JAD-210497] [PMID: 34420962]
[30]
Moreira, P.I.; Duarte, A.I.; Santos, M.S.; Rego, A.C.; Oliveira, C.R. An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J. Alzheimers Dis., 2009, 16(4), 741-761.
[http://dx.doi.org/10.3233/JAD-2009-0972] [PMID: 19387110]
[31]
Kishida, K.T.; Klann, E. Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid. Redox Signal., 2007, 9(2), 233-244.
[http://dx.doi.org/10.1089/ars.2007.9.233] [PMID: 17115936]
[32]
Teixeira, J.P.; de Castro, A.A.; Soares, F.V.; da Cunha, E.F.F.; Ramalho, T.C. Future therapeutic perspectives into the Alzheimer’s disease targeting the oxidative stress hypothesis. Molecules, 2019, 24(23), 4410.
[http://dx.doi.org/10.3390/molecules24234410] [PMID: 31816853]
[33]
Bhatia, V.; Sharma, S. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease. J. Neurol. Sci., 2021, 421, 117253.
[http://dx.doi.org/10.1016/j.jns.2020.117253] [PMID: 33476985]
[34]
Su, B.; Wang, X.; Lee, H.; Tabaton, M.; Perry, G.; Smith, M.A.; Zhu, X. Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci. Lett., 2010, 468(3), 267-271.
[http://dx.doi.org/10.1016/j.neulet.2009.11.010] [PMID: 19914335]
[35]
Islam, M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res., 2017, 39(1), 73-82.
[http://dx.doi.org/10.1080/01616412.2016.1251711] [PMID: 27809706]
[36]
Wang, L.; Yin, Y.L.; Liu, X.Z.; Shen, P.; Zheng, Y.G.; Lan, X.R.; Lu, C.B.; Wang, J.Z. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl. Neurodegener., 2020, 9(1), 10.
[http://dx.doi.org/10.1186/s40035-020-00189-z] [PMID: 32266063]
[37]
Ejaz, H.W.; Wang, W.; Lang, M. Copper toxicity links to pathogenesis of Alzheimer’s disease and therapeutics approaches. Int. J. Mol. Sci., 2020, 21(20), 7660.
[http://dx.doi.org/10.3390/ijms21207660] [PMID: 33081348]
[38]
Wang, P.; Wang, Z.Y. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease. Ageing Res. Rev., 2017, 35, 265-290.
[http://dx.doi.org/10.1016/j.arr.2016.10.003] [PMID: 27829171]
[39]
Liu, S.T.; Howlett, G.; Barrow, C.J. Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the A beta peptide of Alzheimer’s disease. Biochemistry, 1999, 38(29), 9373-9378.
[http://dx.doi.org/10.1021/bi990205o] [PMID: 10413512]
[40]
Jutten, R.J.; Sikkes, S.A.M.; Amariglio, R.E.; Buckley, R.F.; Properzi, M.J.; Marshall, G.A.; Rentz, D.M.; Johnson, K.A.; Teunissen, C.E.; Van Berckel, B.N.M.; Van der Flier, W.M.; Scheltens, P.; Sperling, R.A.; Papp, K.V. Identifying sensitive measures of cognitive decline at different clinical stages of Alzheimer’s disease. J. Int. Neuropsychol. Soc., 2021, 27(5), 426-438.
[http://dx.doi.org/10.1017/S1355617720000934] [PMID: 33046162]
[41]
Guo, R.; Fan, G.; Zhang, J.; Wu, C.; Du, Y.; Ye, H.; Li, Z.; Wang, L.; Zhang, Z.; Zhang, L.; Zhao, Y.; Lu, Z. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1365-1377.
[http://dx.doi.org/10.3233/JAD-170343] [PMID: 29036818]
[42]
Nesterov, E.E.; Skoch, J.; Hyman, B.T.; Klunk, W.E.; Bacskai, B.J.; Swager, T.M. In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. Angew. Chem. Int. Ed., 2005, 44(34), 5452-5456.
[http://dx.doi.org/10.1002/anie.200500845] [PMID: 16059955]
[43]
El-Gamal, A.F.; Elmogy, M.; Ghazal, M.; Atwan, A.; Casanova, M.; Barnes, G.; Hajjdiab, H. Medical imaging diagnosis of early Alzheimer’s disease. Front. Biosci.-. Landmark, 2018, 23(4), 671-725.
[44]
Gao, F. Integrated positron emission tomography/magnetic resonance imaging in clinical diagnosis of Alzheimer’s disease. Eur. J. Radiol., 2021, 145, 110017.
[http://dx.doi.org/10.1016/j.ejrad.2021.110017] [PMID: 34826792]
[45]
Adduru, V.; Baum, S.A.; Zhang, C.; Helguera, M.; Zand, R.; Lichtenstein, M.; Griessenauer, C.J.; Michael, A.M. A method to estimate brain volume from head CT images and application to detect brain atrophy in Alzheimer Disease. AJNR Am. J. Neuroradiol., 2020, 41(2), 224-230.
[http://dx.doi.org/10.3174/ajnr.A6402] [PMID: 32001444]
[46]
Colliot, O.; Hamelin, L.; Sarazin, M. Magnetic resonance imaging for diagnosis of early Alzheimer’s disease. Rev. Neurol. (Paris), 2013, 169(10), 724-728.
[http://dx.doi.org/10.1016/j.neurol.2013.07.013] [PMID: 24011982]
[47]
Dickerson, B.C.; Stoub, T.R.; Shah, R.C.; Sperling, R.A.; Killiany, R.J.; Albert, M.S.; Hyman, B.T.; Blacker, D.; deToledo-Morrell, L. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology, 2011, 76(16), 1395-1402.
[http://dx.doi.org/10.1212/WNL.0b013e3182166e96] [PMID: 21490323]
[48]
Spencer, N.G.; Bridges, L.R.; Elderfield, K.; Amir, K.; Austen, B.; Howe, F.A. Quantitative evaluation of MRI and histological characteristics of the 5xFAD Alzheimer mouse brain. Neuroimage, 2013, 76, 108-115.
[http://dx.doi.org/10.1016/j.neuroimage.2013.02.071] [PMID: 23507393]
[49]
Nasr, S.H.; Kouyoumdjian, H.; Mallett, C.; Ramadan, S.; Zhu, D.C.; Shapiro, E.M.; Huang, X. Detection of β-Amyloid by Sialic Acid coated bovine serum albumin magnetic nanoparticles in a mouse model of Alzheimer's Disease. Small (Weinheim an der Bergstrasse, Germany), 2018, 14(3), 10.1002.
[50]
Oukoloff, K.; Cieslikiewicz-Bouet, M.; Chao, S.; Costa Branquinho, E.; Bouteiller, C.; Jean, L.; Renard, P.Y. PET and SPECT radiotracers for Alzheimer’s disease. Curr. Med. Chem., 2015, 22(28), 3278-3304.
[http://dx.doi.org/10.2174/0929867322666150805094645] [PMID: 26242258]
[51]
Bastin, C.; Bahri, M.A.; Meyer, F.; Manard, M.; Delhaye, E.; Plenevaux, A.; Becker, G.; Seret, A.; Mella, C.; Giacomelli, F.; Degueldre, C.; Balteau, E.; Luxen, A.; Salmon, E. In vivo imaging of synaptic loss in Alzheimer’s disease with [18F]UCB-H positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(2), 390-402.
[http://dx.doi.org/10.1007/s00259-019-04461-x] [PMID: 31468182]
[52]
Thal, D.R.; Ronisz, A.; Tousseyn, T.; Rijal Upadhaya, A.; Balakrishnan, K.; Vandenberghe, R.; Vandenbulcke, M.; von Arnim, C.A.F.; Otto, M.; Beach, T.G.; Lilja, J.; Heurling, K.; Chakrabarty, A.; Ismail, A.; Buckley, C.; Smith, A.P.L.; Kumar, S.; Farrar, G.; Walter, J. Different aspects of Alzheimer’s disease-related amyloid β-peptide pathology and their relationship to amyloid positron emission tomography imaging and dementia. Acta Neuropathol. Commun., 2019, 7(1), 178.
[http://dx.doi.org/10.1186/s40478-019-0837-9] [PMID: 31727169]
[53]
Cho, H.; Baek, M.S.; Lee, H.S.; Lee, J.H.; Ryu, Y.H.; Lyoo, C.H. Principal components of tau positron emission tomography and longitudinal tau accumulation in Alzheimer’s disease. Alzheimers Res. Ther., 2020, 12(1), 114.
[http://dx.doi.org/10.1186/s13195-020-00685-4] [PMID: 32967721]
[54]
Schöll, M.; Carter, S.F.; Westman, E.; Rodriguez-Vieitez, E.; Almkvist, O.; Thordardottir, S.; Wall, A.; Graff, C.; Långström, B.; Nordberg, A. Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci. Rep., 2015, 5(1), 16404.
[http://dx.doi.org/10.1038/srep16404] [PMID: 26553227]
[55]
Tripathi, S.M.; Murray, A.D. Alzheimer’s Dementia: The emerging role of positron emission tomography. Neuroscientist, 2022, 28(5), 507-519.
[http://dx.doi.org/10.1177/1073858421997035] [PMID: 33660556]
[56]
Archer, H.A.; Smailagic, N.; John, C.; Holmes, R.B.; Takwoingi, Y.; Coulthard, E.J.; Cullum, S. Regional cerebral blood flow single photon emission computed tomography for detection of Frontotemporal dementia in people with suspected dementia. Cochrane Libr., 2015, 2015(6), CD010896.
[http://dx.doi.org/10.1002/14651858.CD010896.pub2] [PMID: 26102272]
[57]
Zhu, L.; Ploessl, K.; Kung, H.F. PET/SPECT imaging agents for neurodegenerative diseases. Chem. Soc. Rev., 2014, 43(19), 6683-6691.
[http://dx.doi.org/10.1039/C3CS60430F] [PMID: 24676152]
[58]
Koric, L.; Guedj, E.; Habert, M.O.; Semah, F.; Branger, P.; Payoux, P.; Le Jeune, F. Molecular imaging in the diagnosis of Alzheimer’s disease and related disorders. Rev. Neurol. (Paris), 2016, 172(12), 725-734.
[http://dx.doi.org/10.1016/j.neurol.2016.10.009] [PMID: 27866729]
[59]
Toyos-Rodríguez, C.; García-Alonso, F.J.; de la Escosura-Muñiz, A. Electrochemical biosensors based on nanomaterials for early detection of Alzheimer’s disease. Sensors (Basel), 2020, 20(17), 4748.
[http://dx.doi.org/10.3390/s20174748] [PMID: 32842632]
[60]
Brazaca, L.C.; Sampaio, I.; Zucolotto, V.; Janegitz, B.C. Applications of biosensors in Alzheimer’s disease diagnosis. Talanta, 2020, 210, 120644.
[http://dx.doi.org/10.1016/j.talanta.2019.120644] [PMID: 31987214]
[61]
Mikuła, E. Recent advancements in electrochemical biosensors for Alzheimer’s disease biomarkers detection. Curr. Med. Chem., 2021, 28(20), 4049-4073.
[http://dx.doi.org/10.2174/0929867327666201111141341] [PMID: 33176635]
[62]
Gao, L.; Wang, W.; Wang, X.; Yang, F.; Xie, L.; Shen, J.; Brimble, M.A.; Xiao, Q.; Yao, S.Q. Fluorescent probes for bioimaging of potential biomarkers in Parkinson’s disease. Chem. Soc. Rev., 2021, 50(2), 1219-1250.
[http://dx.doi.org/10.1039/D0CS00115E] [PMID: 33284303]
[63]
Sun, W.; Li, M.; Fan, J.; Peng, X. Activity-based sensing and theranostic probes based on photoinduced electron transfer. Acc. Chem. Res., 2019, 52(10), 2818-2831.
[http://dx.doi.org/10.1021/acs.accounts.9b00340] [PMID: 31538473]
[64]
Chen, C.; Fang, C. Devising efficient red-shifting strategies for bioimaging: A generalizable donor-acceptor fluorophore prototype. Chem. Asian J., 2020, 15(10), 1514-1523.
[http://dx.doi.org/10.1002/asia.202000175] [PMID: 32216076]
[65]
Hochreiter, B.; Pardo-Garcia, A.; Schmid, J. Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Sensors (Basel), 2015, 15(10), 26281-26314.
[http://dx.doi.org/10.3390/s151026281] [PMID: 26501285]
[66]
Stoerkler, T.; Pariat, T.; Laurent, A.D.; Jacquemin, D.; Ulrich, G.; Massue, J. Excited-state intramolecular proton transfer dyes with dual-state emission properties: Concept, examples and applications. Molecules, 2022, 27(8), 2443.
[http://dx.doi.org/10.3390/molecules27082443] [PMID: 35458640]
[67]
Uddin, M.S.; Kabir, M.T.; Niaz, K.; Jeandet, P.; Clément, C.; Mathew, B.; Rauf, A.; Rengasamy, K.R.R.; Sobarzo-Sánchez, E.; Ashraf, G.M.; Aleya, L. Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules, 2020, 25(6), 1267.
[http://dx.doi.org/10.3390/molecules25061267] [PMID: 32168835]
[68]
Numakawa, T.; Odaka, H. Brain-derived neurotrophic factor signaling in the pathophysiology of Alzheimer’s disease: Beneficial effects of flavonoids for neuroprotection. Int. J. Mol. Sci., 2021, 22(11), 5719.
[http://dx.doi.org/10.3390/ijms22115719] [PMID: 34071978]
[69]
Xian, M.; Cai, J.; Zheng, K.; Liu, Q.; Liu, Y.; Lin, H.; Liang, S.; Wang, S. Aloe-emodin prevents nerve injury and neuroinflammation caused by ischemic stroke via the PI3K/AKT/mTOR and NF-κB pathway. Food Funct., 2021, 12(17), 8056-8067.
[http://dx.doi.org/10.1039/D1FO01144H] [PMID: 34286782]
[70]
Habtemariam, S. Rutin as a natural therapy for Alzheimer’s disease: Insights into its mechanisms of action. Curr. Med. Chem., 2016, 23(9), 860-873.
[http://dx.doi.org/10.2174/0929867323666160217124333] [PMID: 26898570]
[71]
Xia, H. Extensive metabolism of flavonoids relevant to their potential efficacy on Alzheimer’s disease. Drug Metab. Rev., 2021, 53(4), 563-591.
[http://dx.doi.org/10.1080/03602532.2021.1977316] [PMID: 34491868]
[72]
Zhang, M.; Hu, G.; Shao, N.; Qin, Y.; Chen, Q.; Wang, Y.; Zhou, P.; Cai, B. Thioredoxin-interacting protein (TXNIP) as a target for Alzheimer’s disease: flavonoids and phenols. Inflammopharmacology, 2021, 29(5), 1317-1329.
[http://dx.doi.org/10.1007/s10787-021-00861-4] [PMID: 34350508]
[73]
Choi, J.Y.; Lee, J.M.; Lee, D.G.; Cho, S.; Yoon, Y.H.; Cho, E.J.; Lee, S. The n -butanol fraction and rutin from tartary buckwheat improve cognition and memory in an in vivo model of amyloid- β -Induced Alzheimer’s disease. J. Med. Food, 2015, 18(6), 631-641.
[http://dx.doi.org/10.1089/jmf.2014.3292] [PMID: 25785882]
[74]
Sun, X.; Li, L.; Dong, Q.X.; Zhu, J.; Huang, Y.; Hou, S.; Yu, X.; Liu, R. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J. Neuroinflammation, 2021, 18(1), 131.
[http://dx.doi.org/10.1186/s12974-021-02182-3] [PMID: 34116706]
[75]
Yin, F.; Liu, J.; Ji, X.; Wang, Y.; Zidichouski, J.; Zhang, J. Baicalin prevents the production of hydrogen peroxide and oxidative stress induced by Aβ aggregation in SH-SY5Y cells. Neurosci. Lett., 2011, 492(2), 76-79.
[http://dx.doi.org/10.1016/j.neulet.2011.01.055] [PMID: 21276834]
[76]
Jin, X.; Liu, M.Y.; Zhang, D.F.; Zhong, X.; Du, K.; Qian, P.; Yao, W.F.; Gao, H.; Wei, M.J. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP 3 inflammasomes and TLR 4/ NF-κB signaling pathway. CNS Neurosci. Ther., 2019, 25(5), 575-590.
[http://dx.doi.org/10.1111/cns.13086] [PMID: 30676698]
[77]
Martínez Medina, J.J.; Naso, L.G.; Pérez, A.L.; Rizzi, A.; Ferrer, E.G.; Williams, P.A.M. Antioxidant and anticancer effects and bioavailability studies of the flavonoid baicalin and its oxidovanadium (IV) complex. J. Inorg. Biochem., 2017, 166, 150-161.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.11.005] [PMID: 27863301]
[78]
Justin Thenmozhi, A.; William Raja, T.R.; Manivasagam, T.; Janakiraman, U.; Essa, M.M. Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutr. Neurosci., 2017, 20(6), 360-368.
[http://dx.doi.org/10.1080/1028415X.2016.1144846] [PMID: 26878879]
[79]
Thenmozhi, A.J.; Raja, T.R.W.; Janakiraman, U.; Manivasagam, T. Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer’s disease in Wistar rats. Neurochem. Res., 2015, 40(4), 767-776.
[http://dx.doi.org/10.1007/s11064-015-1525-1] [PMID: 25630717]
[80]
Yaghmaei, P.; Kheirbakhsh, R.; Dezfulian, M.; Haeri-Rohani, A.; Larijani, B.; Ebrahim-Habibi, A. Indole and trans-chalcone attenuate amyloid β plaque accumulation in male Wistar rat: in vivo effectiveness of two anti-amyloid scaffolds. Arch. Ital. Biol., 2013, 151(3), 106-113.
[http://dx.doi.org/10.12871/00039829201332] [PMID: 24599628]
[81]
Dhakal, S.; Ramsland, P.A.; Adhikari, B.; Macreadie, I. Trans-chalcone plus baicalein synergistically reduce intracellular amyloid beta (Aβ42) and protect from Aβ42 induced oxidative damage in yeast models of Alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(17), 9456.
[http://dx.doi.org/10.3390/ijms22179456] [PMID: 34502362]
[82]
Kamecki, F.; Marcucci, C.; Ferreira-Gomes, M.; Sabatier, L.; Knez, D.; Gobec, S.; Monti, J.L.E.; Rademacher, M.; Marcos, A.; de Tezanos Pinto, F.; Gavernet, L.; Colettis, N.; Marder, M. 2′-Hydroxy-4′,5′-dimethyl-4-dimethylaminochalcone, a novel fluorescent flavonoid with capacity to detect aluminium in cells and modulate Alzheimer’s disease targets. J. Photochem. Photobiol. Chem., 2021, 409, 113137.
[http://dx.doi.org/10.1016/j.jphotochem.2021.113137]
[83]
Sang, Z.; Song, Q.; Cao, Z.; Deng, Y.; Zhang, L. Design, synthesis, and evaluation of chalcone-Vitamin E-donepezil hybrids as multi-target-directed ligands for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 69-85.
[http://dx.doi.org/10.1080/14756366.2021.1993845] [PMID: 34894968]
[84]
Vukovic, N.; Sukdolak, S.; Solujic, S.; Niciforovic, N. An efficient synthesis and antioxidant properties of novel imino and amino derivatives of 4-hydroxy coumarins. Arch. Pharm. Res., 2010, 33(1), 5-15.
[http://dx.doi.org/10.1007/s12272-010-2220-z] [PMID: 20191339]
[85]
Weber, U.S.; Steffen, B.; Siegers, C.P. Antitumor-activities of coumarin, 7-hydroxy-coumarin and its glucuronide in several human tumor cell lines. Res. Commun. Mol. Pathol. Pharmacol., 1998, 99(2), 193-206.
[PMID: 9583093]
[86]
Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.056] [PMID: 27484512]
[87]
Kang, S.Y.; Lee, K.Y.; Sung, S.H.; Park, M.J.; Kim, Y.C. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: structure-activity relationships. J. Nat. Prod., 2001, 64(5), 683-685.
[http://dx.doi.org/10.1021/np000441w] [PMID: 11374978]
[88]
Liang, H.; Shi, Y.; Zeng, K.; Zhao, M.; Tu, P.; Jiang, Y. Coumarin derivatives from the leaves and twigs of Murraya exotica L. and their anti-inflammatory activities. Phytochemistry, 2020, 177, 112416.
[http://dx.doi.org/10.1016/j.phytochem.2020.112416] [PMID: 32531519]
[89]
Huang, M.; Xie, S.S.; Jiang, N.; Lan, J.S.; Kong, L.Y.; Wang, X.B. Multifunctional coumarin derivatives: Monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2015, 25(3), 508-513.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.034] [PMID: 25542589]
[90]
Jiang, X.; Guo, J.; Lv, Y.; Yao, C.; Zhang, C.; Mi, Z.; Shi, Y.; Gu, J.; Zhou, T.; Bai, R.; Xie, Y. Rational design, synthesis and biological evaluation of novel multitargeting anti-AD iron chelators with potent MAO-B inhibitory and antioxidant activity. Bioorg. Med. Chem., 2020, 28(12), 115550.
[http://dx.doi.org/10.1016/j.bmc.2020.115550] [PMID: 32503694]
[91]
Aalikhani, M.; Safdari, Y.; Jahanshahi, M.; Alikhani, M.; Khalili, M. Comparison between hesperidin, coumarin, and deferoxamine iron chelation and antioxidant activity against excessive iron in the iron overloaded mice. Front. Neurosci., 2022, 15, 811080.
[http://dx.doi.org/10.3389/fnins.2021.811080] [PMID: 35177961]
[92]
Yan, J.J.; Kim, D.H.; Moon, Y.S.; Jung, J.S.; Ahn, E.M.; Baek, N.I.; Song, D.K. Protection against β-amyloid peptide-induced memory impairment with long-term administration of extract of Angelica gigas or decursinol in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2004, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0278-5846(03)00168-4] [PMID: 14687853]
[93]
Ali, M.Y.; Jannat, S.; Jung, H.A.; Choi, R.J.; Roy, A.; Choi, J.S. Anti-Alzheimer’s disease potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis. Asian Pac. J. Trop. Med., 2016, 9(2), 103-111.
[http://dx.doi.org/10.1016/j.apjtm.2016.01.014] [PMID: 26919937]
[94]
den Haan, J.; Morrema, T.H.J.; Rozemuller, A.J.; Bouwman, F.H.; Hoozemans, J.J.M. Different curcumin forms selectively bind fibrillar amyloid beta in post mortem Alzheimer’s disease brains: Implications for in-vivo diagnostics. Acta Neuropathol. Commun., 2018, 6(1), 75.
[http://dx.doi.org/10.1186/s40478-018-0577-2] [PMID: 30092839]
[95]
Xiong, Z.; Hongmei, Z.; Lu, S.; Yu, L. Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s disease. Pharmacol. Rep., 2011, 63(5), 1101-1108.
[http://dx.doi.org/10.1016/S1734-1140(11)70629-6] [PMID: 22180352]
[96]
Garcia-Alloza, M.; Borrelli, L.A.; Rozkalne, A.; Hyman, B.T.; Bacskai, B.J. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J. Neurochem., 2007, 102(4), 1095-1104.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04613.x] [PMID: 17472706]
[97]
Rane, J.S.; Bhaumik, P.; Panda, D. Curcumin inhibits Tau aggregation and disintegrates preformed Tau filaments in vitro. J. Alzheimers Dis., 2017, 60(3), 999-1014.
[http://dx.doi.org/10.3233/JAD-170351] [PMID: 28984591]
[98]
Ma, Q.L.; Zuo, X.; Yang, F.; Ubeda, O.J.; Gant, D.J.; Alaverdyan, M.; Teng, E.; Hu, S.; Chen, P.P.; Maiti, P.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J. Biol. Chem., 2013, 288(6), 4056-4065.
[http://dx.doi.org/10.1074/jbc.M112.393751] [PMID: 23264626]
[99]
Yan, F.S.; Sun, J.L.; Xie, W.H.; Shen, L.; Ji, H.F. Neuroprotective effects and mechanisms of Curcumin–Cu(II) and –Zn(II) complexes systems and their pharmacological implications. Nutrients, 2017, 10(1), 28.
[http://dx.doi.org/10.3390/nu10010028] [PMID: 29283372]
[100]
Bisceglia, F.; Seghetti, F.; Serra, M.; Zusso, M.; Gervasoni, S.; Verga, L.; Vistoli, G.; Lanni, C.; Catanzaro, M.; De Lorenzi, E.; Belluti, F. Prenylated curcumin analogues as multipotent tools to tackle Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(3), 1420-1433.
[http://dx.doi.org/10.1021/acschemneuro.8b00463] [PMID: 30556996]
[101]
Chainoglou, E.; Siskos, A.; Pontiki, E.; Hadjipavlou-Litina, D. Hybridization of curcumin analogues with cinnamic acid derivatives as multi-target agents against Alzheimer’s disease targets. Molecules, 2020, 25(21), 4958.
[http://dx.doi.org/10.3390/molecules25214958] [PMID: 33114751]
[102]
Sedgwick, A.C.; Dou, W.T.; Jiao, J.B.; Wu, L.; Williams, G.T.; Jenkins, A.T.A.; Bull, S.D.; Sessler, J.L.; He, X.P.; James, T.D. An ESIPT probe for the ratiometric imaging of peroxynitrite facilitated by binding to Aβ-aggregates. J. Am. Chem. Soc., 2018, 140(43), 14267-14271.
[http://dx.doi.org/10.1021/jacs.8b08457] [PMID: 30277762]
[103]
Mold, M.J.; Kumar, M.; Chu, W.; Exley, C. Unequivocal imaging of aluminium in human cells and tissues by an improved method using morin. Histochem. Cell Biol., 2019, 152(6), 453-463.
[http://dx.doi.org/10.1007/s00418-019-01809-0] [PMID: 31463522]
[104]
Watanabe, H.; Saji, H.; Ono, M. Novel fluorescence probes based on the chalcone scaffold for in vitro staining of β-amyloid plaques. Bioorg. Med. Chem. Lett., 2018, 28(19), 3242-3246.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.009] [PMID: 30131243]
[105]
Jung, S.J.; Park, S.H.; Lee, E.J.; Park, J.H.; Kong, Y.B.; Rho, J.K.; Hur, M.G.; Yang, S.D.; Park, Y.D. Development of fluorescent probes that bind and stain amyloid plaques in Alzheimer’s disease. Arch. Pharm. Res., 2015, 38(11), 1992-1998.
[http://dx.doi.org/10.1007/s12272-015-0617-4] [PMID: 26012373]
[106]
Song, Y.; Chen, Z.; Li, H. Advances in coumarin-derived fluorescent chemosensors for metal ions. Curr. Org. Chem., 2012, 16(22), 2690-2707.
[http://dx.doi.org/10.2174/138527212804004544]
[107]
Roy, N.; Nath, S.; Dutta, A.; Mondal, P.; Paul, P.C.; Singh, T.S. A highly efficient and selective coumarin based fluorescent probe for colorimetric detection of Fe3+ and fluorescence dual sensing of Zn2+ and Cu2+. RSC Advances, 2016, 6(68), 63837-63847.
[http://dx.doi.org/10.1039/C6RA12217E]
[108]
Sen, B.; Sheet, S.K.; Thounaojam, R.; Jamatia, R.; Pal, A.K.; Aguan, K.; Khatua, S. A coumarin based Schiff base probe for selective fluorescence detection of Al3+ and its application in live cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 173, 537-543.
[http://dx.doi.org/10.1016/j.saa.2016.10.005] [PMID: 27744065]
[109]
Fu, J.; Chang, Y.; Li, B.; Wang, X.; Xie, X.; Xu, K. A dual fluorescence probe for Zn2+ and Al3+ through differentially response and bioimaging in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 225, 117493.
[http://dx.doi.org/10.1016/j.saa.2019.117493] [PMID: 31494382]
[110]
Zhu, Q.; Li, L.; Mu, L.; Zeng, X.; Redshaw, C.; Wei, G. A ratiometric Al3+ ion probe based on the coumarin-quinoline FRET system. J. Photochem. Photobiol. Chem., 2016, 328, 217-224.
[http://dx.doi.org/10.1016/j.jphotochem.2016.06.006]
[111]
Liang, M.; Liu, Z.; Zhang, Z.; Mei, Y.; Tian, Y. A two-photon ratiometric fluorescent probe for real-time imaging and quantification of NO in neural stem cells during activation regulation. Chem. Sci. (Camb.), 2022, 13(15), 4303-4312.
[http://dx.doi.org/10.1039/D2SC00326K] [PMID: 35509464]
[112]
Yeh, J.T.; Chen, W.C.; Liu, S.R.; Wu, S.P. A coumarin-based sensitive and selective fluorescent sensor for copper( II ) ions. New J. Chem., 2014, 38(9), 4434-4439.
[http://dx.doi.org/10.1039/C4NJ00695J]
[113]
Wang, S.; Wang, Z.; Yin, Y.; Luo, J.; Kong, L. Coumarin-naphthol conjugated Schiff base as a “turn-on” fluorescent probe for Cu2+via selective hydrolysis of imine and its application in live cell imaging. J. Photochem. Photobiol. Chem., 2017, 333, 213-219.
[http://dx.doi.org/10.1016/j.jphotochem.2016.10.030]
[114]
He, G.; Ma, N.; Li, L.; Xie, C.; Yang, L.; Xu, J.; Wang, J. A coumarin-based fluorescence probe for selective recognition of Cu2+ ions and live cell imaging. J. Sens., 2019, 2019, 1-7.
[http://dx.doi.org/10.1155/2019/2413408]
[115]
Maiti, P.; Plemmons, A.; Bowers, Z.; Weaver, C.; Dunbar, G. Labeling and imaging of amyloid plaques in brain tissue using the natural polyphenol curcumin. J. Vis. Exp., 2019, (153)
[http://dx.doi.org/10.3791/60377]
[116]
Park, Y.D.; Kinger, M.; Min, C.; Lee, S.Y.; Byun, Y.; Park, J.W.; Jeon, J. Synthesis and evaluation of curcumin-based near-infrared fluorescent probes for the in vivo optical imaging of amyloid-β plaques. Bioorg. Chem., 2021, 115, 105167.
[http://dx.doi.org/10.1016/j.bioorg.2021.105167] [PMID: 34358800]
[117]
Wu, J.; Shao, C.; Ye, X.; Di, X.; Li, D.; Zhao, H.; Zhang, B.; Chen, G.; Liu, H.K.; Qian, Y. In vivo brain imaging of amyloid-β aggregates in Alzheimer’s disease with a near-infrared fluorescent probe. ACS Sens., 2021, 6(3), 863-870.
[http://dx.doi.org/10.1021/acssensors.0c01914] [PMID: 33438997]
[118]
Yang, Y.; Li, S.; Zhang, Q.; Kuang, Y.; Qin, A.; Gao, M.; Li, F.; Tang, B.Z. An AIE-active theranostic probe for light-up detection of Aβ aggregates and protection of neuronal cells. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(15), 2434-2441.
[http://dx.doi.org/10.1039/C9TB00121B] [PMID: 32255120]
[119]
Zhang, X.; Tian, Y.; Li, Z.; Tian, X.; Sun, H.; Liu, H.; Moore, A.; Ran, C. Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer’s disease. J. Am. Chem. Soc., 2013, 135(44), 16397-16409.
[http://dx.doi.org/10.1021/ja405239v] [PMID: 24116384]
[120]
Fang, D.; Wen, X.; Wang, Y.; Sun, Y.; An, R.; Zhou, Y.; Ye, D.; Liu, H. Engineering of donor-acceptor-donor curcumin analogues as near-infrared fluorescent probes for in vivo imaging of amyloid-β species. Theranostics, 2022, 12(7), 3178-3195.
[http://dx.doi.org/10.7150/thno.68679] [PMID: 35547754]
[121]
Wang, M.; Zhang, R.; Dehaen, W.; Fang, Y.; Qian, S.; Ren, Y.; Cheng, F.; Guo, Y.; Guo, C.; Li, Y.; Deng, Y.; Cao, Z.; Peng, C. Specific recognition, intracellular assay and detoxification of fluorescent curcumin derivative for copper ions. J. Hazard. Mater., 2021, 420, 126490.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126490] [PMID: 34252661]
[122]
Yang, A.; Liu, C.; Zhang, H.; Wu, J.; Shen, R.; Kou, X. A multifunctional anti-AD approach: Design, synthesis, X-ray crystal structure, biological evaluation and molecular docking of chrysin derivatives. Eur. J. Med. Chem., 2022, 233, 114216.
[http://dx.doi.org/10.1016/j.ejmech.2022.114216] [PMID: 35227980]
[123]
Yang, A.; Zhang, H.; Hu, C.; Wang, X.; Shen, R.; Kou, X.; Wang, H. Novel coumarin derivatives as multifunctional anti-AD agents: Design, synthesis, X-ray crystal structure and biological evaluation. J. Mol. Struct., 2022, 1268, 133747.
[http://dx.doi.org/10.1016/j.molstruc.2022.133747]
[124]
Bukhari, S.N.A. Dietary polyphenols as therapeutic intervention for alzheimer's disease: a mechanistic insight. Antioxidants (Basel, Switzerland), 2022, 11(3), 554.
[125]
Augustin, N.; Nuthakki, V.K.; Abdullaha, M.; Hassan, Q.P.; Gandhi, S.G.; Bharate, S.B. Discovery of helminthosporin, an anthraquinone isolated from Rumex abyssinicus jacq as a dual cholinesterase inhibitor. ACS Omega, 2020, 5(3), 1616-1624.
[http://dx.doi.org/10.1021/acsomega.9b03693] [PMID: 32010836]
[126]
Li, M.; Gong, X.; Li, H.W.; Han, H.; Shuang, S.; Song, S.; Dong, C. A fast detection of peroxynitrite in living cells. Anal. Chim. Acta, 2020, 1106, 96-102.
[http://dx.doi.org/10.1016/j.aca.2020.02.009] [PMID: 32145860]
[127]
Singh, A.J.; Gorka, A.P.; Bokesch, H.R.; Wamiru, A.; O’Keefe, B.R.; Schnermann, M.J.; Gustafson, K.R. Harnessing natural product diversity for fluorophore discovery: Naturally occurring fluorescent hydroxyanthraquinones from the marine crinoid Pterometra venusta. J. Nat. Prod., 2018, 81(12), 2750-2755.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00761] [PMID: 30495954]
[128]
Zhang, J.; Chen, R.; Zhu, Z.; Adachi, C.; Zhang, X.; Lee, C.S. Highly stable near-infrared fluorescent organic nanoparticles with a large stokes shift for noninvasive long-term cellular imaging. ACS Appl. Mater. Interfaces, 2015, 7(47), 26266-26274.
[http://dx.doi.org/10.1021/acsami.5b08539] [PMID: 26558487]
[129]
Fang, Z.; Su, Z.; Qin, W.; Li, H.; Fang, B.; Du, W.; Wu, Q.; Peng, B.; Li, P.; Yu, H.; Li, L.; Huang, W. Two-photon dual-channel fluorogenic probe for in situ imaging the mitochondrial H2S/viscosity in the brain of Drosophila Parkinson’s disease model. Chin. Chem. Lett., 2020, 31(11), 2903-2908.
[http://dx.doi.org/10.1016/j.cclet.2020.03.063]
[130]
Liu, X.Y.; Wang, X.J.; Shi, L.; Liu, Y.H.; Wang, L.; Li, K.; Bu, Q.; Cen, X.B.; Yu, X.Q. Rational design of quinoxalinone-based red-emitting probes for high-affinity and long-term visualizing amyloid-β in vivo. Anal. Chem., 2022, 94(21), 7665-7673.
[http://dx.doi.org/10.1021/acs.analchem.2c01046] [PMID: 35578920]
[131]
Ma, L.; Yang, S.; Ma, Y.; Chen, Y.; Wang, Z.; James, T.D.; Wang, X.; Wang, Z. Benzothiazolium derivative-capped silica nanocomposites for β-amyloid imaging in vivo. Anal. Chem., 2021, 93(37), 12617-12627.
[http://dx.doi.org/10.1021/acs.analchem.1c02289] [PMID: 34494815]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy