Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

One-step Nonenzymatic Electrochemical Sensor for the Detection of Sarcosine Using Nanozyme Glutathione Copper Complex

Author(s): Janani Udayakumar and Stalin Selvaraj*

Volume 19, Issue 8, 2023

Published on: 27 October, 2023

Page: [577 - 584] Pages: 8

DOI: 10.2174/1573411019666230125120314

Price: $65

conference banner
Abstract

Background: The present study aims to develop the use of glutathione copper complex for the detection of sarcosine, a marker for prostate cancer. The glutathione-copper complex was successfully synthesized at room temperature and characterized using FTIR, UV, and Scanning Electron Micrograph.

Methods: The structure of the glutathione copper complex was found to be a 1:2 Metal: Ligand ratio. The cyclic voltammogram for the glutathione-copper complex modified electrode showed an oxidation peak around -0.037 V, which indicates the irreversible oxidation of copper ions. The addition of sarcosine decreased the oxidation potential of the glutathione copper complex indicating the ability of the working electrode, for the detection of sarcosine in the sample using differential pulse voltammetry.

Results: The results indicated that the glutathione-copper complex modified electrode revealed good sensitivity, selectivity, and linearity against the detection of sarcosine in the range from 0.1 μM to 2.5 μM. The LOD and LOQ were calculated using a linear prediction model, the data obtained from differential pulse voltammetry technique for known and simulated urine samples was 0.72 μM, 5.13 μM, and 1.45 μM, 39.94 μM, respectively. The sensitivity for the developed working electrode obtained for the known and simulated sample was 0.0567 μA/μM and 0.02913 μA/μM, respectively.

Conclusion: Thus, we concluded that the glutathione copper complex decorated glassy carbon electrode is a good candidate for the detection of sarcosine with good selectivity and sensitivity for real-time monitoring.

Graphical Abstract

[1]
Goyer, A.; Johnson, T.L.; Olsen, L.J.; Collakova, E.; Shachar-Hill, Y.; Rhodes, D.; Hanson, A.D. Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. J. Biol. Chem., 2004, 279(17), 16947-16953.
[http://dx.doi.org/10.1074/jbc.M400071200] [PMID: 14766747]
[2]
Bar-joseph, I.; Pras, E.; Reznik-Wolf, H.; Marek-Yagel, D.; Abu-Horvitz, A.; Dushnitzky, M.; Goldstein, N.; Rienstein, S.; Dekel, M.; Pode-Shakked, B.; Zlotnik, J.; Benarrosh, A.; Gillery, P.; Hofliger, N.; Auray-Blais, C.; Garnotel, R.; Anikster, Y. Mutations in the sarcosine dehydrogenase gene in patients with sarcosinemia. Hum. Genet., 2012, 131(11), 1805-1810.
[http://dx.doi.org/10.1007/s00439-012-1207-x] [PMID: 22825317]
[3]
Baum, C.E.; Price, D.K.; Figg, W.D. Therapeutic target. Cancer Biol. Ther., 2010, 9, 341-342.
[4]
Khan, A.P.; Rajendiran, T.M.; Bushra, A.; Asangani, I.A.; Athanikar, J.N.; Yocum, A.K.; Mehra, R.; Siddiqui, J.; Palapattu, G.; Wei, J.T.; Michailidis, G.; Sreekumar, A.; Chinnaiyan, A.M. The role of sarcosine metabolism in prostate cancer progression. Neoplasia, 2013, 15(5), 491-IN13.
[http://dx.doi.org/10.1593/neo.13314] [PMID: 23633921]
[5]
Villers, A.; Grosclaude, P. Épidémiologie du cancer de la prostate. Med. Nucl. (Paris), 2008, 32(1), 2-4.
[http://dx.doi.org/10.1016/j.mednuc.2007.11.003]
[6]
Goulart, L.R.; Vieira, C.U.; Freschi, A.P.P.; Capparelli, F.E.; Fujimura, P.T.; Almeida, J.F.; Ferreira, L.F.; Goulart, I.M.B.; Brito-Madurro, A.G.; Madurro, J.M. Biomarkers for serum diagnosis of infectious diseases and their potential application in novel sensor platforms. Crit. Rev. Immunol., 2010, 30(2), 201-222.
[http://dx.doi.org/10.1615/CritRevImmunol.v30.i2.70] [PMID: 20370630]
[7]
Uhlirova, D.; Stankova, M.; Docekalova, M. Superparamagnetic iron oxide nanoparticles (spions) modified with sarcosine oxidase-enzymatic activity analysis by sds-page. In: Proceedings of 10th Nanomaterials international conference 2018 (NANOCON 2018): research and application, 17-19 October 2018, Brno, Czech Republic. Ostrava: Tanger Ltd, , pp. 360-364.
[8]
Rajarathinam, T.; Kwon, M.; Thirumalai, D.; Kim, S.; Lee, S.; Yoon, J.H.; Paik, H.; Kim, S.; Lee, J.; Ha, H.K.; Chang, S.C. Polymer-dispersed reduced graphene oxide nanosheets and Prussian blue modified biosensor for amperometric detection of sarcosine. Anal. Chim. Acta, 2021, 1175, 338749.
[http://dx.doi.org/10.1016/j.aca.2021.338749] [PMID: 34330447]
[9]
Manan, A. Synthesis and structural analysis of copper (II) glutathione complexes via Cu-S linkage. World Appl. Sci. J., 2014, 29(11), 1357-1362.
[http://dx.doi.org/10.5829/idosi.wasj.2014.29.11.1648]
[10]
Selvaraj, S.; Varshini, K.S.; Sonia, T.; Jeyaprakash, B.G.; Balamurugan, D. Spray deposited ZnO nanograins for enzyme-free detection of sarcosine. Sens. Imaging, 2021, 22(1), 46.
[http://dx.doi.org/10.1007/s11220-021-00369-9]
[11]
Dimitrova, M.; Turmanova, S.; Vassilev, K. Complexes of glutathione with heavy metals as catalysts for oxidation. React. Kinet. Mech. Catal., 2009, 99, 69-78.
[http://dx.doi.org/10.1007/s11144-009-0118-x]
[12]
Shmaefsky, B. How-to-do-it arifical urine for revisited. Am. Biol. Teach., 2013, 57, 428-430.
[13]
Mondol, P.; Barile, C.J. Four-electron electrocatalytic O2 reduction by a ferrocene-modified glutathione complex of Cu. ACS Appl. Energy Mater., 2021, 4(9), 9611-9617.
[http://dx.doi.org/10.1021/acsaem.1c01753]
[14]
Charoen-amornkitt, P.; Suzuki, T.; Tsushima, S. Determination of effective surface area and reaction rate constant by cyclic voltammetry considering ohmic resistance and CPE effects. ECS Meet.Abstr 2018.MA2018-01,2106,
[15]
Kosov, A.V.; Grishenkova, O.V.; Semerikova, O.L.; Isaev, V.A.; Zaikov, Y.P. On the theory of cyclic voltammetry for multiple nucleation and growth: Scan rate influence. J. Electroanal. Chem. (Lausanne), 2021, 883, 115056.
[http://dx.doi.org/10.1016/j.jelechem.2021.115056]
[16]
Scott, K. Electrochemical Principles and Characterization of Bioelectrochemical Systems; Elsevier Ltd., 2016.
[http://dx.doi.org/10.1016/B978-1-78242-375-1.00002-2]
[17]
Kumar, P.; Narwal, V.; Jaiwal, R.; Pundir, C.S. Construction and application of amperometric sarcosine biosensor based on SOxNPs/AuE for determination of prostate cancer. Biosens. Bioelectron., 2018, 122, 140-146.
[http://dx.doi.org/10.1016/j.bios.2018.09.003] [PMID: 30248641]
[18]
Narwal, V.; Kumar, P.; Joon, P.; Pundir, C.S. Fabrication of an amperometric sarcosine biosensor based on sarcosine oxidase/chitosan/CuNPs/c-MWCNT/Au electrode for detection of prostate cancer. Enzyme Microb. Technol., 2018, 113, 44-51.
[http://dx.doi.org/10.1016/j.enzmictec.2018.02.010] [PMID: 29602386]
[19]
Wang, Q.; Yang, C.; Yang, Q.; Yu, S.; Yang, H. Platinum-loaded mesoporous nickel phosphonate and its electrochemical application for sarcosine detection. Anal. Chim. Acta, 2019, 1046, 93-98.
[http://dx.doi.org/10.1016/j.aca.2018.09.027] [PMID: 30482306]
[20]
Hu, J.; Wei, W.; Ke, S.; Zeng, X.; Lin, P. A novel and sensitive sarcosine biosensor based on organic electrochemical transistor. Electrochim. Acta, 2019, 307, 100-106.
[http://dx.doi.org/10.1016/j.electacta.2019.03.180]
[21]
Wang, H.; Qi, Y.; Wu, D.; Wei, Q. A photoelectrochemical self-powered sensor for the detection of sarcosine based on NiO NSs/PbS/Au NPs as photocathodic material. J. Hazard. Mater., 2021, 416, 126201.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126201] [PMID: 34492964]
[22]
Nguy, T.P.; Van Phi, T.; Tram, D.T.N.; Eersels, K.; Wagner, P.; Lien, T.T.N. Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors. Sens. Actuators B Chem., 2017, 246, 461-470.
[http://dx.doi.org/10.1016/j.snb.2017.02.101]
[23]
Tang, P.; Wang, Y.; He, F. Electrochemical sensor based on super-magnetic metal–organic framework@molecularly imprinted polymer for Sarcosine detection in urine. J. Saudi Chem. Soc., 2020, 24(8), 620-630.
[http://dx.doi.org/10.1016/j.jscs.2020.06.004]
[24]
Ramezani, Z.; Safdarian, M.; Ghadiri, A.A. Metal-coded hydrogel magnetic molecularly imprinted polymer for preconcentration and cleanup of sarcosine: Determination in urine; coupled to on-column capillary electrophoresis. Talanta, 2021, 230, 122309.
[http://dx.doi.org/10.1016/j.talanta.2021.122309] [PMID: 33934774]
[25]
Mohammad, M.F.; Shohreh Jahani, Z.A.; Motahare, V. Template-free synthesis of ZnO/Fe3O4/Carbon magnetic nanocomposite: Nanotubes with hexagonal cross sections and their electrocatalytic property for simultaneous determination of oxymorphone and heroin. Microchem. J., 2021, 170, 106679.
[http://dx.doi.org/10.1016/j.microc.2021.106679]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy