Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

The Role of Various Factors in Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells with a Special Focus on the Physical Stimulants

Author(s): Sajad Seyyedin, Massood Ezzatabadipour and Seyed Noureddin Nematollahi-Mahani*

Volume 19, Issue 2, 2024

Published on: 15 February, 2023

Page: [166 - 177] Pages: 12

DOI: 10.2174/1574888X18666230124151311

Price: $65

Abstract

Human umbilical cord matrix-derived mesenchymal stem cells (hUCMs) are considered as ideal tools for cell therapy procedures and regenerative medicine. The capacity of these cells to differentiate into neural lineage cells make them potentially important in the treatment of various neurodegenerative diseases. An electronic search was performed in Web of Science, PubMed/MEDLINE, Scopus and Google Scholar databases for articles published from January 1990 to March 2022. This review discusses the current knowledge on the effect of various factors, including physical, chemical and biological stimuli which play a key role in the differentiation of hUCMs into neural and glial cells. Moreover, the currently understood molecular mechanisms involved in the neural differentiation of hUCMs under various environmental stimuli are reviewed. Various stimuli, especially physical stimuli and specifically different light sources, have revealed effects on neural differentiation of mesenchymal stem cells, including hUCMs; however, due to the lack of information about the exact mechanisms, there is still a need to find optimal conditions to promote the differentiation capacity of these cells which in turn can lead to significant progress in the clinical application of hUCMs for the treatment of neurological disorders.

Graphical Abstract

[1]
Dehghani SS, Babaee A, Shojaei M, et al. Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells. Lasers Med Sci 2016; 31(2): 255-61.
[http://dx.doi.org/10.1007/s10103-015-1846-y] [PMID: 26714979]
[2]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[3]
Elahi KC, Klein G, Avci-Adali M, Sievert KD, MacNeil S, Aicher WK. Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem Cells Int 2016; 2016: 5646384.
[http://dx.doi.org/10.1155/2016/5646384] [PMID: 26770208]
[4]
Persson M, Lehenkari PP, Berglin L, et al. Osteogenic differentiation of human mesenchymal stem cells in a 3d woven scaffold. Sci Rep 2018; 8(1): 10457.
[http://dx.doi.org/10.1038/s41598-018-28699-x] [PMID: 29993043]
[5]
Fink T, Zachar V. Adipogenic differentiation of human mesenchymal stem cells. Mesenchymal Stem Cell Assays and Applications Methods in Molecular Biology. Totowa, NJ: Humana Press 2011; pp. 243-51.
[http://dx.doi.org/10.1007/978-1-60761-999-4_19]
[6]
Hui TY, Cheung KMC, Cheung WL, Chan D, Chan BP. in vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: Influence of cell seeding density and collagen concentration. Biomaterials 2008; 29(22): 3201-12.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.001] [PMID: 18462789]
[7]
Gang EJ, Jeong JA, Hong SH, et al. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 2004; 22(4): 617-24.
[http://dx.doi.org/10.1634/stemcells.22-4-617] [PMID: 15277707]
[8]
Latifpour M, Nematollahi-Mahani SN, Deilamy M, et al. Improvement in cardiac function following transplantation of human umbilical cord matrix-derived mesenchymal cells. Cardiology 2011; 120(1): 9-18.
[http://dx.doi.org/10.1159/000332581] [PMID: 22085866]
[9]
Dehghani-Soltani S, Shojaee M, Jalalkamali M, Babaee A, Nematollahi-mahani SN. Effects of light emitting diode irradiation on neural differentiation of human umbilical cord-derived mesenchymal cells. Sci Rep 2017; 7(1): 9976.
[http://dx.doi.org/10.1038/s41598-017-10655-w] [PMID: 28855704]
[10]
Fong CY, Subramanian A, Gauthaman K, et al. Human umbilical cord Wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev 2012; 8(1): 195-209.
[http://dx.doi.org/10.1007/s12015-011-9289-8] [PMID: 21671058]
[11]
Salehinejad P, Alitheen NB, Ali AM, et al. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. in vitro Cell Dev Biol Anim 2012; 48(2): 75-83.
[http://dx.doi.org/10.1007/s11626-011-9480-x] [PMID: 22274909]
[12]
Guo L, Wang L, Wang L, et al. Resveratrol induces differentiation of human umbilical cord mesenchymal stem cells into neuron-like cells. Stem Cells Int 2017; 2017: 1651325.
[http://dx.doi.org/10.1155/2017/1651325] [PMID: 28512471]
[13]
Nan C, Guo L, Zhao Z, et al. Tetramethylpyrazine induces differentiation of human umbilical cord-derived mesenchymal stem cells into neuron-like cells in vitro. Int J Oncol 2016; 48(6): 2287-94.
[http://dx.doi.org/10.3892/ijo.2016.3449] [PMID: 27035275]
[14]
Frausin S, Viventi S, Verga Falzacappa L, et al. Wharton’s jelly derived mesenchymal stromal cells: Biological properties, induction of neuronal phenotype and current applications in neurodegeneration research. Acta Histochem 2015; 117(4-5): 329-38.
[http://dx.doi.org/10.1016/j.acthis.2015.02.005] [PMID: 25747736]
[15]
Reyhani S, Abbaspanah B, Mousavi SH. Umbilical cord-derived mesenchymal stem cells in neurodegenerative disorders: from literature to clinical practice. Regen Med 2020; 15(4): 1561-78.
[http://dx.doi.org/10.2217/rme-2019-0119] [PMID: 32479211]
[16]
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157: 49-78.
[http://dx.doi.org/10.1016/j.pneurobio.2017.03.003] [PMID: 28322920]
[17]
Nouri F, Salehinejad P, Nematollahi-mahani SN, Kamarul T, Zarrindast MR, Sharifi AM. Deferoxamine preconditioning of neural-like cells derived from human wharton’s jelly mesenchymal stem cells as a strategy to promote their tolerance and therapeutic potential: An in vitro study. Cell Mol Neurobiol 2016; 36(5): 689-700.
[http://dx.doi.org/10.1007/s10571-015-0249-8] [PMID: 26242172]
[18]
Chen H, Wu H, Yin H, et al. Effect of photobiomodulation on neural differentiation of human umbilical cord mesenchymal stem cells. Lasers Med Sci 2019; 34(4): 667-75.
[http://dx.doi.org/10.1007/s10103-018-2638-y] [PMID: 30232645]
[19]
Zhang L, Tan X, Dong C, et al. in vitro differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs), derived from Wharton’s jelly, into choline acetyltransferase (ChAT)‐positive cells. Int J Dev Neurosci 2012; 30(6): 471-7.
[http://dx.doi.org/10.1016/j.ijdevneu.2012.05.006] [PMID: 22683696]
[20]
Salehinejad P, Alitheen NB, Ali AM, et al. Neural differentiation of human umbilical cord matrix-derived mesenchymal cells under special culture conditions. Cytotechnology 2015; 67(3): 449-60.
[http://dx.doi.org/10.1007/s10616-014-9703-6] [PMID: 25344875]
[21]
Cho H, Seo YK, Jeon S, Yoon HH, Choi YK, Park JK. Neural differentiation of umbilical cord mesenchymal stem cells by sub-sonic vibration. Life Sci 2012; 90(15-16): 591-9.
[http://dx.doi.org/10.1016/j.lfs.2012.02.014] [PMID: 22406078]
[22]
Marks PW, Witten CM, Califf RM. Clarifying stem-cell therapy’s benefits and risks. N Engl J Med 2017; 376(11): 1007-9.
[http://dx.doi.org/10.1056/NEJMp1613723] [PMID: 27959704]
[23]
Rhee KJ, Lee J, Eom Y. Mesenchymal stem cell-mediated effects of tumor support or suppression. Int J Mol Sci 2015; 16(12): 30015-33.
[http://dx.doi.org/10.3390/ijms161226215] [PMID: 26694366]
[24]
Xinaris C, Morigi M, Benedetti V, et al. A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion. Cell Transplant 2013; 22(3): 423-36.
[http://dx.doi.org/10.3727/096368912X653246] [PMID: 22889699]
[25]
Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75(1): 50-83.
[http://dx.doi.org/10.1128/MMBR.00031-10] [PMID: 21372320]
[26]
George S, Hamblin MR, Abrahamse H. Differentiation of mesenchymal stem cells to neuroglia: in the context of cell signalling. Stem Cell Rev Rep 2019; 15(6): 814-26.
[http://dx.doi.org/10.1007/s12015-019-09917-z] [PMID: 31515658]
[27]
Zecha JAEM, Raber-Durlacher JE, Nair RG, et al. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer 2016; 24(6): 2781-92.
[http://dx.doi.org/10.1007/s00520-016-3152-z] [PMID: 26984240]
[28]
Chen H, Wang H, Li Y, Liu W, Wang C, Chen Z. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells. AIP Adv 2016; 6(4): 045018.
[http://dx.doi.org/10.1063/1.4948442]
[29]
Wu H, Zang Z, Pan Z, et al. Combined effects of low level laser therapy and inducers on the neural differentiation of mesenchymal stem cells. IEEE Access 2021; 9: 28946-53.
[http://dx.doi.org/10.1109/ACCESS.2021.3052942]
[30]
Migliario M, Pittarella P, Fanuli M, Rizzi M, Renò F. Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 2014; 29(4): 1463-7.
[http://dx.doi.org/10.1007/s10103-014-1556-x] [PMID: 24595962]
[31]
Zhang L, Wang G, Chen X, et al. Formyl peptide receptors promotes neural differentiation in mouse neural stem cells by ROS generation and regulation of PI3K-AKT signaling. Sci Rep 2017; 7(1): 206.
[http://dx.doi.org/10.1038/s41598-017-00314-5] [PMID: 28303030]
[32]
Zhu XW, Ding K, Dai XY, Ling WQ. β-aminoisobutyric acid accelerates the proliferation and differentiation of MC3T3-E1 cells viamoderate activation of ROS signaling. J Chin Med Assoc 2018; 81(7): 611-8.
[http://dx.doi.org/10.1016/j.jcma.2017.12.005] [PMID: 29650417]
[33]
Zhang Y, Hu W. NFκB signaling regulates embryonic and adult neurogenesis. Front Biol 2012; 7(4): 277-91.
[http://dx.doi.org/10.1007/s11515-012-1233-z] [PMID: 24324484]
[34]
Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009; 1(4): a000034.
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[35]
Morgan MJ, Liu Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011; 21(1): 103-15.
[http://dx.doi.org/10.1038/cr.2010.178] [PMID: 21187859]
[36]
Kushibiki T, Hirasawa T, Okawa S, Ishihara M. Low reactive level laser therapy for mesenchymal stromal cells therapies. Stem Cells Int 2015; 2015: 974864.
[http://dx.doi.org/10.1155/2015/974864]
[37]
Mansano BSDM, da Rocha VP, Antonio EL, et al. Enhancing the therapeutic potential of mesenchymal stem cells with light-emitting diode: Implications and molecular mechanisms. Oxidative Medicine and Cellular Longevity 2021; 2021: 6663539.
[http://dx.doi.org/10.1155/2021/6663539]
[38]
Yeh NG, Wu CH, Cheng TC. Light-emitting diodes—their potential in biomedical applications. Renew Sustain Energy Rev 2010; 14(8): 2161-6.
[http://dx.doi.org/10.1016/j.rser.2010.02.015]
[39]
Babaee A, Nematollahi-Mahani SN, Dehghani-Soltani S, Shojaei M, Ezzatabadipour M. Photobiomodulation and gametogenic potential of human Wharton’s jelly-derived mesenchymal cells. Biochem Biophys Res Commun 2019; 514(1): 239-45.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.059] [PMID: 31029424]
[40]
Babaee A, Nematollahi-mahani SN, Shojaei M, Dehghani-Soltani S, Ezzatabadipour M. Effects of polarized and non-polarized red-light irradiation on proliferation of human Wharton’s jelly-derived mesenchymal cells. Biochem Biophys Res Commun 2018; 504(4): 871-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.010] [PMID: 30219226]
[41]
Peng F, Wu H, Zheng Y, Xu X, Yu J. The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 2012; 27(3): 645-53.
[http://dx.doi.org/10.1007/s10103-011-1005-z] [PMID: 22016038]
[42]
Vale KL, Maria DA, Picoli LC, et al. The effects of photobiomodulation delivered by light-emitting diode on stem cells from human exfoliated deciduous teeth: A study on the relevance to pluripotent stem cell viability and proliferation. Photomed Laser Surg 2017; 35(12): 659-65.
[http://dx.doi.org/10.1089/pho.2017.4279] [PMID: 28937927]
[43]
Zhu T, Wu Y, Zhou X, Yang Y, Wang Y. Irradiation by blue light-emitting diode enhances osteogenic differentiation in gingival mesenchymal stem cells in vitro. Lasers Med Sci 2019; 34(7): 1473-81.
[http://dx.doi.org/10.1007/s10103-019-02750-3] [PMID: 30826951]
[44]
Karu TI. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 2010; 62(8): 607-10.
[http://dx.doi.org/10.1002/iub.359] [PMID: 20681024]
[45]
Winterle JS, Einarsdóttir Ó. Photoreactions of cytochrome C Oxidase. Photochem Photobiol 2006; 82(3): 711-9.
[http://dx.doi.org/10.1562/2005-09-14-RA-684] [PMID: 16789843]
[46]
Zein R, Selting W, Hamblin MR. Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt 2018; 23(12): 1-17.
[http://dx.doi.org/10.1117/1.JBO.23.12.120901] [PMID: 30550048]
[47]
de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 2016; 22(3): 348-64.
[http://dx.doi.org/10.1109/JSTQE.2016.2561201] [PMID: 28070154]
[48]
Li WT, Leu YC, Wu JL. Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 2010; 28 (Suppl. 1): S-157-65.
[http://dx.doi.org/10.1089/pho.2009.2540] [PMID: 20583914]
[49]
Kim JE, Woo YJ, Sohn KM, Jeong KH, Kang H. Wnt/β-catenin and ERK pathway activation: A possible mechanism of photobiomodulation therapy with light-emitting diodes that regulate the proliferation of human outer root sheath cells. Lasers Surg Med 2017; 49(10): 940-7.
[http://dx.doi.org/10.1002/lsm.22736] [PMID: 28944964]
[50]
Rhee YH, Moon JH, Jung JY, Oh C, Ahn JC, Chung PS. Effect of photobiomodulation therapy on neuronal injuries by ouabain: the regulation of Na, K-ATPase; Src; and mitogen-activated protein kinase signaling pathway. BMC Neurosci 2019; 20(1): 19.
[http://dx.doi.org/10.1186/s12868-019-0499-3] [PMID: 31027504]
[51]
Serrage H, Heiskanen V, Palin WM, et al. Under the spotlight: Mechanisms of photobiomodulation concentrating on blue and green light. Photochem Photobiol Sci 2019; 18(8): 1877-909.
[http://dx.doi.org/10.1039/c9pp00089e] [PMID: 31183484]
[52]
Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: Role of intracellular calcium and light-gated ion channels. Sci Rep 2016; 6(1): 33719.
[http://dx.doi.org/10.1038/srep33719] [PMID: 27650508]
[53]
Delghandi MP, Johannessen M, Moens U. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell Signal 2005; 17(11): 1343-51.
[http://dx.doi.org/10.1016/j.cellsig.2005.02.003] [PMID: 16125054]
[54]
Zhou J, Cheng L, Sun X, et al. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation. Front Mater Sci 2016; 10(3): 260-9.
[http://dx.doi.org/10.1007/s11706-016-0348-6]
[55]
Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays 2000; 22(2): 108-12.
[http://dx.doi.org/10.1002/(SICI)1521-1878(200002)22:2<108:AID-BIES2>3.0.CO;2-M] [PMID: 10655030]
[56]
Sun D, Bullock MR, McGinn MJ, et al. Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol 2009; 216(1): 56-65.
[http://dx.doi.org/10.1016/j.expneurol.2008.11.011] [PMID: 19100261]
[57]
Yang H, Xia Y, Lu SQ, Soong TW, Feng ZW. Basic fibroblast growth factor-induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1. J Biol Chem 2008; 283(9): 5287-95.
[http://dx.doi.org/10.1074/jbc.M706917200] [PMID: 18171671]
[58]
Kang M, Kwon J, Kim M. Induction of neuronal differentiation of rat muscle-derived stem cells in vitro using basic fibroblast growth factor and ethosuximide. Int J Mol Sci 2013; 14(4): 6614-23.
[http://dx.doi.org/10.3390/ijms14046614] [PMID: 23528890]
[59]
Jiujun P, Zhiming W, Xiankun M, Hongdian Z. Transdifferentiation of human umbilical cord stromal cells to neurogenic-like cells. Rehab Sci 2021; 6(4): 76-82.
[http://dx.doi.org/10.11648/j.rs.20210604.14]
[60]
Zhang HT, Fan J, Cai YQ, et al. Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. Differentiation 2010; 79(1): 15-20.
[http://dx.doi.org/10.1016/j.diff.2009.09.002] [PMID: 19800163]
[61]
Peng J, Wang Y, Zhang L, et al. Human umbilical cord wharton’s jelly-derived mesenchymal stem cells differentiate into a schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Res Bull 2011; 84(3): 235-43.
[http://dx.doi.org/10.1016/j.brainresbull.2010.12.013] [PMID: 21194558]
[62]
Leite C, Silva NT, Mendes S, et al. Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. PLoS One 2014; 9(10): e111059.
[http://dx.doi.org/10.1371/journal.pone.0111059] [PMID: 25357129]
[63]
Peng C, Li Y, Lu L, Zhu J, Li H, Hu J. Efficient one-step induction of human umbilical cord-derived mesenchymal stem cells (UC-MSCS) produces msc-derived neurospheres (MSC-NS) with unique transcriptional profile and enhanced neurogenic and angiogenic secretomes. Stem Cells Int 2019; 2019: 9208173.
[http://dx.doi.org/10.1155/2019/9208173] [PMID: 31933651]
[64]
Belov AA, Mohammadi M. Molecular mechanisms of fibroblast growth factor signaling in physiology and pathology. Cold Spring Harb Perspect Biol 2013; 5(6): a015958.
[http://dx.doi.org/10.1101/cshperspect.a015958] [PMID: 23732477]
[65]
Yun YR, Won JE, Jeon E, et al. Fibroblast growth factors: Biology, function, and application for tissue regeneration. J Tissue Eng 2010; 1(1): 218142.
[http://dx.doi.org/10.4061/2010/218142] [PMID: 21350642]
[66]
Ai G, Shao X, Meng M, et al. Epidermal growth factor promotes proliferation and maintains multipotency of continuous cultured adipose stem cells via activating STAT signal pathway in vitro. Medicine 2017; 96(30): e7607.
[http://dx.doi.org/10.1097/MD.0000000000007607] [PMID: 28746211]
[67]
Boonstra J, Rijken P, Humbel B, Cremers F, Verkleij A, van Bergen EHP. The epidermal growth factor. Cell Biol Int 1995; 19(5): 413-30.
[http://dx.doi.org/10.1006/cbir.1995.1086] [PMID: 7640657]
[68]
Angénieux B, Schorderet DF, Arsenijevic Y. Epidermal growth factor is a neuronal differentiation factor for retinal stem cells in vitro. Stem Cells 2006; 24(3): 696-706.
[http://dx.doi.org/10.1634/stemcells.2005-0190] [PMID: 16179425]
[69]
Salehinejad P, Alitheen NB, Mandegary A, Nematollahi-mahani SN, Janzamin E. Effect of EGF and FGF on the expansion properties of human umbilical cord mesenchymal cells. in vitro Cell Dev Biol Anim 2013; 49(7): 515-23.
[http://dx.doi.org/10.1007/s11626-013-9631-3] [PMID: 23708920]
[70]
Chen S, Zhang W, Wang JM, et al. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells. Int J Ophthalmol 2016; 9(1): 41-7.
[http://dx.doi.org/10.18240/ijo.2016.01.07] [PMID: 26949608]
[71]
Scalabrino G. Epidermal growth factor in the cns: A beguiling journey from integrated cell biology to multiple sclerosis. an extensive translational overview. Cell Mol Neurobiol 2020; 42(4): 891-916.
[http://dx.doi.org/10.1007/s10571-020-00989-x] [PMID: 33151415]
[72]
Wang T, Yuan W, Liu Y, et al. The role of the JAK-STAT pathway in neural stem cells, neural progenitor cells and reactive astrocytes after spinal cord injury. Biomed Rep 2015; 3(2): 141-6.
[http://dx.doi.org/10.3892/br.2014.401] [PMID: 25798237]
[73]
Zhao L, Feng Y, Chen X, et al. Effects of IGF-1 on neural differentiation of human umbilical cord derived mesenchymal stem cells. Life Sci 2016; 151: 93-101.
[http://dx.doi.org/10.1016/j.lfs.2016.03.001] [PMID: 26946309]
[74]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 6(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[75]
Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors 2004; 22(3): 123-31.
[http://dx.doi.org/10.1080/08977190410001723308] [PMID: 15518235]
[76]
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 2019; 13: 363.
[http://dx.doi.org/10.3389/fncel.2019.00363] [PMID: 31440144]
[77]
Han F, Chen C, Wang W, et al. Human umbilical cord-derived mesenchymal stromal cells ameliorated motor defects of 6-OHDA-induced rat model of Parkinson’s disease. Oncotarget 2015; 2015: 5.
[78]
Chen BY, Wang X, Wang ZY, Wang YZ, Chen LW, Luo ZJ. Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/β-catenin signaling pathway. J Neurosci Res 2013; 91(1): 30-41.
[PMID: 23023811]
[79]
Ross SA, McCaffery PJ, Drager UC, De Luca LM. Retinoids in embryonal development. Physiol Rev 2000; 80(3): 1021-54.
[http://dx.doi.org/10.1152/physrev.2000.80.3.1021] [PMID: 10893430]
[80]
Chanda B, Ditadi A, Iscove NN, Keller G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 2013; 155(1): 215-27.
[http://dx.doi.org/10.1016/j.cell.2013.08.055] [PMID: 24074870]
[81]
Kin Ting Kam R, Deng Y, Chen Y, Zhao H. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci 2012; 2(1): 11.
[http://dx.doi.org/10.1186/2045-3701-2-11] [PMID: 22439772]
[82]
Jin W, Xu YP, Yang AH, Xing YQ. in vitro induction and differentiation of umbilical cord mesenchymal stem cells into neuron-like cells by all-trans retinoic acid. Int J Ophthalmol 2015; 8(2): 250-6.
[PMID: 25938036]
[83]
Kawasaki H, Mizuseki K, Nishikawa S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000; 28(1): 31-40.
[http://dx.doi.org/10.1016/S0896-6273(00)00083-0] [PMID: 11086981]
[84]
Okada Y, Shimazaki T, Sobue G, Okano H. Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev Biol 2004; 275(1): 124-42.
[http://dx.doi.org/10.1016/j.ydbio.2004.07.038] [PMID: 15464577]
[85]
Kouchakian MR, Koruji M, Najafi M, et al. Human umbilical cord mesenchymal stem cells express cholinergic neuron markers during co-culture with amniotic membrane cells and retinoic acid induction. Med J Islam Repub Iran 2021; 35(1): 129.
[http://dx.doi.org/10.47176/mjiri.35.129] [PMID: 35321367]
[86]
Lu J, Tan L, Li P, et al. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells viamultiple pathways. BMC Cell Biol 2009; 10(1): 57.
[http://dx.doi.org/10.1186/1471-2121-10-57] [PMID: 19642999]
[87]
Shan ZY, Shen JL, Li QM, et al. pCREB is involved in neural induction of mouse embryonic stem cells by RA. Anat Rec 2008; 291(5): 519-26.
[http://dx.doi.org/10.1002/ar.20686] [PMID: 18383274]
[88]
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72(8): 1559-76.
[http://dx.doi.org/10.1007/s00018-014-1815-9] [PMID: 25558812]
[89]
Li J, Gong X. Tetramethylpyrazine: An active ingredient of chinese herbal medicine with therapeutic potential in acute kidney injury and renal fibrosis. Front Pharmacol 2022; 13: 820071.
[http://dx.doi.org/10.3389/fphar.2022.820071] [PMID: 35145414]
[90]
Zhao Y, Liu Y, Chen K. Mechanisms and clinical application of tetramethylpyrazine (an interesting natural compound isolated from Ligusticum wallichii): Current status and perspective. Oxid Med Cell Longev 2016; 2016: 2124638.
[http://dx.doi.org/10.1155/2016/2124638] [PMID: 27668034]
[91]
Li J, Yu J, Liu Y, et al. Expression of the matrix metalloproteinases and the tissue inhibitor of metalloproteinase factors are affected by tetramethylpyrazine treatment in a renal interstitial fibrosis rat model. J Hard Tissue Biol 2014; 23(3): 309-16.
[http://dx.doi.org/10.2485/jhtb.23.309]
[92]
Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis Oncol 2017; 1(1): 35.
[http://dx.doi.org/10.1038/s41698-017-0038-6]
[93]
Yao Y, Zhou R, Bai R, et al. Resveratrol promotes the survival and neuronal differentiation of hypoxia-conditioned neuronal progenitor cells in rats with cerebral ischemia. Front Med 2021; 15(3): 472-85.
[http://dx.doi.org/10.1007/s11684-021-0832-y] [PMID: 33263836]
[94]
Ramírez-Garza S, Laveriano-Santos E, Marhuenda-Muñoz M, et al. Health effects of resveratrol: Results from human intervention trials. Nutrients 2018; 10(12): 1892.
[http://dx.doi.org/10.3390/nu10121892] [PMID: 30513922]
[95]
Wang X, Ma S, Meng N, et al. Resveratrol exerts dosage-dependent effects on the self-renewal and neural differentiation of hUC-MSCs. Mol Cells 2016; 39(5): 418-25.
[http://dx.doi.org/10.14348/molcells.2016.2345] [PMID: 27109421]
[96]
Song LH, Pan W, Yu YH, Quarles LD, Zhou HH, Xiao ZS. Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway. Toxicol In Vitro 2006; 20(6): 915-22.
[http://dx.doi.org/10.1016/j.tiv.2006.01.016] [PMID: 16524694]
[97]
Tsai JH, Hsu LS, Lin CL, et al. 3,5,4′-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/β-catenin signaling cascades and reversal of epithelial–mesenchymal transition. Toxicol Appl Pharmacol 2013; 272(3): 746-56.
[http://dx.doi.org/10.1016/j.taap.2013.07.019] [PMID: 23921149]
[98]
Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the brain: Physiology, pathophysiology and therapeutic applications. Front Neurosci 2020; 14: 572965.
[http://dx.doi.org/10.3389/fnins.2020.572965] [PMID: 33117120]
[99]
Chiricozzi E, Lunghi G, Di Biase E, Fazzari M, Sonnino S, Mauri L. GM1 ganglioside is a key factor in maintaining the mammalian neuronal functions avoiding neurodegeneration. Int J Mol Sci 2020; 21(3): 868.
[http://dx.doi.org/10.3390/ijms21030868] [PMID: 32013258]
[100]
Wang W, Huang M, Lin T, Lu C, Liu J. Neuroprotective effect of monosialotetrahexosylganglioside (GM1) on patients with parkinson’s disease anesthetized by ketamine under denoising algorithm-based ultrasound image diagnosis. Sci Program 2021; 2021: 2253431.
[http://dx.doi.org/10.1155/2021/2253431]
[101]
Nan C, Shi Y, Zhao Z, et al. Monosialoteterahexosyl ganglioside induces the differentiation of human umbilical cord-derived mesenchymal stem cells into neuron-like cells. Int J Mol Med 2015; 36(4): 1057-62.
[http://dx.doi.org/10.3892/ijmm.2015.2307] [PMID: 26259830]
[102]
Liberini P, Pioro EP, Maysinger D, Ervin FR, Cuello AC. Long-term protective effects of human recombinant nerve growth factor and monosialoganglioside GM1 treatment on primate nucleus basalis cholinergic neurons after neocortical infarction. Neuroscience 1993; 53(3): 625-37.
[http://dx.doi.org/10.1016/0306-4522(93)90611-I] [PMID: 8487947]
[103]
Liu H, Mi S, Li Z, et al. SB216763, a selective small molecule inhibitor of glycogen synthase kinase-3, improves bleomycin-induced pulmonary fibrosis via activating autophagy. Acta Pharm Sin B 2013; 3(4): 226-33.
[http://dx.doi.org/10.1016/j.apsb.2013.05.004]
[104]
Gao L, Zhao M, Li P, et al. Glycogen synthase kinase 3 (GSK3)-inhibitor SB216763 promotes the conversion of human umbilical cord mesenchymal stem cells into neural precursors in adherent culture. Hum Cell 2017; 30(1): 11-22.
[http://dx.doi.org/10.1007/s13577-016-0146-6] [PMID: 27604750]
[105]
Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ. Exosome release of β-catenin: A novel mechanism that antagonizes Wnt signaling. J Cell Biol 2010; 190(6): 1079-91.
[http://dx.doi.org/10.1083/jcb.201002049] [PMID: 20837771]
[106]
Chen Y, Guan Y, Liu H, et al. Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. Biochem Biophys Res Commun 2012; 420(2): 397-403.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.006] [PMID: 22426476]
[107]
Machon O, Backman M, Machonova O, et al. A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Dev Biol 2007; 311(1): 223-37.
[http://dx.doi.org/10.1016/j.ydbio.2007.08.038] [PMID: 17916349]
[108]
Rosso SB, Inestrosa NC. WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 2013; 7: 103.
[http://dx.doi.org/10.3389/fncel.2013.00103] [PMID: 23847469]
[109]
Singh M, Vaishnav PK, Dinda AK, Mohanty S. Evaluation of priming efficiency of forskolin in tissue-specific human mesenchymal stem cells into dopaminergic neurons: An in vitro comparative Study. Cells 2020; 9(9): 2058.
[http://dx.doi.org/10.3390/cells9092058] [PMID: 32917012]
[110]
Kim SS, Choi JM, Kim JW, et al. cAMP induces neuronal differentiation of mesenchymal stem cells via activation of extracellular signal-regulated kinase/MAPK. Neuroreport 2005; 16(12): 1357-61.
[http://dx.doi.org/10.1097/01.wnr.0000175243.12966.f5] [PMID: 16056139]
[111]
Rooney GE, Howard L, O’Brien T, Windebank AJ, Barry FP. Elevation of cAMP in mesenchymal stem cells transiently upregulates neural markers rather than inducing neural differentiation. Stem Cells Dev 2009; 18(3): 387-98.
[http://dx.doi.org/10.1089/scd.2008.0080] [PMID: 18554089]
[112]
Jang S, Cho HH, Cho YB, Park JS, Jeong HS. Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol 2010; 11(1): 25.
[http://dx.doi.org/10.1186/1471-2121-11-25] [PMID: 20398362]
[113]
Shahbazi A, Safa M, Alikarami F, et al. Rapid induction of neural differentiation in human umbilical cord matrix mesenchymal stem cells by camp-elevating agents. Int J Mol Cell Med 2016; 5(3): 167-77.
[PMID: 27942503]
[114]
Thompson R, Casali C, Chan C. Forskolin and ibmx induce neural transdifferentiation of mscs through downregulation of the NRSF. Sci Rep 2019; 9(1): 2969.
[http://dx.doi.org/10.1038/s41598-019-39544-0] [PMID: 30814572]
[115]
Yan K, Gao LN, Cui YL, Zhang Y, Zhou X. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). Mol Med Rep 2016; 13(5): 3715-23.
[http://dx.doi.org/10.3892/mmr.2016.5005] [PMID: 27035868]
[116]
Farivar S, Mohamadzade Z, Shiari R, Fahimzad A. Neural differentiation of human umbilical cord mesenchymal stem cells by cerebrospinal fluid. Iran J Child Neurol 2015; 9(1): 87-93.
[PMID: 25767544]
[117]
Stopa EG, Berzin TM, Kim S, et al. Human choroid plexus growth factors: What are the implications for CSF dynamics in Alzheimer’s disease? Exp Neurol 2001; 167(1): 40-7.
[http://dx.doi.org/10.1006/exnr.2000.7545] [PMID: 11161591]
[118]
Ren C, Yin P, Ren N, et al. Cerebrospinal fluid-stem cell interactions may pave the path for cell-based therapy in neurological diseases. Stem Cell Res Ther 2018; 9(1): 66.
[http://dx.doi.org/10.1186/s13287-018-0807-3] [PMID: 29523182]
[119]
Illes S. More than a drainage fluid: The role of CSF in signaling in the brain and other effects on brain tissue. Handb Clin Neurol 2018; 146: 33-46.
[http://dx.doi.org/10.1016/B978-0-12-804279-3.00003-4] [PMID: 29110778]
[120]
González-Orozco JC, Camacho-Arroyo I. Progesterone actions during central nervous system development. Front Neurosci 2019; 13: 503.
[http://dx.doi.org/10.3389/fnins.2019.00503] [PMID: 31156378]
[121]
Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 2012; 6: 10.
[http://dx.doi.org/10.3389/fnins.2012.00010] [PMID: 22347156]
[122]
Díaz NF, Díaz-Martínez NE, Velasco I, Camacho-Arroyo I. Progesterone increases dopamine neurone number in differentiating mouse embryonic stem cells. J Neuroendocrinol 2009; 21(8): 730-6.
[http://dx.doi.org/10.1111/j.1365-2826.2009.01891.x] [PMID: 19500215]
[123]
Wang X, Wu H, Xue G, Hou Y. Progesterone promotes neuronal differentiation of human umbilical cord mesenchymal stem cells in culture conditions that mimic the brain microenvironment. Neural Regen Res 2012; 7(25): 1925-30.
[PMID: 25624820]
[124]
Kasubuchi M, Watanabe K, Hirano K, et al. Membrane progesterone receptor beta (mPRβ/Paqr8) promotes progesterone-dependent neurite outgrowth in PC12 neuronal cells vianon-G protein-coupled receptor (GPCR) signaling. Sci Rep 2017; 7(1): 5168.
[http://dx.doi.org/10.1038/s41598-017-05423-9] [PMID: 28701790]
[125]
Petersen SL, Intlekofer KA, Moura-Conlon PJ, Brewer DN, Del Pino Sans J, Lopez JA. Novel progesterone receptors: neural localization and possible functions. Front Neurosci 2013; 7: 164.
[http://dx.doi.org/10.3389/fnins.2013.00164] [PMID: 24065878]
[126]
Ma L, Feng XY, Cui BL, et al. Human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin Med J 2005; 118(23): 1987-93.
[PMID: 16336835]
[127]
Deuel TF, Zhang N, Yeh HJ, Silos-Santiago I, Wang ZY. Pleiotrophin: A cytokine with diverse functions and a novel signaling pathway. Arch Biochem Biophys 2002; 397(2): 162-71.
[http://dx.doi.org/10.1006/abbi.2001.2705] [PMID: 11795867]
[128]
Jung CG, Hida H, Nakahira K, Ikenaka K, Kim HJ, Nishino H. Pleiotrophin mRNA is highly expressed in neural stem (progenitor) cells of mouse ventral mesencephalon and the product promotes production of dopaminergic neurons from embryonic stem cell‐derived nestin‐positive cells. FASEB J 2004; 18(11): 1237-9.
[http://dx.doi.org/10.1096/fj.03-0927fje] [PMID: 15180956]
[129]
Garcia-Gutierrez P, Juarez-Vicente F, Wolgemuth DJ, Garcia-Dominguez M. Pleiotrophin antagonizes Brd2 during neuronal differentiation. J Cell Sci 2014; 127(Pt 11): 2554-64.
[PMID: 24695857]
[130]
Alavi B, Shojaei M, Haghpanah T, et al. Improved cell proliferation and testosterone secretion following exposure of TM3 Leydig cells to three‐dimensional scaffold and light emitting diode. Andrologia 2022; 54(11): e14593.
[http://dx.doi.org/10.1111/and.14593] [PMID: 36123787]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy