Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Ultrasonication Induced Alterations in Physicochemical and Functional Properties of Myosin

Author(s): Rashid Saleem and Riaz Ahmad*

Volume 30, Issue 3, 2023

Published on: 08 February, 2023

Page: [221 - 232] Pages: 12

DOI: 10.2174/0929866530666230124093804

Price: $65

conference banner
Abstract

Background: Several reports have indicated that ultrasonication can change the solubility of muscle proteins and improves the functional properties of meat and isolated muscle proteins. Moreover, available literature suggests that ultrasonication can significantly improve the gelling properties of muscle proteins.

Objectives: The present study was carried out to investigate the effect of low-frequency ultrasonication on the secondary structure of myosin and the impact of these structural changes on solubility and gelling ability.

Methods: Myosin from breast muscles (Pectoralis major) of broiler chicken was extracted and exposed to low-frequency ultrasonication for 30 min. Four aliquots collected at the interval of 5, 10, 20, and 30 min were analysed for change in ATPase activity, sulfhydryl content, surface hydrophobicity, alpha-helicity. The possible impact of these changes on heat-induced gelation was observed through electron micrographs.

Results: Ultrasonication reduced the enzymatic activity of myosin and increased the reactive sulfhydryl content. Decreased α-helicity and increased intrinsic fluorescence displayed significant structural changes at the secondary and tertiary levels. Myosin aggregation, as indicated by electron micrographs, showed a marked decrease. The microstructure of myosin gels displayed a distinct correlation with ultrasonication-induced structural changes. Furthermore, improved microstructure led to a significant increase in the water retention capacity of myosin gels.

Conclusion: In conclusion, ultrasonication of myosin caused a marked change in structure at the tertiary and secondary levels. Structural changes apparently confined within the globular head region and rod portion of myosin were displayed by reduced enzymatic activity and improved gelation/solubility. Results of our study convincingly showed that ultrasonication improved the microstructure of myosin gels resulting in increased WHC.

Graphical Abstract

[1]
Yasui, T.; Ishioroshi, M.; Samejima, K. Heat-induced gelation of myosin in the presence of actin. J. Food Biochem., 1980, 4(2), 61-78.
[http://dx.doi.org/10.1111/j.1745-4514.1980.tb00646.x]
[2]
Asghar, A.; Morita, J.I.; Samejima, M.; Yasui, T. Biochemical and functional characteristics of myosin from red and white muscles of chicken as influenced by nutritional stress. Agric. Biol. Chem., 1984, 48(9), 2217-2224.
[http://dx.doi.org/10.1080/00021369.1984.10866490]
[3]
McLachlan, A.D.; Karn, J. Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature, 1982, 299(5880), 226-231.
[http://dx.doi.org/10.1038/299226a0] [PMID: 7202124]
[4]
Margossian, S.S.; Lowey, S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol., 1982, 85(Pt B), 55-71.
[http://dx.doi.org/10.1016/0076-6879(82)85009-X] [PMID: 6214692]
[5]
Samejima, K.; Ishioroshi, M.; Yasui, T. Relative roles of the head and tail portions of the molecule in heat-induced gelation of myosin. J. Food Sci., 1981, 46(5), 1412-1418.
[http://dx.doi.org/10.1111/j.1365-2621.1981.tb04187.x]
[6]
Sun, X.D.; Holley, R.A. Factors influencing gel formation by myofibrillar proteins in muscle foods. Compr. Rev. Food Sci. Food Saf., 2011, 10(1), 33-51.
[http://dx.doi.org/10.1111/j.1541-4337.2010.00137.x]
[7]
Hayakawa, T.; Ito, T.; Wakamatsu, J.; Nishimura, T.; Hattori, A. Myosin filament depolymerizes in a low ionic strength solution containing l-histidine. Meat Sci., 2010, 84(4), 742-746.
[http://dx.doi.org/10.1016/j.meatsci.2009.11.010] [PMID: 20374851]
[8]
Chen, X.; Xu, X.; Han, M.; Zhou, G.; Chen, C.; Li, P. Conformational changes induced by high-pressure homogenization inhibit myosin filament formation in low ionic strength solutions. Food Res. Int., 2016, 85, 1-9.
[http://dx.doi.org/10.1016/j.foodres.2016.04.011] [PMID: 29544823]
[9]
Trout, G.R.; Schmidt, G.R. Effect of phosphates on the functional properties of restructured beef rolls: The role of pH, ionic strength, and phosphate type. J. Food Sci., 1986, 51(6), 1416-1423.
[http://dx.doi.org/10.1111/j.1365-2621.1986.tb13824.x]
[10]
Marques, A.C.; Maróstica, M.R.; Pastore, G.M. Some nutritional, technological and environmental advances in the use of enzymes in meat products. Enzyme Res., 2010, 2010(3), 1-8.
[http://dx.doi.org/10.4061/2010/480923] [PMID: 21048865]
[11]
Li, K.; Kang, Z.L.; Zhao, Y.Y.; Xu, X.L.; Zhou, G.H. Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat. Food Bioprocess Technol., 2014, 7(12), 3466-3477.
[http://dx.doi.org/10.1007/s11947-014-1358-y]
[12]
Li, K.; Kang, Z.L.; Zou, Y.F.; Xu, X.L.; Zhou, G.H. Effect of ultrasound treatment on functional properties of reduced-salt chicken breast meat batter. J. Food Sci. Technol., 2015, 52(5), 2622-2633.
[http://dx.doi.org/10.1007/s13197-014-1356-0] [PMID: 25892760]
[13]
Ito, Y.; Tatsumi, R.; Wakamatsu, J.I.; Nishimura, T.; Hattori, A. The solubilization of myofibrillar proteins of vertebrate skeletal muscle in water. Anim. Sci. J., 2003, 74(5), 417-425.
[http://dx.doi.org/10.1046/j.1344-3941.2003.00134.x]
[14]
Saleem, R.; Hasnain, A.; Ahmad, R. Solubilisation of muscle proteins from chicken breast muscle by ultrasonic radiations in physiological ionic medium. Cogent Food Agric., 2015, 1(1), 1046716.
[http://dx.doi.org/10.1080/23311932.2015.1046716]
[15]
Saleem, R.; Ahmad, R. Effect of low frequency ultrasonication on biochemical and structural properties of chicken actomyosin. Food Chem., 2016, 205, 43-51.
[http://dx.doi.org/10.1016/j.foodchem.2016.03.003] [PMID: 27006212]
[16]
Saleem, R.; Ahmad, R. Effect of ultrasonication on secondary structure and heat induced gelation of chicken myofibrils. J. Food Sci. Technol., 2016, 53(8), 3340-3348.
[http://dx.doi.org/10.1007/s13197-016-2311-z] [PMID: 27784928]
[17]
Benjakul, S.; Visessanguan, W.; Ishizaki, S.; Tanaka, M. Differences in gelation characteristics of natural actomyosin from two species of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus. J. Food Sci., 2001, 66(9), 1311-1318.
[http://dx.doi.org/10.1111/j.1365-2621.2001.tb15207.x]
[18]
Samejima, K.; Ishioroshi, M.; Yasui, T. Heat induced gelling properties of actomyosin: Effect of tropomyosin and troponin. Agric. Biol. Chem., 1982, 46(2), 535-540.
[http://dx.doi.org/10.1271/bbb1961.46.535]
[19]
Perry, S. V. Myosin adenosinetriphosphatase, 1955.
[http://dx.doi.org/10.1016/S0076-6879(55)02258-1]
[20]
Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[21]
Hasnain, A.; Samejima, K.; Takahashi, K.; Yasui, T. Molecular adaptability of carp myosin: A study of some physico-chemical properties and their comparison with those of rabbit myosin. Arch. Int. Physiol. Biochim., 1979, 87(4), 643-662.
[http://dx.doi.org/10.3109/13813457909070526] [PMID: 93883]
[22]
Fiske, C.H.; Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem., 1925, 66(2), 375-400.
[http://dx.doi.org/10.1016/S0021-9258(18)84756-1]
[23]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[24]
Ding, Y.; Sang, W.; Chen, Y. Comparative studies on the biochemical characteristics of natural actomyosin isolated from PSE and normal pork. J. Zhejiang Univ. Sci., 2004, 5(6), 684-688.
[http://dx.doi.org/10.1631/jzus.2004.0684] [PMID: 15101102]
[25]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[26]
Benjakul, S.; Seymour, T.A.; Morrissey, M.T. an, H. Physicochemical changes in pacific whiting muscle proteins during iced storage. J. Food Sci., 1997, 62(4), 729-733.
[http://dx.doi.org/10.1111/j.1365-2621.1997.tb15445.x]
[27]
Ogawa, M.; Kanamaru, J.; Miyashita, H.; Tamiya, T.; Tsuchiya, T. Alpha-helical structure of fish actomyosin: Changes during setting. J. Food Sci., 1995, 60(2), 297-299.
[http://dx.doi.org/10.1111/j.1365-2621.1995.tb05659.x]
[28]
Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta. Proteins Proteom., 2005, 1751(2), 119-139.
[http://dx.doi.org/10.1016/j.bbapap.2005.06.005] [PMID: 16027053]
[29]
Xu, Y.; Xia, W.; Jiang, Q. Aggregation and structural changes of silver carp actomyosin as affected by mild acidification with d-gluconic acid δ-lactone. Food Chem., 2012, 134(2), 1005-1010.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.216] [PMID: 23107720]
[30]
Hayakawa, T.; Ito, T.; Wakamatsu, J.; Nishimura, T.; Hattori, A. Myosin is solubilized in a neutral and low ionic strength solution containing l-histidine. Meat Sci., 2009, 82(2), 151-154.
[http://dx.doi.org/10.1016/j.meatsci.2009.01.002] [PMID: 20416773]
[31]
Zhu, Y.A.; Liu, Y.M.; Zhang, Q.L.; Zhao, S.M.; Xiong, S.B. Effect of heating methods on gel properties of silver carp fish surimi. J. Food Sci., 2011, 32, 107-110.
[http://dx.doi.org/10.7506/spkx1002-6630-201123020]
[32]
Kaye, B.H. A random walk through fractal dimensions; Available from Media Magic: Nicasio, CA, 1989.
[http://dx.doi.org/10.1002/9783527615995]
[33]
Roura, S.I.; Crupkin, M. Biochemical and functional properties of myofibrils from pre and post-spawned hake (Merluccius hubbsi marini) stored on ice. J. Food Sci., 1995, 60(2), 269-272.
[http://dx.doi.org/10.1111/j.1365-2621.1995.tb05653.x]
[34]
Craig, R.; Woodhead, J.L. Structure and function of myosin filaments. Curr. Opin. Struct. Biol., 2006, 16(2), 204-212.
[http://dx.doi.org/10.1016/j.sbi.2006.03.006] [PMID: 16563742]
[35]
Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem., 2017, 34, 540-560.
[http://dx.doi.org/10.1016/j.ultsonch.2016.06.035] [PMID: 27773280]
[36]
Ikeuchi, Y.; Tanji, H.; Kim, K.; Suzuki, A. Mechanism of heat-induced gelation of pressurized actomyosin: Pressure-induced changes in actin and myosin in actomyosin. J. Agric. Food Chem., 1992, 40(10), 1756-1761.
[http://dx.doi.org/10.1021/jf00022a006]
[37]
Guo, X.Y.; Peng, Z.Q.; Zhang, Y.W.; Liu, B.; Cui, Y.Q. The solubility and conformational characteristics of porcine myosin as affected by the presence of l-lysine and l-histidine. Food Chem., 2015, 170, 212-217.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.045] [PMID: 25306337]
[38]
Mohan, M.; Ramachandran, D.; Sankar, T.V.; Anandan, R. Influence of pH on the solubility and conformational characteristics of muscle proteins from mullet (Mugil cephalus). Process Biochem., 2007, 42(7), 1056-1062.
[http://dx.doi.org/10.1016/j.procbio.2007.04.005]
[39]
Harrington, W.F.; Rodgers, M.E. Myosin. Annu. Rev. Biochem., 1984, 53(1), 35-73.
[http://dx.doi.org/10.1146/annurev.bi.53.070184.000343] [PMID: 6383197]
[40]
Hayakawa, T.; Yoshida, Y.; Yasui, M.; Ito, T.; Iwasaki, T.; Wakamatsu, J.; Hattori, A.; Nishimura, T. Heat-induced gelation of myosin in a low ionic strength solution containing L-histidine. Meat Sci., 2012, 90(1), 77-80.
[http://dx.doi.org/10.1016/j.meatsci.2011.06.002] [PMID: 21719207]
[41]
Liu, R.; Liu, Q.; Xiong, S.; Fu, Y.; Chen, L. Effects of high intensity unltrasound on structural and physicochemical properties of myosin from silver carp. Ultrason. Sonochem., 2017, 37, 150-157.
[http://dx.doi.org/10.1016/j.ultsonch.2016.12.039] [PMID: 28427618]
[42]
Chelh, I.; Gatellier, P.; Santé-Lhoutellier, V. Technical note: A simplified procedure for myofibril hydrophobicity determination. Meat Sci., 2006, 74(4), 681-683.
[http://dx.doi.org/10.1016/j.meatsci.2006.05.019] [PMID: 22063223]
[43]
Ma, W.; Wang, J.; Xu, X.; Qin, L.; Wu, C.; Du, M. Ultrasound treatment improved the physicochemical characteristics of cod protein and enhanced the stability of oil-in-water emulsion. Food Res. Int., 2019, 121, 247-256.
[http://dx.doi.org/10.1016/j.foodres.2019.03.024] [PMID: 31108746]
[44]
Maita, T.; Yajima, E.; Nagata, S.; Miyanishi, T.; Nakayama, S.; Matsuda, G. The primary structure of skeletal muscle myosin heavy chain: IV. Sequence of the rod, and the complete 1,938-residue sequence of the heavy chain. J. Biochem., 1991, 110(1), 75-87.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a123546] [PMID: 1939030]
[45]
Alvarez, P.A.; Ramaswamy, H.S.; Ismail, A.A. High pressure gelation of soy proteins: Effect of concentration, pH and additives. J. Food Eng., 2008, 88(3), 331-340.
[http://dx.doi.org/10.1016/j.jfoodeng.2008.02.018]
[46]
Zhang, Z.; Yang, Y.; Tang, X.; Chen, Y.; You, Y. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chem., 2015, 188, 111-118.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.129] [PMID: 26041172]
[47]
Villamonte, G.; Jury, V.; Jung, S.; de Lamballerie, M. Influence of xanthan gum on the structural characteristics of myofibrillar proteins treated by high pressure. J. Food Sci., 2015, 80(3), C522-C531.
[http://dx.doi.org/10.1111/1750-3841.12789] [PMID: 25656483]
[48]
Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc., 2006, 1(6), 2876-2890.
[http://dx.doi.org/10.1038/nprot.2006.202] [PMID: 17406547]
[49]
Qiu, C.; Xia, W.; Jiang, Q. Pressure-induced changes of silver carp (Hypophthalmichthys molitrix) myofibrillar protein structure. Eur. Food Res. Technol., 2014, 238(5), 753-761.
[http://dx.doi.org/10.1007/s00217-014-2155-6]
[50]
Cao, Y.; Xiong, Y.L. Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein. Food Chem., 2015, 180, 235-243.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.036] [PMID: 25766823]
[51]
Huang, N.; Cheng, X.; Hu, W.; Pan, S. Inactivation, aggregation, secondary and tertiary structural changes of germin-like protein in Satsuma mandarine with high polyphenol oxidase activity induced by ultrasonic processing. Biophys. Chem., 2015, 197, 18-24.
[http://dx.doi.org/10.1016/j.bpc.2014.12.001] [PMID: 25522206]
[52]
Sullivan, A.C.; Pangloli, P.; Dia, V.P. Impact of ultrasonication on the physicochemical properties of sorghum kafirin and in vitro pepsin-pancreatin digestibility of sorghum gluten-like flour. Food Chem., 2018, 240, 1121-1130.
[http://dx.doi.org/10.1016/j.foodchem.2017.08.046] [PMID: 28946233]
[53]
King, L.; Lehrer, S.S. Thermal unfolding of myosin rod and light meromyosin: Circular dichroism and tryptophan fluorescence studies. Biochemistry, 1989, 28(8), 3498-3502.
[http://dx.doi.org/10.1021/bi00434a052] [PMID: 2663071]
[54]
Ko, W.C.; Jao, C.L.; Hsu, K.C. Effect of hydrostatic pressure on molecular conformation of tilapia (Orechromis niloticus) myosin. J. Food Sci., 2003, 68(4), 1192-1195.
[http://dx.doi.org/10.1111/j.1365-2621.2003.tb09623.x]
[55]
Hsu, K.C.; Hwang, J.S.; Yu, C.C.; Jao, C.L. Changes in conformation and in sulfhydryl groups of actomyosin of tilapia (Orechromis niloticus) on hydrostatic pressure treatment. Food Chem., 2007, 103(2), 560-564.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.001]
[56]
Matsuura, M.; Arai, K. Filament forming ability of tilapia myosin, in association with biochemical activities. Nippon Suisan Gakkaishi, 1985, 51(10), 1697-1704.
[http://dx.doi.org/10.2331/suisan.51.1697]
[57]
Zisu, B.; Lee, J.; Chandrapala, J.; Bhaskaracharya, R.; Palmer, M.; Kentish, S.; Ashokkumar, M. Effect of ultrasound on the physical and functional properties of reconstituted whey protein powders. J. Dairy Res., 2011, 78(2), 226-232.
[http://dx.doi.org/10.1017/S0022029911000070] [PMID: 21411030]
[58]
Kaláb, M.; Allan-Wojtas, P.; Miller, S.S. Microscopy and other imaging techniques in food structure analysis. Trends Food Sci. Technol., 1995, 6(6), 177-186.
[http://dx.doi.org/10.1016/S0924-2244(00)89052-4]
[59]
Niamnuy, C.; Devahastin, S.; Soponronnarit, S. Changes in protein compositions and their effects on physical changes of shrimp during boiling in salt solution. Food Chem., 2008, 108(1), 165-175.
[http://dx.doi.org/10.1016/j.foodchem.2007.10.058]
[60]
Marangoni, A.; Barbut, S.; McGauley, S.E.; Marcone, M.; Narine, S.S. On the structure of particulate gels-the case of salt-induced cold gelation of heat-denatured whey protein isolate. Food Hydrocoll., 2000, 14(1), 61-74.
[http://dx.doi.org/10.1016/S0268-005X(99)00046-6]
[61]
Ould Eleya, M.M.; Ko, S.; Gunasekaran, S. Scaling and fractal analysis of viscoelastic properties of heat-induced protein gels. Food Hydrocoll., 2004, 18(2), 315-323.
[http://dx.doi.org/10.1016/S0268-005X(03)00087-0]
[62]
Sharp, A.; Offer, G. The mechanism of formation of gels from myosin molecules. J. Sci. Food Agric., 1992, 58(1), 63-73.
[http://dx.doi.org/10.1002/jsfa.2740580112]
[63]
Stone, A.P.; Stanley, D.W. Mechanisms of fish muscle gelation. Food Res. Int., 1992, 25(5), 381-388.
[http://dx.doi.org/10.1016/0963-9969(92)90113-J]
[64]
Cao, Y.; Xia, T.; Zhou, G.; Xu, X. The mechanism of high pressure-induced gels of rabbit myosin. Innov. Food Sci. Emerg. Technol., 2012, 16, 41-46.
[http://dx.doi.org/10.1016/j.ifset.2012.04.005]
[65]
Van Camp, J.; Messens, W.; Clément, J.; Huyghebaert, A. Influence of ph and sodium chloride on the high pressure-induced gel formation of a whey protein concentrate. Food Chem., 1997, 60(3), 417-424.
[http://dx.doi.org/10.1016/S0308-8146(96)00362-7]
[66]
Liu, R.; Zhao, S.M.; Liu, Y.M.; Yang, H.; Xiong, S.B.; Xie, B.J.; Qin, L.H. Effect of pH on the gel properties and secondary structure of fish myosin. Food Chem., 2010, 121(1), 196-202.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.030]
[67]
Chen, J.; Zhang, X.; Chen, Y.; Zhao, X.; Anthony, B.; Xu, X. Effects of different ultrasound frequencies on the structure, rheological and functional properties of myosin: Significance of quorum sensing. Ultrason. Sonochem., 2020, 69, 105268.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105268] [PMID: 32731126]
[68]
Trout, G.R. Techniques for measuring water-binding capacity in muscle foods-A review of methodology. Meat Sci., 1988, 23(4), 235-252.
[http://dx.doi.org/10.1016/0309-1740(88)90009-5] [PMID: 22055740]
[69]
Rosenvold, K.; Andersen, H.J. Factors of significance for pork quality - A review. Meat Sci., 2003, 64(3), 219-237.
[http://dx.doi.org/10.1016/S0309-1740(02)00186-9] [PMID: 22063008]
[70]
Puolanne, E.; Halonen, M. Theoretical aspects of water-holding in meat. Meat Sci., 2010, 86(1), 151-165.
[http://dx.doi.org/10.1016/j.meatsci.2010.04.038] [PMID: 20627421]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy