Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Molecular Docking, ADMET Analysis and Molecular Dynamics (MD) Simulation to Identify Synthetic Isoquinolines as Potential Inhibitors of SARS-CoV-2 MPRO

Author(s): Paulo Ricardo dos Santos Correia, Alesson Henrique Donato de Souza, Andres Reyes Chaparro, Aldo Yair Tenorio Barajas and Ricardo Silva Porto*

Volume 19, Issue 5, 2023

Published on: 10 February, 2023

Page: [391 - 404] Pages: 14

DOI: 10.2174/1573409919666230123150013

Price: $65

Abstract

Background: The rapidly widespread SARS-CoV-2 infection has affected millions worldwide, thus becoming a global health emergency. Although vaccines are already available, there are still new COVID-19 cases daily worldwide, mainly due to low immunization coverage and the advent of new strains. Therefore, there is an utmost need for the discovery of lead compounds to treat COVID-19.

Objective: Considering the relevance of the SARS-CoV-2 MPRO in viral replication and the role of the isoquinoline moiety as a core part of several biologically relevant compounds, this study aimed to identify isoquinoline-based molecules as new drug-like compounds, aiming to develop an effective coronavirus inhibitor.

Methods: 274 isoquinoline derivatives were submitted to molecular docking interactions with SARS-CoV-2 MPRO (PDB ID: 7L0D) and drug-likeness analysis. The five best-docked isoquinoline derivatives that did not violate any of Lipinski’s or Veber’s parameters were submitted to ADMET analysis and molecular dynamics (MD) simulations.

Results: The selected compounds exhibited docking scores similar to or better than chloroquine and other isoquinolines previously reported. The fact that the compounds interact with residues that are pivotal for the enzyme's catalytic activity, and show the potential to be orally administered makes them promising drugs for treating COVID-19.

Conclusion: Ultimately, MD simulation was performed to verify ligand-protein complex stability during the simulation period.

« Previous
Graphical Abstract

[1]
Sharma, A.; Tiwari, S.; Deb, M.K.; Marty, J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies. Int. J. Antimicrob. Agents, 2020, 56(2), 106054.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106054] [PMID: 32534188]
[2]
Mohapatra, R.K.; Pintilie, L.; Kandi, V.; Sarangi, A.K.; Das, D.; Sahu, R.; Perekhoda, L. The recent challenges of highly contagious COVID-19, causing respiratory infections: Symptoms, diagnosis, transmission, possible vaccines, animal models, and immunotherapy. Chem. Biol. Drug Des., 2020, 96(5), 1187-1208.
[http://dx.doi.org/10.1111/cbdd.13761] [PMID: 32654267]
[3]
Behzad, S.; Aghaghazvini, L.; Radmard, A.R.; Gholamrezanezhad, A. Extrapulmonary manifestations of COVID-19: Radiologic and clinical overview. Clin. Imaging, 2020, 66, 35-41.
[http://dx.doi.org/10.1016/j.clinimag.2020.05.013] [PMID: 32425338]
[4]
World Health Organization. WHO COVID-19 dashboard. World Health Organization, 2022. Available from: https://covid19.who.int/
[5]
Aburto, J.M.; Schöley, J.; Kashnitsky, I.; Zhang, L.; Rahal, C.; Missov, T.I.; Mills, M.C.; Dowd, J.B.; Kashyap, R. Quantifying impacts of the COVID-19 pandemic through life-expectancy losses: A population-level study of 29 countries. Int. J. Epidemiol., 2022, 51(1), 63-74.
[http://dx.doi.org/10.1093/ije/dyab207] [PMID: 34564730]
[6]
Murray, C.J.L. COVID-19 will continue but the end of the pandemic is near. Lancet, 2022, 399(10323), 417-419.
[http://dx.doi.org/10.1016/S0140-6736(22)00100-3] [PMID: 35065006]
[7]
Wheatley, A.K.; Juno, J.A. COVID-19 vaccines in the age of the delta variant. Lancet Infect. Dis., 2022, 22(4), 429-430.
[http://dx.doi.org/10.1016/S1473-3099(21)00688-5] [PMID: 34838184]
[8]
Amanatidou, E.; Gkiouliava, A.; Pella, E.; Serafidi, M.; Tsilingiris, D.; Vallianou, N.G.; Karampela, Ι.; Dalamaga, M. Breakthrough infections after COVID-19 vaccination: Insights, perspectives and challenges. Metabolism Open, 2022, 14, 100180.
[http://dx.doi.org/10.1016/j.metop.2022.100180] [PMID: 35313532]
[9]
ElBagoury, M.; Tolba, M.M.; Nasser, H.A.; Jabbar, A.; Elagouz, A.M.; Aktham, Y.; Hutchinson, A. The find of COVID-19 vaccine: Challenges and opportunities. J. Infect. Public Health, 2021, 14(3), 389-416.
[http://dx.doi.org/10.1016/j.jiph.2020.12.025] [PMID: 33647555]
[10]
Porto, V.A.; Porto, R.S. In silico studies of novel synthetic compounds as potential drugs to inhibit coronavirus (SARS-CoV-2): A systematic review. Biointerface Res. Appl. Chem., 2021, 12(4), 4293-4306.
[http://dx.doi.org/10.33263/BRIAC124.42934306]
[11]
Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep., 2020, 72(6), 1479-1508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701]
[12]
Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. In silico methods for drug design and discovery. Front Chem., 2020, 8, 612.
[http://dx.doi.org/10.3389/fchem.2020.00612] [PMID: 32850641]
[13]
Kumar, Y.; Singh, H.; Patel, C.N. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J. Infect. Public Health, 2020, 13(9), 1210-1223.
[http://dx.doi.org/10.1016/j.jiph.2020.06.016] [PMID: 32561274]
[14]
Hossain, A. Molecular docking, drug-likeness and ADMET analysis, application of density functional theory (DFT) and molecular dynamics (MD) simulation to the phytochemicals from Withania somnifera as potential antagonists of estrogen receptor alpha (ER- α). Curr. Comput. Aid. Drug Des., 2021, 17(6), 797-805.
[http://dx.doi.org/10.2174/1573409916999200730181611] [PMID: 32748755]
[15]
Zhang, X.; Wu, F.; Yang, N.; Zhan, X.; Liao, J.; Mai, S.; Huang, Z. In silico methods for identification of potential therapeutic targets. Interdiscip. Sci., 2022, 14(2), 285-310.
[http://dx.doi.org/10.1007/s12539-021-00491-y] [PMID: 34826045]
[16]
Sharma, K.K.; Arora, T.; Joshi, V.; Rathor, N.; Mehta, A.K.; Mehta, K.D.; Mediratta, P.K. Substitute of animals in drug research: An approach towards fulfillment of 4R′s. Indian J. Pharm. Sci., 2011, 73(1), 1-6.
[http://dx.doi.org/10.4103/0250-474X.89750] [PMID: 22131615]
[17]
Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 3-20.
[http://dx.doi.org/10.1038/s41580-021-00418-x] [PMID: 34611326]
[18]
González-Paz, L.A.; Lossada, C.A.; Moncayo, L.S.; Romero, F.; Paz, J.L.; Vera-Villalobos, J.; Perez, A.E.; Portilho, E.; San-Blas, E.; Alvarado, Y.J. A bioinformatics study of structural perturbation of 3CL-protease and the HR2-domain of SARS-CoV-2 induced by synergistic interaction with ivermectins. Biointerface Res. Appl. Chem., 2020, 11(2), 9813-9826.
[http://dx.doi.org/10.33263/BRIAC112.98139826]
[19]
Narayanan, A.; Narwal, M.; Majowicz, S.A.; Varricchio, C.; Toner, S.A.; Ballatore, C.; Brancale, A.; Murakami, K.S.; Jose, J. Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Commun. Biol., 2022, 5(1), 169.
[http://dx.doi.org/10.1038/s42003-022-03090-9] [PMID: 35217718]
[20]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[21]
Liu, J.C.; Narva, S.; Zhou, K.; Zhang, W. A review on the antitumor activity of various nitrogenous-based heterocyclic compounds as NSCLC inhibitors. Mini Rev. Med. Chem., 2019, 19(18), 1517-1530.
[http://dx.doi.org/10.2174/1389557519666190312152358] [PMID: 30864519]
[22]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[23]
Lima, D.J.P.; Santana, A.E.G.; Birkett, M.A.; Porto, R.S. Recent progress in the synthesis of homotropane alkaloids adaline, euphococcinine and N-methyleuphococcinine. Beilstein J. Org. Chem., 2021, 17(1), 28-41.
[http://dx.doi.org/10.3762/bjoc.17.4] [PMID: 33488829]
[24]
Shang, X.F.; Yang, C.J.; Morris-Natschke, S.L.; Li, J.C.; Yin, X.D.; Liu, Y.Q.; Guo, X.; Peng, J.W.; Goto, M.; Zhang, J.Y.; Lee, K.H. Biologically active isoquinoline alkaloids covering 2014-2018. Med. Res. Rev., 2020, 40(6), 2212-2289.
[http://dx.doi.org/10.1002/med.21703] [PMID: 32729169]
[25]
Khan, T.M.; Gul, N.S.; Lu, X.; Kumar, R.; Choudhary, M.I.; Liang, H.; Chen, Z.F. Rhodium(III) complexes with isoquinoline derivatives as potential anticancer agents: In vitro and in vivo activity studies. Dalton Trans., 2019, 48(30), 11469-11479.
[http://dx.doi.org/10.1039/C9DT01951K] [PMID: 31290881]
[26]
Galán, A.; Moreno, L.; Párraga, J.; Serrano, Á.; Sanz, M.J.; Cortes, D.; Cabedo, N. Novel isoquinoline derivatives as antimicrobial agents. Bioorg. Med. Chem., 2013, 21(11), 3221-3230.
[http://dx.doi.org/10.1016/j.bmc.2013.03.042] [PMID: 23601815]
[27]
Abuelizz, H.A.; Al-Salahi, R.; Al-Asri, J.; Mortier, J.; Marzouk, M.; Ezzeldin, E.; Ali, A.A.; Khalil, M.G.; Wolber, G.; Ghabbour, H.A.; Almehizia, A.A.; Abdel Jaleel, G.A. Synthesis, crystallographic characterization, molecular docking and biological activity of isoquinoline derivatives. Chem. Cent. J., 2017, 11(1), 103.
[http://dx.doi.org/10.1186/s13065-017-0321-1] [PMID: 29086866]
[28]
Xu, M.; Wagerle, T.; Long, J.K.; Lahm, G.P.; Barry, J.D.; Smith, R.M. Insecticidal quinoline and isoquinoline isoxazolines. Bioorg. Med. Chem. Lett., 2014, 24(16), 4026-4030.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.004] [PMID: 24998379]
[29]
Qing, Z.X.; Yang, P.; Tang, Q.; Cheng, P.; Liu, X.B.; Zheng, Y.; Liu, Y.S.; Zeng, J.G. Isoquinoline alkaloids and their antiviral, antibacterial, and antifungal activities and structure-activity relationship. Curr. Org. Chem., 2017, 21(18), 1920-1934.
[http://dx.doi.org/10.2174/1385272821666170207114214]
[30]
Aljofan, M.; Netter, H.J.; Aljarbou, A.N.; Hadda, T.B.; Orhan, I.E.; Sener, B.; Mungall, B.A. Anti-hepatitis B activity of isoquinoline alkaloids of plant origin. Arch. Virol., 2014, 159(5), 1119-1128.
[http://dx.doi.org/10.1007/s00705-013-1937-7] [PMID: 24311152]
[31]
Miller, J.F.; Gudmundsson, K.S.; Richardson, L.D.A.; Jenkinson, S.; Spaltenstein, A.; Thomson, M.; Wheelan, P. Synthesis and SAR of novel isoquinoline CXCR4 antagonists with potent anti-HIV activity. Bioorg. Med. Chem. Lett., 2010, 20(10), 3026-3030.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.118] [PMID: 20443225]
[32]
Heravi, M.; Nazari, N. Bischler-Napieralski reaction in total synthesis of isoquinoline-based natural products. An old reaction, a new application. Curr. Org. Chem., 2015, 19(24), 2358-2408.
[http://dx.doi.org/10.2174/1385272819666150730214506]
[33]
Gholamzadeh, P. The pictet-spengler reaction: A powerful strategy for the synthesis of heterocycles. In: Advances in Heterocyclic Chemistry; Academic Press: Cambridge, 2019, 127, pp. 153-226.
[http://dx.doi.org/10.1016/bs.aihch.2018.09.002]
[34]
Nakamura, I.; Yamamoto, Y. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem. Rev., 2004, 104(5), 2127-2198.
[http://dx.doi.org/10.1021/cr020095i] [PMID: 15137788]
[35]
Yu, Y.; Guan, M.; Zhao, Y.H.; Xie, W.; Zhou, Z.; Tang, Z. Efficient synthesis of isoquinoline and its derivatives: From metal сatalysts to catalyst-free processes in water. Russ. J. Gen. Chem., 2020, 90(10), 2012-2027.
[http://dx.doi.org/10.1134/S1070363220100266]
[36]
Cousins, K.R. Computer review of ChemDraw ultra 12.0. J. Am. Chem. Soc., 2011, 133(21), 8388.
[http://dx.doi.org/10.1021/ja204075s] [PMID: 21561109]
[37]
Jász, Á.; Rák, Á.; Ladjánszki, I.; Cserey, G. Optimized GPU implementation of merck molecular force field and universal force field. J. Mol. Struct., 2019, 1188, 227-233.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.007]
[38]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[39]
Lockbaum, G.J.; Reyes, A.C.; Lee, J.M.; Tilvawala, R.; Nalivaika, E.A.; Ali, A.; Kurt Yilmaz, N.; Thompson, P.R.; Schiffer, C.A. Crystal structure of SARS-CoV-2 main protease in complex with the non-covalent inhibitor ML188. Viruses, 2021, 13(2), 174.
[http://dx.doi.org/10.3390/v13020174] [PMID: 33503819]
[40]
Jones, G.; Willett, P.; Glen, R.C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol., 1995, 245(1), 43-53.
[http://dx.doi.org/10.1016/S0022-2836(95)80037-9] [PMID: 7823319]
[41]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[42]
Cole, J.C.; Nissink, J.W.M.; Taylor, R. Protein-ligand docking and virtual screening with GOLD. In: Virtual Screen. Drug Discov; CRC Press: Florida, 2005, 1, pp. 379-415.
[http://dx.doi.org/10.1201/9781420028775-19]
[43]
Rocha, F.V.; Farias, R.L.; Lima, M.A.; Batista, V.S.; Nascimento-Júnior, N.M.; Garrido, S.S.; Leopoldino, A.M.; Goto, R.N.; Oliveira, A.B.; Beck, J.; Landvogt, C.; Mauro, A.E.; Netto, A.V.G. Computational studies, design and synthesis of Pd(II)-based complexes: Allosteric inhibitors of the human topoisomerase-IIα. J. Inorg. Biochem., 2019, 199, 110725.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110725] [PMID: 31374424]
[44]
Pawar, S.S.; Rohane, S.H. Review on discovery studio: An important tool for molecular docking. Asian J. Res. Chem, 2021, 14(1), 1-3.
[http://dx.doi.org/10.5958/0974-4150.2021.00014.6]
[45]
Paul Gleeson, M.; Hersey, A.; Hannongbua, S. In-silico ADME models: A general assessment of their utility in drug discovery applications. Curr. Top. Med. Chem., 2011, 11(4), 358-381.
[http://dx.doi.org/10.2174/156802611794480927] [PMID: 21320065]
[46]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[47]
Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 2019, 35(6), 1067-1069.
[http://dx.doi.org/10.1093/bioinformatics/bty707] [PMID: 30165565]
[48]
Lindahl, A. GROMACS 2020.2 Source code, Zenedo, 2020. Available from: https://zenodo.org/record/4457591#.Y-S8Q3ZBzIU
[http://dx.doi.org/10.5281/ZENODO.4457591]
[49]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[50]
Jo, S.; Kim, T.; Iyer, V.G. Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem., 2008, 29(11), 1859-1865.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[51]
Jo, S.; Cheng, X.; Islam, S.M.; Huang, L.; Rui, H.; Zhu, A.; Lee, H.S.; Qi, Y.; Han, W.; Vanommeslaeghe, K.; MacKerell, A.D., Jr; Roux, B. Im, W. CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. Adv. Protein Chem. Struct. Biol., 2014, 96, 235-265.
[http://dx.doi.org/10.1016/bs.apcsb.2014.06.002] [PMID: 25443960]
[52]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[53]
Kim, S.; Lee, J.; Jo, S.; Brooks, C.L., III; Lee, H.S. Im, W. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J. Comput. Chem., 2017, 38(21), 1879-1886.
[http://dx.doi.org/10.1002/jcc.24829] [PMID: 28497616]
[54]
Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; Jo, S.; Pande, V.S.; Case, D.A.; Brooks, C.L., III; MacKerell, A.D., Jr; Klauda, J.B. Im, W. Charmm-gui input generator for namd, gromacs, amber, openmm, and charmm/openmm simulations using the CHARMM36 additive force field. J. Chem. Theory Comput., 2016, 12(1), 405-413.
[http://dx.doi.org/10.1021/acs.jctc.5b00935] [PMID: 26631602]
[55]
Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys., 2007, 126(1), 014101.
[http://dx.doi.org/10.1063/1.2408420] [PMID: 17212484]
[56]
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A.D. Jr CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem., 2009, 31(4), NA.
[http://dx.doi.org/10.1002/jcc.21367] [PMID: 19575467]
[57]
[58]
Verma, V.A.; Saundane, A.R.; Meti, R.S.; Vennapu, D.R. Synthesis of novel indolo[3,2-c]isoquinoline derivatives bearing pyrimidine, piperazine rings and their biological evaluation and docking studies against COVID-19 virus main protease. J. Mol. Struct., 2021, 1229, 129829.
[http://dx.doi.org/10.1016/j.molstruc.2020.129829] [PMID: 33390613]
[59]
Douangamath, A.; Fearon, D.; Gehrtz, P.; Krojer, T.; Lukacik, P.; Owen, C.D.; Resnick, E.; Strain-Damerell, C.; Aimon, A.; Ábrányi-Balogh, P.; Brandão-Neto, J.; Carbery, A.; Davison, G.; Dias, A.; Downes, T.D.; Dunnett, L.; Fairhead, M.; Firth, J.D.; Jones, S.P.; Keeley, A.; Keserü, G.M.; Klein, H.F.; Martin, M.P.; Noble, M.E.M.; O’Brien, P.; Powell, A.; Reddi, R.N.; Skyner, R.; Snee, M.; Waring, M.J.; Wild, C.; London, N.; von Delft, F.; Walsh, M.A. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nat. Commun., 2020, 11(1), 5047.
[http://dx.doi.org/10.1038/s41467-020-18709-w] [PMID: 33028810]
[60]
Yang, H.; Yang, M.; Ding, Y.; Liu, Y.; Lou, Z.; Zhou, Z.; Sun, L.; Mo, L.; Ye, S.; Pang, H.; Gao, G.F.; Anand, K.; Bartlam, M.; Hilgenfeld, R.; Rao, Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13190-13195.
[http://dx.doi.org/10.1073/pnas.1835675100] [PMID: 14585926]
[61]
Oerlemans, R.; Ruiz-Moreno, A.J.; Cong, Y.; Kumar, N.D.; Velasco-Velazquez, M.A.; Neochoritis, C.G.; Smith, J.; Reggiori, F.; Groves, M.R.; Dömling, A. Repurposing the HCV NS3–4A protease drug boceprevir as COVID-19 therapeutics. RSC medicinal chemistry, 2021, 12(3), 370-379.
[http://dx.doi.org/10.1039/D0MD00367K]
[62]
Frey, P.A.; Hegeman, A.D. Enzymatic Reaction Mechanisms; Oxford University Press: Oxford, 2007.
[http://dx.doi.org/10.1093/oso/9780195122589.001.0001]
[63]
Fornasier, E.; Macchia, M.L.; Giachin, G.; Sosic, A.; Pavan, M.; Sturlese, M.; Salata, C.; Moro, S.; Gatto, B.; Bellanda, M.; Battistutta, R. A new inactive conformation of SARS-CoV-2 main protease. Acta Crystallogr. D Struct. Biol., 2022, 78(3), 363-378.
[http://dx.doi.org/10.1107/S2059798322000948] [PMID: 35234150]
[64]
Verschueren, K.H.G.; Pumpor, K.; Anemüller, S.; Chen, S.; Mesters, J.R.; Hilgenfeld, R. A structural view of the inactivation of the SARS coronavirus main proteinase by benzotriazole esters. Chem. Biol., 2008, 15(6), 597-606.
[http://dx.doi.org/10.1016/j.chembiol.2008.04.011] [PMID: 18559270]
[65]
Anand, K.; Palm, G.J.; Mesters, J.R.; Siddell, S.G.; Ziebuhr, J.; Hilgenfeld, R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. EMBO J., 2002, 21(13), 3213-3224.
[http://dx.doi.org/10.1093/emboj/cdf327] [PMID: 12093723]
[66]
Sacco, M.D.; Ma, C.; Lagarias, P.; Gao, A.; Townsend, J.A.; Meng, X.; Dube, P.; Zhang, X.; Hu, Y.; Kitamura, N.; Hurst, B.; Tarbet, B.; Marty, M.T.; Kolocouris, A.; Xiang, Y.; Chen, Y.; Wang, J. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M pro and cathepsin L. Sci. Adv., 2020, 6(50), eabe0751.
[http://dx.doi.org/10.1126/sciadv.abe0751] [PMID: 33158912]
[67]
Forrestall, K.L.; Burley, D.E.; Cash, M.K.; Pottie, I.R.; Darvesh, S. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Chem. Biol. Interact., 2021, 335, 109348.
[http://dx.doi.org/10.1016/j.cbi.2020.109348] [PMID: 33278462]
[68]
Kar, S.; Leszczynski, J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin. Drug Discov., 2020, 15(12), 1473-1487.
[http://dx.doi.org/10.1080/17460441.2020.1798926] [PMID: 32735147]
[69]
Benet, L.Z.; Hosey, C.M.; Ursu, O.; Oprea, T.I. BDDCS, the rule of 5 and drugability. Adv. Drug Deliv. Rev., 2016, 101, 89-98.
[http://dx.doi.org/10.1016/j.addr.2016.05.007] [PMID: 27182629]
[70]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[71]
Wang, Z.; Yang, H.; Wu, Z.; Wang, T.; Li, W.; Tang, Y.; Liu, G. In silico prediction of blood–brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem, 2018, 13(20), 2189-2201.
[http://dx.doi.org/10.1002/cmdc.201800533] [PMID: 30110511]
[72]
Nisha, C.M.; Kumar, A.; Nair, P.; Gupta, N.; Silakari, C.; Tripathi, T.; Kumar, A. Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β-secretase. Adv. Bioinforma., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/9258578] [PMID: 27190510]
[73]
Poongavanam, V.; Haider, N.; Ecker, G.F. Fingerprint-based in silico models for the prediction of P-glycoprotein substrates and inhibitors. Bioorg. Med. Chem., 2012, 20(18), 5388-5395.
[http://dx.doi.org/10.1016/j.bmc.2012.03.045] [PMID: 22595422]
[74]
Li, D.; Chen, L.; Li, Y.; Tian, S.; Sun, H.; Hou, T. ADMET evaluation in drug discovery. 13. Development of in silico prediction models for P-glycoprotein substrates. Mol. Pharm., 2014, 11(3), 716-726.
[http://dx.doi.org/10.1021/mp400450m] [PMID: 24499501]
[75]
Brändén, G.; Sjögren, T.; Schnecke, V.; Xue, Y. Structure-based ligand design to overcome CYP inhibition in drug discovery projects. Drug Discov. Today, 2014, 19(7), 905-911.
[http://dx.doi.org/10.1016/j.drudis.2014.03.012] [PMID: 24642031]
[76]
Cheng, F.; Yu, Y.; Shen, J.; Yang, L.; Li, W.; Liu, G.; Lee, P.W.; Tang, Y. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. J. Chem. Inf. Model., 2011, 51(5), 996-1011.
[http://dx.doi.org/10.1021/ci200028n] [PMID: 21491913]
[77]
Li, F.; Fan, T.; Sun, G.; Zhao, L.; Zhong, R.; Peng, Y. Systematic QSAR and iQCCR modelling of fused/non-fused aromatic hydrocarbons (FNFAHs) carcinogenicity to rodents: reducing unnecessary chemical synthesis and animal testing. Green Chem., 2022, 24(13), 5304-5319.
[http://dx.doi.org/10.1039/D2GC00986B]
[78]
Kauffmann, K.; Werner, F.; Deitert, A.; Finklenburg, J.; Brendt, J.; Schiwy, A.; Hollert, H.; Büchs, J. Optimization of the Ames RAMOS test allows for a reproducible high-throughput mutagenicity test. Sci. Total Environ., 2020, 717, 137168.
[http://dx.doi.org/10.1016/j.scitotenv.2020.137168] [PMID: 32084684]
[79]
Su, R.; Xiong, S.; Zink, D.; Loo, L.H. High-throughput imaging-based nephrotoxicity prediction for xenobiotics with diverse chemical structures. Arch. Toxicol., 2016, 90(11), 2793-2808.
[http://dx.doi.org/10.1007/s00204-015-1638-y] [PMID: 26612367]
[80]
Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol., 2018, 9, 923.
[http://dx.doi.org/10.3389/fphar.2018.00923] [PMID: 30186166]
[81]
Bhojwani, H.R.; Joshi, U.J. Homology modelling, docking-based virtual screening, ADME properties, and molecular dynamics simulation for identification of probable type II inhibitors of AXL kinase. Lett. Drug Des. Discov., 2022, 19(3), 214-241.
[http://dx.doi.org/10.2174/1570180818666211004102043]
[82]
Jiang, Z.; You, L.; Dou, W.; Sun, T.; Xu, P. Effects of an electric field on the conformational transition of the protein: A molecular dynamics simulation study. Polymers, 2019, 11(2), 282.
[http://dx.doi.org/10.3390/polym11020282] [PMID: 30960266]
[83]
Hu, G.; Li, H.; Xu, S.; Wang, J. Ligand binding mechanism and its relationship with conformational changes in adenine riboswitch. Int. J. Mol. Sci., 2020, 21(6), 1926.
[http://dx.doi.org/10.3390/ijms21061926] [PMID: 32168940]
[84]
Orellana, L. Large-scale conformational changes and protein function: Breaking the in silico barrier. Front. Mol. Biosci., 2019, 5(6), 117.
[http://dx.doi.org/10.3389/fmolb.2019.00117]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy