Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

An Update on the Recent Green Synthetic Approaches for Imidazo[1,2-a] Pyridine: A Privileged Scaffold

Author(s): Keval Bhatt, Dhara Patel*, Mrudangsinh Rathod, Ashish Patel and Drashti Shah

Volume 26, Issue 22, 2022

Published on: 30 January, 2023

Page: [2016 - 2054] Pages: 39

DOI: 10.2174/1385272827666230123124441

Price: $65

Abstract

Imidazo[1,2-a]pyridine is a fused bicyclic heterocycle that is known as a "drug prejudice" scaffold because of its numerous uses in organic and medicinal chemistry for the development of new drugs. As an outcome, numerous techniques for synthesizing this important class of compounds have been established. Some methods, however, are associated with toxic and corrosive catalysts, longer reaction times, poor yields, lower purity, and byproducts in addition to the desired product. Green synthetic methods, which include microwave- assisted synthesis, catalyst-free, solvent-free, green solvent-based synthesis, mechanochemistry, and many others, are used to reduce the usage and production of harmful organic substances. These techniques improve reaction efficiency compared to conventional ones and also reduce the utilization and production of hazardous chemicals. Due to the implication of the imidazo[1,2-a]pyridine backbone as a biologically active ubiquitous fragment and the current demands of reducing toxic solvents, catalysts, and energy consumption, this review focuses on providing comprehensive highlights of the recent green synthetic pathways for imidazo[1,2-a]pyridine.

Graphical Abstract

[1]
Patel, A.; Patel, S.; Mehta, M.; Patel, Y.; Patel, R.; Shah, D.; Patel, D.; Shah, U.; Patel, M.; Patel, S.; Solanki, N.; Bambharoliya, T.; Patel, S.; Nagani, A.; Patel, H.; Vaghasiya, J.; Shah, H.; Prajapati, B.; Rathod, M.; Bhimani, B.; Patel, R.; Bhavsar, V.; Rakholiya, B.; Patel, M.; Patel, P. A review on synthetic investigation for quinoline- recent green approaches. Green Chem. Lett. Rev., 2022, 15(2), 337-372.
[http://dx.doi.org/10.1080/17518253.2022.2064194]
[2]
Sunderhaus, J.D.; Dockendorff, C.; Martin, S.F. Synthesis of diverse heterocyclic scaffolds via tandem additions to imine derivatives and ring-forming reactions. Tetrahedron, 2009, 65(33), 6454-6469.
[http://dx.doi.org/10.1016/j.tet.2009.05.009] [PMID: 20625454]
[3]
Yan, R.; Huang, G.; Yan, H.; Yang, S.; Gao, X.; Zhou, K.; Ma, C. Iron(II)-catalyzed denitration reaction: synthesis of 3-methyl-2-arylimidazo[1,2-a]pyridine derivatives from aminopyridines and 2-methylnitroolefins. Synlett, 2012, 23(20), 2961-2964.
[http://dx.doi.org/10.1055/s-0032-1317685]
[4]
Wan, J.; Zheng, C.J.; Fung, M.K.; Liu, X.K.; Lee, C.S.; Zhang, X.H. Multifunctional electron-transporting indolizine derivatives for highly efficient blue fluorescence, orange phosphorescence host and two-color based white OLEDs. J. Mater. Chem., 2012, 22(10), 4502-4510.
[http://dx.doi.org/10.1039/c2jm14904d]
[5]
Song, G.; Zhang, Y.; Li, X. Rhodium and iridium complexes of abnormal n-heterocyclic carbenes derived from imidazo[1,2- a]pyridine. Organometallics, 2008, 27(8), 1936-1943.
[http://dx.doi.org/10.1021/om800109a]
[6]
John, A.; Shaikh, M.M.; Ghosh, P. Palladium complexes of abnormal N-heterocyclic carbenes as precatalysts for the much preferred Cu-free and amine-free Sonogashira coupling in air in a mixed-aqueous medium. Dalton Trans., 2009, 47(47), 10581-10591.
[http://dx.doi.org/10.1039/b913068c] [PMID: 20023883]
[7]
Enguehard-Gueiffier, C.; Gueiffier, A. Recent progress in the pharmacology of imidazo[1,2-a]pyridines. Mini Rev. Med. Chem., 2007, 7(9), 888-899.
[http://dx.doi.org/10.2174/138955707781662645] [PMID: 17897079]
[8]
Balalaie, S.; Zolfigol, M.; Derakhshan-Panah, F.; Rominger, F. A convenient method for the synthesis of imidazo[1,2-a]pyridines with a new approach. Synlett, 2018, 29(1), 89-93.
[http://dx.doi.org/10.1055/s-0036-1590906]
[9]
Chattopadhyay, B.; Gevorgyan, V. Transition-metal-catalyzed denitrogenative transannulation: Converting triazoles into other heterocyclic systems. Angew. Chem. Int. Ed., 2012, 51(4), 862-872.
[http://dx.doi.org/10.1002/anie.201104807] [PMID: 22121072]
[10]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[11]
Rival, Y.; Grassy, G.; Michel, G. Synthesis and antibacterial activity of some imidazo[1,2-a]pyrimidine derivatives. Chem. Pharm. Bull. (Tokyo), 1992, 40(5), 1170-1176.
[http://dx.doi.org/10.1248/cpb.40.1170] [PMID: 1394630]
[12]
Fisher, M.H.; Lusi, A. Imidazo[1,2-a]pyridine anthelmintic and antifungal agents. J. Med. Chem., 1972, 15(9), 982-985.
[http://dx.doi.org/10.1021/jm00279a026] [PMID: 5065787]
[13]
Rival, Y.; Grassy, G.; Taudou, A.; Ecalle, R. Antifungal activity in vitro of some imidazo[1,2-a]pyrimidine derivatives. Eur. J. Med. Chem., 1991, 26(1), 13-18.
[http://dx.doi.org/10.1016/0223-5234(91)90208-5]
[14]
Hamdouchi, C.; de Blas, J.; del Prado, M.; Gruber, J.; Heinz, B.A.; Vance, L. 2-Amino-3-substituted-6-[(E)-1-phenyl-2-(N-methylcarbamoyl)vinyl]imid azo[1,2-a]pyridines as a novel class of inhibitors of human rhinovirus: stereospecific synthesis and antiviral activity. J. Med. Chem., 1999, 42(1), 50-59.
[http://dx.doi.org/10.1021/jm9810405] [PMID: 9888832]
[15]
Kaminski, J.J.; Doweyko, A.M. Antiulcer agents. 6. Analysis of the in vitro biochemical and in vivo gastric antisecretory activity of substituted imidazo[1,2-a]pyridines and related analogues using comparative molecular field analysis and hypothetical active site lattice methodologies. J. Med. Chem., 1997, 40(4), 427-436.
[http://dx.doi.org/10.1021/jm950700s] [PMID: 9046332]
[16]
Rupert, K.C.; Henry, J.R.; Dodd, J.H.; Wadsworth, S.A.; Cavender, D.E.; Olini, G.C.; Fahmy, B.; Siekierka, J.J. Imidazopyrimidines, potent inhibitors of p38 MAP kinase. Bioorg. Med. Chem. Lett., 2003, 13(3), 347-350.
[http://dx.doi.org/10.1016/S0960-894X(02)01020-X] [PMID: 12565927]
[17]
Goel, R.; Luxami, V.; Paul, K. Imidazo[1,2-a]pyridines: Promising drug candidate for antitumor therapy. Curr. Top. Med. Chem., 2016, 16(30), 3590-3616.
[http://dx.doi.org/10.2174/1568026616666160414122644] [PMID: 27086790]
[18]
Badawey, E.; Kappe, T. Benzimidazole condensed ring system. IX. potential antineoplastics. new synthesis of some pyrido[1,2-α]benzimidazoles and related derivative. Eur. J. Med. Chem., 1995, 30(4), 327-332.
[http://dx.doi.org/10.1016/0223-5234(96)88241-9]
[19]
Hranjec, M.; Kralj, M.; Piantanida, I. Sedić M.; Šuman, L.; Pavelić K.; Karminski-Zamola, G. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3. J. Med. Chem., 2007, 50(23), 5696-5711.
[http://dx.doi.org/10.1021/jm070876h] [PMID: 17935309]
[20]
Kotovskaya, S.K.; Baskakova, Z.M.; Charushin, V.N.; Chupakhin, O.N.; Belanov, E.F.; Bormotov, N.I.; Balakhnin, S.M.; Serova, O.A. Synthesis and antiviral activity of fluorinated pyrido[1,2-a]benzimidazoles. Pharm. Chem. J., 2005, 39(11), 574-578.
[http://dx.doi.org/10.1007/s11094-006-0023-9]
[21]
Lhassani, M.; Chavignon, O.; Chezal, J.M.; Teulade, J.C.; Chapat, J.P.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E.; Gueiffier, A. Synthesis and antiviral activity of imidazo[1,2-a]pyridines. Eur. J. Med. Chem., 1999, 34(3), 271-274.
[http://dx.doi.org/10.1016/S0223-5234(99)80061-0]
[22]
Humphries, A.C.; Gancia, E.; Gilligan, M.T.; Goodacre, S.; Hallett, D.; Merchant, K.J.; Thomas, S.R. 8-Fluoroimidazo[1,2-a]pyridine: Synthesis, physicochemical properties and evaluation as a bioisosteric replacement for imidazo[1,2-a]pyrimidine in an allosteric modulator ligand of the GABAA receptor. Bioorg. Med. Chem. Lett., 2006, 16(6), 1518-1522.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.037] [PMID: 16386901]
[23]
Fuchs, K.; Romig, M.; Mendla, K.; Briem, H.; Fechteler, K. Novel betaamyloid inhibitors, method for producing the same and the use thereof as medicaments. W.O. Patent 2002014313, 2002.
[24]
Davey, D.; Erhardt, P.W.; Lumma, W.C., Jr; Wiggins, J.; Sullivan, M.; Pang, D.; Cantor, E. Cardiotonic agents. 1. Novel 8-aryl substituted imidazo[1,2-a]- and -[1,5-a]pyridines and imidazo[1,5-a]pyridinones as potential positive inotropic agents. J. Med. Chem., 1987, 30(8), 1337-1342.
[http://dx.doi.org/10.1021/jm00391a012] [PMID: 3039131]
[25]
Fookes, C.J.R.; Pham, T.Q.; Mattner, F.; Greguric, I.; Loc’h, C.; Liu, X.; Berghofer, P.; Shepherd, R.; Gregoire, M.C.; Katsifis, A. Synthesis and biological evaluation of substituted [18F]imidazo[1,2-a]pyridines and [18F]pyrazolo[1,5-a]pyrimidines for the study of the peripheral benzodiazepine receptor using positron emission tomography. J. Med. Chem., 2008, 51(13), 3700-3712.
[http://dx.doi.org/10.1021/jm7014556] [PMID: 18557607]
[26]
Langer, S.Z.; Arbilla, S.; Benavides, J.; Scatton, B. Zolpidem and alpidem: Two imidazopyridines with selectivity for omega 1- and omega 3-receptor subtypes. Adv. Biochem. Psychopharmacol., 1990, 46, 61-72.
[PMID: 1981304]
[27]
Xiang, T.; Cai, Y.; Hong, Z.; Pan, J. Efficacy and safety of Zolpidem in the treatment of insomnia disorder for one month: A meta-analysis of a randomized controlled trial. Sleep Med., 2021, 87, 250-256.
[http://dx.doi.org/10.1016/j.sleep.2021.09.005] [PMID: 34688027]
[28]
Mizushige, K.; Ueda, T.; Yukiiri, K.; Suzuki, H. Olprinone: A phosphodiesterase III inhibitor with positive inotropic and vasodilator effects. Cardiovasc. Drug Rev., 2002, 20(3), 163-174.
[http://dx.doi.org/10.1111/j.1527-3466.2002.tb00085.x] [PMID: 12397365]
[29]
Almirante, L.; Polo, L.; Mugnaini, A.; Provinciali, E.; Rugarli, P.; Biancotti, A.; Gamba, A.; Murmann, W. Derivatives of Imidazole. I. Synthesis and reactions of Imidazo[1,2-α]pyridines with analgesic, antiinflammatory, antipyretic, and anticonvulsant activity. J. Med. Chem., 1965, 8(3), 305-312.
[http://dx.doi.org/10.1021/jm00327a007] [PMID: 14329509]
[30]
Gudmundsson, K.; Boggs, S.D. Chemical compounds. W.O. Patent 2006026703, 2006.
[31]
Koo, H.L.; DuPont, H.L. Rifaximin: A unique gastrointestinal-selective antibiotic for enteric diseases. Curr. Opin. Gastroenterol., 2010, 26(1), 17-25.
[http://dx.doi.org/10.1097/MOG.0b013e328333dc8d] [PMID: 19881343]
[32]
Kurteva, V. Recent progress in metal-free direct synthesis of Imidazo[1,2- a]pyridines. ACS Omega, 2021, 6(51), 35173-35185.
[http://dx.doi.org/10.1021/acsomega.1c03476] [PMID: 34984250]
[33]
Ghosh, P.; Ganguly, B.; Kar, B.; Dwivedi, S.; Das, S. Green procedure for highly efficient, rapid synthesis of imidazo[1,2- a]pyridine and its late stage functionalization. Synth. Commun., 2018, 48(9), 1076-1084.
[http://dx.doi.org/10.1080/00397911.2018.1434893]
[34]
Horváth, I.T.; Anastas, P.T. Innovations and green chemistry. Chem. Rev., 2007, 107(6), 2169-2173.
[http://dx.doi.org/10.1021/cr078380v] [PMID: 17564478]
[35]
Patel, A.; Shah, D.; Patel, N.; Patel, K.; Soni, N.; Nagani, A.; Parikh, V.; Shah, H.; Bambharoliya, T. Benzimidazole as ubiquitous structural fragment: an update on development of its green synthetic approaches. Mini Rev. Org. Chem., 2021, 18(8), 1064-1085.
[http://dx.doi.org/10.2174/1570193X17999201211194908]
[36]
Patel, A.; Shah, J.; Patel, K.; Patel, K.; Patel, H.; Dobaria, D.; Shah, U.; Patel, M.; Chokshi, A.; Patel, S.; Parekh, N.; Shah, H.; Patel, H.; Bambharoliya, T. Ultrasound-assisted one-pot synthesis of tetrahydropyrimidne derivatives through biginelli condensation: A catalyst free green chemistry approach. Lett. Org. Chem., 2021, 18(9), 749-756.
[http://dx.doi.org/10.2174/1570178617999201105162851]
[37]
Molnar, M. Lončarić M.; Kovač M. Green chemistry approaches to the synthesis of coumarin derivatives. Curr. Org. Chem., 2020, 24(1), 4-43.
[http://dx.doi.org/10.2174/1385272824666200120144305]
[38]
Schwerkoske, J.; Masquelin, T.; Perun, T.; Hulme, C. New multi-component reaction accessing 3-aminoimidazo[1,2-a]pyridines. Tetrahedron Lett., 2005, 46(48), 8355-8357.
[http://dx.doi.org/10.1016/j.tetlet.2005.09.181]
[39]
Rousseau, A.L.; Matlaba, P.; Parkinson, C.J. Multicomponent synthesis of imidazo[1,2-a]pyridines using catalytic zinc chloride. Tetrahedron Lett., 2007, 48(23), 4079-4082.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.008]
[40]
Collins, M.R.; Huang, Q.; Ornelas, M.A.; Scales, S.A. The synthesis of 3-pyrazinyl-imidazo[1,2-a]pyridines from a vinyl ether. Tetrahedron Lett., 2010, 51(27), 3528-3530.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.117]
[41]
Ponnala, S.; Kiran Kumar, S.T.V.S.; Bhat, B.A.; Prasad Sahu, D. Synthesis of bridgehead nitrogen heterocycles on a solid surface. Synth. Commun., 2005, 35(7), 901-906.
[http://dx.doi.org/10.1081/SCC-200051674]
[42]
Yan, H.; Wang, Y.; Pan, C.; Zhang, H.; Yang, S.; Ren, X.; Li, J.; Huang, G. Iron(III)-catalyzed denitration reaction: one-pot three-component synthesis of imidazo[1,2-a] pyridine derivatives. Eur. J. Org. Chem., 2014, 2014(13), 2754-2763.
[http://dx.doi.org/10.1002/ejoc.201301658]
[43]
Yan, H.; Yan, R.; Yang, S.; Gao, X.; Wang, Y.; Huang, G.; Liang, Y. One-pot three-component synthesis of 3-nitro-2-arylimidazo[1,2-a]pyridine derivatives using air as an oxidant. Chem. Asian J., 2012, 7(9), 2028-2031.
[http://dx.doi.org/10.1002/asia.201200319] [PMID: 22693076]
[44]
Bienaymé, H.; Bouzid, K. A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-Aminoimidazoles. Angew. Chem. Int. Ed., 1998, 37(16), 2234-2237.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2234::AIDANIE2234>3.0.CO;2-R] [PMID: 29711433]
[45]
Liu, Z.; Chen, Z.C.; Zheng, Q.G. Hypervalent iodine in synthesis. 94. a facile synthesis of 2-substituted-imidazo[1,2-a]pyridines by cyclocondensation of alkynyl(phenyl) iodonium salts and 2-Aminopyridine. Synth. Commun., 2004, 34(2), 361-367.
[http://dx.doi.org/10.1081/SCC-120027273]
[46]
Wu, Z.; Pan, Y.; Zhou, X. Synthesis of 3-Arylimidazo[1,2-a]pyridines by a catalyst-free cascade process. Synthesis, 2011, 2255-2260.
[47]
Nair, D.K.; Mobin, S.M.; Namboothiri, I.N.N. Synthesis of imidazopyridines from the Morita-Baylis-Hillman acetates of nitroalkenes and convenient access to alpidem and zolpidem. Org. Lett., 2012, 14(17), 4580-4583.
[http://dx.doi.org/10.1021/ol3020418] [PMID: 22920993]
[48]
Adib, M.; Sheikhi, E.; Rezaei, N. One-pot synthesis of imidazo[1,2-a]pyridines from benzyl halides or benzyl tosylates, 2-aminopyridines and isocyanides. Tetrahedron Lett., 2011, 52(25), 3191-3194.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.002]
[49]
Donohoe, T.J.; Kabeshov, M.A.; Rathi, A.H.; Smith, I.E.D. Direct preparation of thiazoles, imidazoles, imidazopyridines and thiazolidines from alkenes. Org. Biomol. Chem., 2012, 10(5), 1093-1101.
[http://dx.doi.org/10.1039/C1OB06587D] [PMID: 22159268]
[50]
Lyon, M.A.; Kercher, T.S. Glyoxylic acid and MP-glyoxylate: Efficient formaldehyde equivalents in the 3-CC of 2-aminoazines, aldehydes, and isonitriles. Org. Lett., 2004, 6(26), 4989-4992.
[http://dx.doi.org/10.1021/ol0478234] [PMID: 15606117]
[51]
Azizi, N.; Dezfooli, S. Catalyst-free synthesis of imidazo [1,2-a] pyridines via Groebke multicomponent reaction. Environ. Chem. Lett., 2016, 14(2), 201-206.
[http://dx.doi.org/10.1007/s10311-015-0541-3]
[52]
Aliev, Z.G.; Atovmyan, L.O.; Kataev, S.S.; Zalesov, V.V. Synthesis and molecular structure of 3-(2-aryl-2-oxoethyl)-3-methoxy-2-oxo-2,3-dihydroimidazo-[1,2-a]pyridine hydrochlorides. Chem. Heterocycl. Compd., 2007, 43(3), 377-381.
[http://dx.doi.org/10.1007/s10593-007-0055-4]
[53]
Sokolov, V.B.; Aksinenko, A.Y.; Martynov, I.V. Reactions of methyl trifluoropyruvate 2-pyridylimines with trimethyl phosphite. Russ. Chem. Bull., 2005, 54(2), 470-471.
[http://dx.doi.org/10.1007/s11172-005-0280-x]
[54]
Gomez, O.; Salgado-Zamor, H.; Reyes, A.; Campos, M.E. A revised approach to the synthesis of 3-acyl imidazo[1,2-a] pyridines. Heterocycl. Commun., 2010, 16(2-3), 99-104.
[http://dx.doi.org/10.1515/HC.2010.16.2-3.99]
[55]
Sokolov, V.B.; Aksinenko, A.Y.; Epishina, T.A.; Goreva, T.V. 3-Substituted 2-trifluoromethylimidazo [1,2-a] pyridines. Russ. Chem. Bull., 2009, 58(3), 631-633.
[http://dx.doi.org/10.1007/s11172-009-0067-6]
[56]
Katritzky, A.R.; Xu, Y.J.; Tu, H. Regiospecific Synthesis of 3-Substituted Imidazo[1,2-a]pyridines, Imidazo[1,2-a]pyrimidines, and Imidazo[1,2-c]pyrimidine. J. Org. Chem., 2003, 68(12), 4935-4937.
[http://dx.doi.org/10.1021/jo026797p] [PMID: 12790603]
[57]
Rozentsveig, I.B.; Serykh, V.Y.; Chernysheva, G.N.; Chernyshev, K.A.; Kondrashov, E.V.; Tretyakov, E.V.; Romanenko, G.V. One-Pot Synthesis of N -(Imidazo[1,2- a]pyridin-3-yl)- and N -(Imidazo[2,1- b][1,3]thiazol-5-yl)sulfonamides. Eur. J. Org. Chem., 2013, 2013(2), 368-375.
[http://dx.doi.org/10.1002/ejoc.201201006]
[58]
Deyanov, A.B.; Konshin, M.E. Synthesis of derivatives of 8-cyano-6-ethoxycarbonyl-3-hydroxy-5-methylimidazo[1,2-a]pyridine and 9-alkoxycarbonyl- (or 9-carboxy)-3-ethoxycarbonyl-2-methyl-10H-benzo[b]-1,8-naphthyridine-5-one from the reaction of 2-chloro-5-ethoxycarbonyl-6-methylnicotinonitrile with amino acids. Chem. Heterocycl. Compd., 2004, 40(4), 510-515.
[http://dx.doi.org/10.1023/B:COHC.0000033548.10379.02]
[59]
Kianmehr, E.; Ghanbari, M.; Niri, M.N.; Faramarzi, R. Novel one-pot three component reaction for the synthesis of [2-(Alkylsulfanyl)imidazo[1,2- a]pyridin-3-yl](aryl)methanone. J. Comb. Chem., 2010, 12(1), 41-44.
[http://dx.doi.org/10.1021/cc900103r] [PMID: 19904970]
[60]
Prasanna, P.; Kumar, S.V.; Gunasekaran, P.; Perumal, S. Facile three-component domino reactions for the synthesis of 2-arylimidazo[1,2-a]pyridines and 2-arylimidazo[2,1-a]isoquinolines. Tetrahedron Lett., 2013, 54(29), 3740-3743.
[http://dx.doi.org/10.1016/j.tetlet.2013.04.126]
[61]
Zhu, D.J.; Chen, J.X.; Liu, M.C.; Ding, J-C.; Wu, H.Y. Catalyst: And solvent-free synthesis of imidazo[1,2-a]pyridines. J. Braz. Chem. Soc., 2009, 20(3), 482-487.
[http://dx.doi.org/10.1590/S0103-50532009000300012]
[62]
Adib, M.; Sheibani, E.; Zhu, L.G.; Mirzaei, P. An efficient synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines. Tetrahedron Lett., 2008, 49(34), 5108-5110.
[http://dx.doi.org/10.1016/j.tetlet.2008.05.134]
[63]
Attanasi, O.A.; Bianchi, L.; Campisi, L.A.; Crescentini, L.D.; Favi, G.; Mantellini, F. A novel solvent-free approach to imidazole containing nitrogen-bridgehead heterocycles. Org. Lett., 2013, 15(14), 3646-3649.
[http://dx.doi.org/10.1021/ol4015267] [PMID: 23805986]
[64]
Aksinenko, A.Y.; Goreva, T.V.; Epishina, T.A.; Sokolov, V.B. Synthesis of 3-fluoro-2-(diethoxyphosphoryl)imidazo[1,2-a]pyridine. J. Fluor. Chem., 2012, 137, 105-107.
[http://dx.doi.org/10.1016/j.jfluchem.2012.02.005]
[65]
Adib, M.; Mahdavi, M.; Noghani, M.A.; Mirzaei, P. Catalyst-free three-component reaction between 2-aminopyridines (or 2-aminothiazoles), aldehydes, and isocyanides in water. Tetrahedron Lett., 2007, 48(41), 7263-7265.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.049]
[66]
Momtano, R.G.; Jacom, A.I.; Gomez, A.M. Synthesis of Imidazo[1,2-a]pyridines via Multicomponent GBBR Using α-isocyanoacetamides. Proceedings, 2019, 9(1), 53-63.
[PMID: 34056640]
[67]
Chandra Mohan, D.; Nageswara Rao, S.; Adimurthy, S. Synthesis of imidazo[1,2-a]pyridines: “water-mediated” hydroamination and silver-catalyzed aminooxygenation. J. Org. Chem., 2013, 78(3), 1266-1272.
[http://dx.doi.org/10.1021/jo3025303] [PMID: 23289894]
[68]
Bangade, V.M.; Reddy, B.C.; Thakur, P.B.; Madhu Babu, B.; Meshram, H.M. DABCO catalyzed highly regioselective synthesis of fused imidazo-heterocycles in aqueous medium. Tetrahedron Lett., 2013, 54(35), 4767-4771.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.123]
[69]
Ge, W.; Zhu, X.; Wei, Y. Aerobic multicomponent tandem synthesis of 3-Sulfenylimidazo[1,2- a]pyridines from Ketones, 2-Aminopyridines, and disulfides. Eur. J. Org. Chem., 2013, 2013(27), 6015-6020.
[http://dx.doi.org/10.1002/ejoc.201300905]
[70]
Rao, D.N.; Rasheed, S.; Vishwakarma, R.A.; Das, P. Hypervalent iodine(III) catalyzed oxidative C–N bond formation in water: Synthesis of benzimidazole-fused heterocycles. RSC Advances, 2014, 4(49), 25600-25604.
[http://dx.doi.org/10.1039/C4RA02279C]
[71]
Marandi, G.; Saghatforoush, L.; Mendoza-Meroño, R.; García-Granda, S. Catalyst-free synthesis of 3-(alkylamino)-2-arylimidazo[1,2-a]pyridine-8-carboxylic acids via a three-component condensation. Tetrahedron Lett., 2014, 55(19), 3052-3054.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.121]
[72]
Proença, M.F.; Costa, M. One-pot approach to the synthesis of novel 12H-chromeno[2′3′4,5]imidazo[1,2-a]pyridines in aqueous media. Tetrahedron, 2010, 66(25), 4542-4550.
[http://dx.doi.org/10.1016/j.tet.2010.04.059]
[73]
Begunov, R.S.; Ryzvanovich, G.A.; Firgang, S.I. Simple synthesis of substituted benzo[4,5]imidazo[1,2-a]pyridines. Russ. J. Org. Chem., 2004, 40(11), 1694-1696.
[http://dx.doi.org/10.1007/s11178-005-0082-5]
[74]
Yadav, J.S.; Subba Reddy, B.V.; Gopal Rao, Y.; Srinivas, M.; Narsaiah, A.V. Cu(OTf)2-catalyzed synthesis of imidazo[1,2-a]pyridines from α-diazoketones and 2-aminopyridines. Tetrahedron Lett., 2007, 48(43), 7717-7720.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.090]
[75]
Xie, Y.Y.; Chen, Z.C.; Zheng, Q.G. Organic reactions in ionic liquids: Ionic liquid-accelerated cyclocondensation of α-Tosyloxyketones with 2-Aminopyridine. Synthesis, 2002, 11, 1505-1508.
[76]
Santra, S.; Bagdi, A.K.; Majee, A.; Hajra, A. Iron(III)-catalyzed cascade reaction between nitroolefins and 2-Aminopyridines: Synthesis of Imidazo[1,2- a]pyridines and easy access towards zolimidine. Adv. Synth. Catal., 2013, 355(6), 1065-1070.
[http://dx.doi.org/10.1002/adsc.201201112]
[77]
Khan, A.T.; Sidick Basha, R.; Lal, M. Bromodimethylsulfonium bromide (BDMS) catalyzed synthesis of imidazo[1,2-a]pyridine derivatives and their fluorescence properties. Tetrahedron Lett., 2012, 53(17), 2211-2217.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.078]
[78]
Ramesha, A.B.; Raghavendra, G.M.; Nandeesh, K.N.; Rangappa, K.S.; Mantelingu, K. Tandem approach for the synthesis of imidazo[1,2-a]pyridines from alcohols. Tetrahedron Lett., 2013, 54(1), 95-100.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.112]
[79]
Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Copper-catalyzed intramolecular dehydrogenative aminooxygenation: Direct access to formyl-substituted aromatic N-heterocycles. Angew. Chem. Int. Ed., 2011, 50(25), 5678-5681.
[http://dx.doi.org/10.1002/anie.201100362] [PMID: 21544911]
[80]
Wang, X.; Ma, L.; Yu, W. Synthesis of Imidazo[1,2-a]pyridines by the bis(acetyloxy)(phenyl)-λ3-iodane-mediated oxidative coupling of 2-aminopyridines with β-keto esters and 1,3-diones. Synthesis, 2011, 15, 2445-2453.
[81]
Babu, B.M.; Kumar, G.S.; Thakur, P.B.; Bangade, V.M.; Meshram, H.M. A mild and novel synthesis of functionalized fused imidazole analogues under environmentally benign reaction media. Tetrahedron Lett., 2014, 55(24), 3473-3477.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.080]
[82]
Yan, R.L.; Yan, H.; Ma, C.; Ren, Z.Y.; Gao, X.A.; Huang, G.S.; Liang, Y.M. Cu(I)-catalyzed synthesis of imidazo[1,2-a]pyridines from aminopyridines and nitroolefins using air as the oxidant. J. Org. Chem., 2012, 77(4), 2024-2028.
[http://dx.doi.org/10.1021/jo202447p] [PMID: 22239920]
[83]
Gao, Y.; Yin, M.; Wu, W.; Huang, H.; Jiang, H. Copper-catalyzed intermolecular oxidative cyclization of halo- alkynes: synthesis of 2-halo-substituted imidazo[1,2- a]pyridines, imidazo[1,2- a]pyrazines and imidazo[1,2- a]pyrimidines. Adv. Synth. Catal., 2013, 355(11-12), 2263-2273.
[http://dx.doi.org/10.1002/adsc.201300157]
[84]
Arnould, M.; Hiebel, M.A.; Massip, S.; Léger, J.M.; Jarry, C.; Berteina-Raboin, S.; Guillaumet, G. Efficient metal-free synthesis of various pyrido[2′1′2,3]imidazo-[4,5-b]quinolines. Chemistry, 2013, 19(37), 12249-12253.
[http://dx.doi.org/10.1002/chem.201300961] [PMID: 23955568]
[85]
Cao, H.; Liu, X.; Zhao, L.; Cen, J.; Lin, J.; Zhu, Q.; Fu, M. One-pot regiospecific synthesis of imidazo[1,2-a]pyridines: A novel, metal-free, three-component reaction for the formation of C-N, C-O, and C-S bonds. Org. Lett., 2014, 16(1), 146-149.
[http://dx.doi.org/10.1021/ol4031414] [PMID: 24320098]
[86]
Liang, D.; He, Y.; Liu, L.; Zhu, Q. A metal-free tandem demethylenation/C(sp2)-H cycloamination process of N-benzyl-2-aminopyridines via C-C and C-N bond cleavage. Org. Lett., 2013, 15(13), 3476-3479.
[http://dx.doi.org/10.1021/ol4015656] [PMID: 23802877]
[87]
Sandeep, C.; Padmashali, B.; Kulkarni, R.S. Efficient synthesis of indolizines and new imidazo[1,2-a]pyridines via the expected cyclization of aromatic cycloimmonium ylides with electron deficient alkynes and ethyl cyanoformate. Tetrahedron Lett., 2013, 54(48), 6411-6414.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.033]
[88]
Bakherad, M.; Nasr-Isfahani, H.; Keivanloo, A.; Doostmohammadi, N. Pd–Cu catalyzed heterocyclization during Sonogashira coupling: synthesis of 2-benzylimidazo[1,2-a]pyridine. Tetrahedron Lett., 2008, 49(23), 3819-3822.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.141]
[89]
Talbot, E.P.A.; Richardson, M.; McKenna, J.M.; Toste, F.D. Gold-catalyzed redox synthesis of imidazo[1,2- a]pyridines using pyridine N -oxide and alkynes. Adv. Synth. Catal., 2014, 356(4), 687-691.
[http://dx.doi.org/10.1002/adsc.201300996] [PMID: 24839436]
[90]
Adib, M.; Mahdavi, M.; Abbasi, A.; Jahromi, A.H.; Bijanzadeh, H.R. Efficient synthesis of imidazo[1,2-a]pyridin-3(2H)-ones. Tetrahedron Lett., 2007, 48(18), 3217-3220.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.021]
[91]
Jadhav, N.H.; Sakate, S.S.; Shinde, D.R.; Chaskar, M.G.; Pawar, R.A. A transition metal-free cascade reaction using heterogeneous tin(IV)oxide catalyzed and iodine promoted synthesis of 3-aroylimidazo[1,2-a]pyridines. Tetrahedron Lett., 2020, 61(34), 152250.
[http://dx.doi.org/10.1016/j.tetlet.2020.152250]
[92]
Ren, Z.H.; Zhao, M.N.; Yi, Y.; Wang, Y.Y.; Guan, Z.H. Copper-catalyzed aerobic oxidative cyclization of ketoxime acetates with pyridines for the synthesis of imidazo[1,2-a]pyridines. Synthesis, 2016, 48, 1920-1926.
[93]
Dhas, J.; Deshmukh, S.; Pansare, D.; Pawar, R.; Kakade, G. Synthesis of imidazo [1,2-a] pyridine derivatives using copper silicate as an efficient and reusable catalyst. Lett. Appl. NanoBioScience., 2021, 10(3), 2565-2570.
[94]
Vuillermet, F.; Bourret, J.; Pelletier, G. Synthesis of imidazo[1,2-a]pyridines: triflic anhydride-mediated annulation of 2H-azirines with 2-chloropyridines. J. Org. Chem., 2021, 86(1), 388-402.
[http://dx.doi.org/10.1021/acs.joc.0c02148] [PMID: 33269922]
[95]
Patel, A.; Shah, D.; Patel, N.; Patel, K.; Soni, N.; Nagai, A.; Shah, U.; Patel, M.; Patel, S.; Bhimani, B.; Bambharoliya, T. Quinoxaline as ubiquitous structural fragment: An update on the recent development of its green synthetic approaches. Curr. Org. Chem., 2021, 25(24), 3004-3016.
[http://dx.doi.org/10.2174/1385272825666211125102145]
[96]
Bhimani, B.; Patel, A.; Shah, D. An update on recent green synthetic approaches to coumarins. Mini Rev. Org. Chem., 2023, 20, 1-18.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy