Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Assessment of Circulating CCR6 Level in Acute Myocardial Infarction and its Association with Disease Severity

Author(s): Amira Mohamed Noureldin Abdelrahman, Amal Elmahdy Mohamed, Ahmed Mahmoud Bendary*, Amira Adel Sedki and Ola Samir El-Shimi

Volume 21, Issue 3, 2023

Published on: 03 February, 2023

Page: [223 - 231] Pages: 9

DOI: 10.2174/1871525721666230120160717

Price: $65

Abstract

Background: Acute myocardial infarction (AMI) pathophysiology is mediated by systemic, intraplaque myocardial inflammatory processes that occur mainly due to coronary artery thrombosis in an atherosclerotic plaque area. The G-protein-coupled chemokine receptor (Ccr6) is displayed on the surface of many types of leukocytes, that have been found in atherosclerotic plaques. It is a novel mediator of inflammation and immune response.

Objectives: To determine CCR6 lymphocyte expression in AMI patients and its association with disease severity using the Gensini scoring system.

Methods: 25 AMI patients and 25 controls underwent flow cytometry to determine the percentage of circulating CCR6+ lymphocytes. To forecast AMI and determine how CCR6 expression relates to it, multivariate logistic regression analysis was used.

Results and Discussion: There was a higher percentage of CCR6+ lymphocyte expression in AMI patients than in controls. In addition, CCR6 showed a significant positive correlation with the Gensini score (GS) in the AMI group then with the degree of coronary artery disease (CAD).

Conclusion: The chemokine receptor CCR6 is an independent biomarker for AMI and mayplay a role as a mediator of T lymphocyte recruitment, which is associated with coronary lesion destabilization.

Graphical Abstract

[1]
Forcadell, M.J.; Vila-Córcoles, A.; de Diego, C.; Ochoa-Gondar, O.; Satué, E. Incidence and mortality of myocardial infarction among Catalonian older adults with and without underlying risk conditions: The CAPAMIS study. Eur. J. Prev. Cardiol., 2018, 25(17), 1822-1830.
[http://dx.doi.org/10.1177/2047487318788396] [PMID: 30019923]
[2]
Khera, S.; Kolte, D.; Gupta, T.; Subramanian, K.S.; Khanna, N.; Aronow, W.S.; Ahn, C.; Timmermans, R.J.; Cooper, H.A.; Fonarow, G.C.; Frishman, W.H.; Panza, J.A.; Bhatt, D.L. Temporal trends and sex differences in revascularization and outcomes of ST-segment elevation myocardial infarction in younger adults in the United States. J. Am. Coll. Cardiol., 2015, 66(18), 1961-1972.
[http://dx.doi.org/10.1016/j.jacc.2015.08.865] [PMID: 26515998]
[3]
Qi, Z.; Duan, F.; Liu, S.; Lv, X.; Wang, H.; Gao, Y.; Wang, J. Effects of bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: An echocardiographic study of left ventricular function. Echocardiography, 2015, 32(6), 937-946.
[http://dx.doi.org/10.1111/echo.12787] [PMID: 25418212]
[4]
Newby, A.C.; Johnson, T.W.; White, S.J. Endothelial erosion of plaques as a substrate for coronary thrombosis. Thromb. Haemost., 2016, 115(3), 509-519.
[http://dx.doi.org/10.1160/th15-09-0765] [PMID: 26791872]
[5]
Wu, M.Y.; Li, C.J.; Hou, M.F.; Chu, P.Y. New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int. J. Mol. Sci., 2017, 18(10), 2034.
[http://dx.doi.org/10.3390/ijms18102034] [PMID: 28937652]
[6]
Koenen, R.R.; Weber, C. Chemokines: Established and novel targets in atherosclerosis. EMBO Mol. Med., 2011, 3(12), 713-725.
[http://dx.doi.org/10.1002/emmm.201100183] [PMID: 22038924]
[7]
Julian, B. Molecular and Pharmacological Analysis of the Chemokine Receptor CCR6 (Doctoral dissertation). Sackler School of Graduate Biomedical Sciences (Tufts University). 2017. Available from: https://dl.tufts.edu/downloads/vq280090s?filename=70795m454.pdf
[8]
Ranasinghe, R.; Eri, R. Pleiotropic immune functions of chemokine receptor 6 in health and disease. Medicines, 2018, 5(3), 69.
[http://dx.doi.org/10.3390/medicines5030069] [PMID: 30004409]
[9]
Lu, M.Y.; Lu, S.S.; Chang, S.L.; Liao, F. The phosphorylation of CCR6 on distinct Ser/Thr residues in the carboxyl terminus differentially regulates biological function. Front. Immunol., 2018, 9, 415.
[http://dx.doi.org/10.3389/fimmu.2018.00415] [PMID: 29552015]
[10]
Diao, R.; Cai, X.; Liu, L.; Yang, L.; Duan, Y.; Cai, Z.; Gui, Y.; Mou, L. In vitro chemokine (C-C motif) receptor 6-dependent non-inflammatory chemotaxis during spermatogenesis. Biol. Res., 2018, 51(1), 12.
[http://dx.doi.org/10.1186/s40659-018-0161-z] [PMID: 29788995]
[11]
Frick, V.O.; Rubie, C.; Keilholz, U.; Ghadjar, P. Chemokine/chemokine receptor pair CCL20/CCR6 in human colorectal malignancy: An overview. World J. Gastroenterol., 2016, 22(2), 833-841.
[http://dx.doi.org/10.3748/wjg.v22.i2.833] [PMID: 26811629]
[12]
Lee, A.Y.S.; Eri, R.; Lyons, A.B.; Grimm, M.C.; Korner, H. CC chemokine ligand 20 and its cognate receptor CCR6 in mucosal T cell immunology and inflammatory bowel disease: Odd couple or axis of evil? Front. Immunol., 2013, 4, 194.
[http://dx.doi.org/10.3389/fimmu.2013.00194] [PMID: 23874340]
[13]
Shi, X.; Zheng, K.; Shan, P.; Zhang, L.; Wu, S.; Huang, Z. Elevated circulating level of P2X7 receptor is related to severity of coronary artery stenosis and prognosis of acute myocardial infarction. Cardiol. J., 2020, 20, 28.
[PMID: 32436587]
[14]
Yildirim, E.; Iyisoy, A.; Celik, M.; Yuksel, U.C.; Acikel, C.; Bugan, B.; Gokoglan, Y. The relationship between gensini score and in-hospital mortality in patients with ST-segment elevation myocardial infarction. Int. J. Cardiovasc. Sci., 2017, 30(1), 32-41.
[http://dx.doi.org/10.5935/2359-4802.20170017]
[15]
Yan, X.; Shichita, T.; Katsumata, Y.; Matsuhashi, T.; Ito, H.; Ito, K.; Anzai, A.; Endo, J.; Tamura, Y.; Kimura, K.; Fujita, J.; Shinmura, K.; Shen, W.; Yoshimura, A.; Fukuda, K.; Sano, M. Deleterious effect of the IL-23/IL-17A axis and γδT cells on left ventricular remodeling after myocardial infarction. J. Am. Heart Assoc., 2012, 1(5), e004408.
[http://dx.doi.org/10.1161/JAHA.112.004408] [PMID: 23316306]
[16]
Wan, W.; Lim, J.K.; Lionakis, M.S.; Rivollier, A.; McDermott, D.H.; Kelsall, B.L.; Farber, J.M.; Murphy, P.M. Genetic deletion of chemokine receptor Ccr6 decreases atherogenesis in ApoE-deficient mice. Circ. Res., 2011, 109(4), 374-381.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.242578] [PMID: 21680896]
[17]
Gunes, H.; Saritas, A.; Cangur, S.; Kayapinar, O. Complete blood count parameters for prediction of non-ST segment elevation myocardial infarction. J. Coll. Physicians Surg. Pak., 2019, 29(8), 710-714.
[http://dx.doi.org/10.29271/jcpsp.2019.08.710] [PMID: 31358088]
[18]
Yilmaz, M.; Tenekecioglu, E.; Arslan, B.; Bekler, A.; Ozluk, O.A.; Karaagac, K.; Agca, F.V.; Peker, T.; Akgumus, A. White blood cell subtypes and neutrophil–lymphocyte ratio in prediction of coronary thrombus formation in non-ST-segment elevated acute coronary syndrome. Clin. Appl. Thromb. Hemost., 2015, 21(5), 446-452.
[http://dx.doi.org/10.1177/1076029613507337] [PMID: 24203350]
[19]
Korkmaz, A.; Yildiz, A.; Gunes, H.; Duyuler, S.; Tuncez, A. Utility of neutrophil–lymphocyte ratio in predicting troponin elevation in the emergency department setting. Clin. Appl. Thromb. Hemost., 2015, 21(7), 667-671.
[http://dx.doi.org/10.1177/1076029613519850] [PMID: 24431379]
[20]
Khan, H.A.; Alhomida, A.S.; Sobki, S.H. Lipid profile of patients with acute myocardial infarction and its correlation with systemic inflammation. Biomark. Insights, 2013, 8, BMI.S11015.
[http://dx.doi.org/10.4137/BMI.S11015] [PMID: 23400110]
[21]
Gosar, P.; Singh, A.P.; Gosar, P.; Rani, B. Evaluating serum uric acid levels in patients with acute myocardial infarction. IJAM, 2020, 7(8), 1256-1259.
[http://dx.doi.org/10.18203/2349-3933.ijam20203124]
[22]
Nadkar, M.Y.; Jain, V.I. Serum uric acid in acute myocardial infarction. J. Assoc. Physicians India, 2008, 56, 759-762.
[PMID: 19263700]
[23]
Piccin, A.; Murphy, C.; Eakins, E.; Kinsella, A.; McMahon, C.; Smith, O.P.; Murphy, W.G. Protein C and free protein S in children with sickle cell anemia. Ann. Hematol., 2012, 91(10), 1669-1671.
[http://dx.doi.org/10.1007/s00277-012-1447-9] [PMID: 22434279]
[24]
Piccin, A.; O’ Marcaigh, A.; Mc Mahon, C.; Murphy, C.; Okafor, I.; Marcheselli, L.; Casey, W.; Claffey, L.; Smith, O.P. Non-activated plasma-derived PC improves amputation rate of children undergoing sepsis. Thromb. Res., 2014, 134(1), 63-67.
[http://dx.doi.org/10.1016/j.thromres.2014.04.019] [PMID: 24821370]
[25]
Piccin, A.; Steurer, M.; Feistritzer, C.; Murphy, C.; Eakins, E.; Van Schilfgaarde, M.; Corvetta, D.; Di Pierro, A.M.; Pusceddu, I.; Marcheselli, L.; Gambato, R.; Langes, M.; Veneri, D.; Perbellini, O.; Pacquola, E.; Gottardi, M.; Gherlinzoni, F.; Mega, A.; Tauber, M.; Mazzoleni, G.; Piva, E.; Plebani, M.; Krampera, M.; Gastl, G. Observational retrospective study of vascular modulator changes during treatment in essential thrombocythemia. Transl. Res., 2017, 184, 21-34.
[http://dx.doi.org/10.1016/j.trsl.2017.02.001] [PMID: 28259616]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy