Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Research Article

Quality by Design Enabled Systematic Optimization of Calcineurin Inhibitor loaded Polymeric Nanoparticles for Sustained Topical Delivery in Psoriasis

Author(s): Priyanka Ahlawat, Shruti Patel, Abhay Dharmasi and Asha Patel*

Volume 18, Issue 3, 2023

Published on: 24 February, 2023

Page: [218 - 230] Pages: 13

DOI: 10.2174/1574885518666230120151823

Price: $65

Abstract

Background: The present work describes the systematic development and optimization of cyclosporine-A loaded biodegradable polymeric nanoparticulate system using quality by design paradigm, to achieve an effective and sustained release of the cyclosporine-A to the targeted lesion of plaque psoriasis.

Methods: The polymeric nanoparticles were formulated using the solvent emulsification method using Polycaprolactone and Hyaluronic acid as polymers. An Ishikawa fishbone diagram was constructed for risk assessment and to describe various plausible product and process variables influencing the quality target product profile. Critical process and product parameters were further optimized by Response surface methodology using Central Composite Design by Minitab 19 Software. The development and optimization of cyclosporine-A loaded biodegradable polymeric nanoparticles were further carried out by developing the relationship of independent variables viz. amount of polymers polycaprolactone and hyaluronic acid on dependent variables viz. particle size, zeta potential, and entrapment efficiency and exploring their interactions. Validation of the model was done by checkpoint analysis method.

Results: The particle size, zeta potential, and Entrapment efficiency of the optimized polymeric nanoparticles were found to be 317.2 ± 1.271, -0.249 ± 0.903 mV and 83.33 ± 1.124%, respectively. SEM images of the lyophilized nanoparticles showed spherical particles. In-vitro drug release study showed a slow and sustained release of 88.52 ± 1.10% of drugs up to 14 days.

Conclusion: The nanoparticulate system would also help in overcoming the problem associated with poor water solubility and low permeability of the drug and will explore drug loaded biodegradable polymeric nanoparticles as a novel platform for effective therapy of psoriasis.

Graphical Abstract

[1]
Rendon, A.; Schäkel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci., 2019, 20(6), 1475.
[http://dx.doi.org/10.3390/ijms20061475] [PMID: 30909615]
[2]
Meneguin, S.; de Godoy, N.A.; Pollo, C.F.; Miot, H.A.; de Oliveira, C. Quality of life of patients living with psoriasis: a qualitative study. BMC Dermatol., 2020, 20(1), 22.
[http://dx.doi.org/10.1186/s12895-020-00116-9] [PMID: 32746823]
[3]
Dubois Declercq, S.; Pouliot, R. Promising new treatments for psoriasis. Sci. World J., 2013, 2013(7), 1-9.
[http://dx.doi.org/10.1155/2013/980419] [PMID: 23935446]
[4]
Rønholt, K.; Iversen, L. Old and new biological therapies for psoriasis. Int. J. Mol. Sci., 2017, 18(11), 2297.
[http://dx.doi.org/10.3390/ijms18112297] [PMID: 29104241]
[5]
Vassantachart, J.M.; Jacob, S.E. Cyclosporine in the treatment of psoriasis. J. Dermatol. Nurses Assoc., 2017, 9(2), 98-101.
[http://dx.doi.org/10.1097/JDN.0000000000000266]
[6]
Colombo, M.D.; Cassano, N.; Bellia, G.; Vena, G.A. Cyclosporine regimens in plaque psoriasis: an overview with special emphasis on dose, duration, and old and new treatment approaches. Sci. World J., 2013, 2013(25), 1-11.
[http://dx.doi.org/10.1155/2013/805705] [PMID: 23983647]
[7]
Lopes, L.B.; Collett, J.H.; Bentley, M.V.L.B. Topical delivery of cyclosporin A: An in vitro study using monoolein as a penetration enhancer. Eur. J. Pharm. Biopharm., 2005, 60(1), 25-30.
[http://dx.doi.org/10.1016/j.ejpb.2004.12.003] [PMID: 15848052]
[8]
Duncan, J.I.; Payne, S.N.L.; Winfield, A.J.; Ormerod, A.D.; Thomson, A.W. Enhanced percutaneous absorption of a novel topical cyclosporin A formulation and assessment of its immunosuppressive activity. Br. J. Dermatol., 1990, 123(5), 631-640.
[http://dx.doi.org/10.1111/j.1365-2133.1990.tb01480.x] [PMID: 2147390]
[9]
Choi, H.K.; Flynn, G.L.; Amidon, G.L. Percutaneous absorption and dermal delivery of cyclosporin A. J. Pharm. Sci., 1995, 84(5), 581-583.
[http://dx.doi.org/10.1002/jps.2600840512] [PMID: 7658348]
[10]
Essaghraoui, A.; Belfkira, A.; Hamdaoui, B.; Nunes, C.; Lima, S.A.C.; Reis, S. Improved dermal delivery of cyclosporine a loaded in solid lipid nanoparticles. Nanomaterials, 2019, 9(9), 1204.
[http://dx.doi.org/10.3390/nano9091204] [PMID: 31461853]
[11]
Shim, J.; Seokkang, H.; Park, W.; Han, S.; Kim, J.; Chang, I. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J. Control. Release, 2004, 97(3), 477-484.
[http://dx.doi.org/10.1016/S0168-3659(04)00167-1] [PMID: 15212879]
[12]
Jawahar, N.; Meyyanathan, S.N. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int. J. Health Allied Sci., 2012, 1(4), 217.
[http://dx.doi.org/10.4103/2278-344X.107832]
[13]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[14]
Vasile, C. Polymeric nanomaterials: Recent developments, properties and medical applications. In: Polymeric nanomaterials in nanotherapeutics; Elsevier Inc.: Amsterdam, 2019; pp. 1-66.
[http://dx.doi.org/10.1016/B978-0-12-813932-5.00001-7]
[15]
Yu, L.X.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.K.; Woodcock, J. Understanding pharmaceutical quality by design. AAPS J., 2014, 16(4), 771-783.
[http://dx.doi.org/10.1208/s12248-014-9598-3] [PMID: 24854893]
[16]
Sarkar, P.; Bhattacharya, S.; Pal, T.K. Application of statistical design to evaluate critical process parameters and optimize formulation technique of polymeric nanoparticles. R. Soc. Open Sci., 2019, 6(7)190896
[http://dx.doi.org/10.1098/rsos.190896] [PMID: 31417765]
[17]
Fukuda, I.M.; Pinto, C.F.F.; Moreira, C.S.; Saviano, A.M.; Lourenço, F.R. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Braz. J. Pharm. Sci.,, 2018, 54(spe), 1-16.
[http://dx.doi.org/10.1590/s2175-97902018000001006]
[18]
Aydar, A.Y. Utilization of response surface methodology in optimization of extraction of plant materials. In: Stat. Approaches with Emphas. Des. Exp. Appl. to Chem. Process; , 2018; pp. 158-169.
[http://dx.doi.org/10.5772/intechopen.73690]
[19]
Singh, G.; Pai, R.S.; Devi, V.K. Response surface methodology and process optimization of sustained release pellets using Taguchi orthogonal array design and central composite design. J. Adv. Pharm. Technol. Res., 2012, 3(1), 30-40.
[http://dx.doi.org/10.4103/2231-4040.93565] [PMID: 22470891]
[20]
Hernández-Giottonini, K.Y.; Rodríguez-Córdova, R.J.; Gutiérrez-Valenzuela, C.A.; Peñuñuri-Miranda, O.; Zavala-Rivera, P.; Guerrero-Germán, P.; Lucero-Acuña, A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: effects of formulation parameters. RSC Advances, 2020, 10(8), 4218-4231.
[http://dx.doi.org/10.1039/C9RA10857B] [PMID: 35495261]
[21]
Soni, G.; Kale, K.; Shetty, S.; Gupta, M.K.; Yadav, K.S. Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer. Heliyon, 2020, 6(4)e03846
[http://dx.doi.org/10.1016/j.heliyon.2020.e03846] [PMID: 32373744]
[22]
Cunha, S.; Costa, C.P.; Moreira, J.N.; Sousa, L.J.M.; Silva, A.C. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: A review. Nanomed. Nanotechnol. Biol Med.,, 2020, 27(8), 102206.
[http://dx.doi.org/10.1016/j.nano.2020.102206]
[23]
Pallagi, E.; Ambrus, R.; Szabó-Révész, P.; Csóka, I. Adaptation of the quality by design concept in early pharmaceutical development of an intranasal nanosized formulation. Int. J. Pharm., 2015, 491(1-2), 384-392.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.018] [PMID: 26134895]
[24]
Iurian, S.; Turdean, L.; Tomuta, I. Risk assessment and experimental design in the development of a prolonged release drug delivery system with paliperidone. Drug Des. Devel. Ther., 2017, 11, 733-746.
[http://dx.doi.org/10.2147/DDDT.S125323] [PMID: 28331293]
[25]
Pallagi, E.; Ismail, R.; Paál, T.L.; Csóka, I. Initial Risk Assessment as part of the quality by design in peptide drug containing formulation development. Eur. J. Pharm. Sci., 2018, 122(9), 160-169.
[http://dx.doi.org/10.1016/j.ejps.2018.07.003]
[26]
Zhou, Y.Z.; Alany, R.G.; Chuang, V.; Wen, J. Optimization of PLGA nanoparticles formulation containing L-DOPA by applying the central composite design. Drug Dev. Ind. Pharm., 2013, 39(2), 321-330.
[http://dx.doi.org/10.3109/03639045.2012.681054] [PMID: 22607101]
[27]
Sreeharsha, N.; Rajpoot, K.; Tekade, M.; Kalyane, D.; Nair, A.B.; Venugopala, K.N.; Tekade, R.K. Development of metronidazole loaded chitosan nanoparticles using QBD approach—a novel and potential antibacterial formulation. Pharmaceutics, 2020, 12(10), 920.
[http://dx.doi.org/10.3390/pharmaceutics12100920] [PMID: 32992903]
[28]
Ramalho, M.J.; Loureiro, J.A.; Coelho, M.A.N.; Pereira, M.C. Factorial design as a tool for the optimization of plga nanoparticles for the co-delivery of temozolomide and o6- benzylguanine. Pharmaceutics, 2019, 11(8), 401.
[http://dx.doi.org/10.3390/pharmaceutics11080401] [PMID: 31405159]
[29]
Elsewedy, H.S.; Dhubiab, B.E.A.; Mahdy, M.A.; Elnahas, H.M. Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles. Drug Deliv., 2020, 27(1), 1134-1146.
[http://dx.doi.org/10.1080/10717544.2020.1797237]
[30]
Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C, 2017, 80, 771-784.
[http://dx.doi.org/10.1016/j.msec.2017.06.004]
[31]
Italia, J.L.; Bhatt, D.K.; Bhardwaj, V.; Tikoo, K.; Kumar, M.N.V.R. PLGA nanoparticles for oral delivery of cyclosporine: Nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral®. J. Control. Release, 2007, 119(2), 197-206.
[http://dx.doi.org/10.1016/j.jconrel.2007.02.004] [PMID: 17399839]
[32]
Takebe, G.; Takagi, T.; Suzuki, M.; Hiramatsu, M. Preparation of polymeric nanoparticles of cyclosporin A using infrared pulsed laser. Int. J. Pharm., 2011, 414(1-2), 244-50.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.012]
[33]
Gajra, B.; Dalwadi, C.; Patel, R. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using box behnken design. Daru, 2015, 23(1), 3.
[http://dx.doi.org/10.1186/s40199-014-0087-0] [PMID: 25604353]
[34]
Alex, A.T.; Joseph, A.; Shavi, G.; Rao, J.V.; Udupa, N. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv., 2016, 23(7), 2144-2153.
[http://dx.doi.org/10.3109/10717544.2014.948643] [PMID: 25544603]
[35]
Saltzman, W.M. Drug Delivery: Engineering Principles for Drug Therapy; Oxford University Press: Oxford, 2001.
[http://dx.doi.org/10.1093/oso/9780195085891.001.0001]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy