Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Electrochemical Biosensors for Monitoring of Drug-DNA Interactions

Author(s): Gulsah Congur*

Volume 23, Issue 4, 2023

Published on: 10 February, 2023

Page: [316 - 330] Pages: 15

DOI: 10.2174/1568026623666230120113550

Price: $65

Abstract

The binding of the therapeutic agents to the nucleic acids is one of the paramount issues in the drug development area that is studied by various techniques. Electrochemical studies have a big portion in this area due to the fact that they allow designing of novel monitoring systems that have superior properties such as being feasible and sustainable. These electrochemical monitoring tools analyze these interactions in in vitro conditions and give the results precisely and rapidly. In the scope of this manuscript, the electrochemical monitoring platforms developed for the determination of DNA-drug interactions were under the spotlight. The electrode types mostly used for the electrochemical monitoring of drug-DNA interactions were described. The binding mechanisms of the drugs to the DNA structure were explained, and the evaluation strategies of the interactions using electrochemical techniques were stated. Most of the reports of the last 25 years were given, and some of the electrochemical biosensor applications including both voltammetric and impedimetric studies were explained in detail. Furthermore, it is possible to reach nanomaterials/biomaterials-based biosensor platforms for the monitoring of DNA-drug interactions, and these applications were in the scope of this manuscript. The future aspects of these areas were also stated.

« Previous
Graphical Abstract

[1]
Pearson, A.D.J.; Weiner, S.L.; Adamson, P.C.; Karres, D.; Reaman, G.; Rousseau, R.; Blanc, P.; Norga, K.; Skolnik, J.; Kearns, P.; Scobie, N.; Barry, E.; Marshall, L.V.; Knox, L.; Caron, H.; Wariabharaj, D.; Pappo, A.; DuBois, S.G.; Gore, L.; Kieran, M.; Weigel, B.; Fox, E.; Nysom, K.; de Rojas, T.; Vassal, G. ACCELERATE – Five years accelerating cancer drug development for children and adolescents. Eur. J. Cancer, 2022, 166, 145-164.
[http://dx.doi.org/10.1016/j.ejca.2022.01.033] [PMID: 35290915]
[2]
Vermeulen, I.; Isin, E.M.; Barton, P.; Cillero-Pastor, B.; Heeren, R.M.A. Multimodal molecular imaging in drug discovery and development. Drug Discov. Today, 2022, 27(8), 2086-2099.
[http://dx.doi.org/10.1016/j.drudis.2022.04.009] [PMID: 35429672]
[3]
Ruiz, F.X.; Hoang, A.; Dilmore, C.R.; DeStefano, J.J.; Arnold, E. Structural basis of HIV inhibition by L-nucleosides: Opportunities for drug development and repurposing. Drug Discov. Today, 2022, 27(7), 1832-1846.
[http://dx.doi.org/10.1016/j.drudis.2022.02.016] [PMID: 35218925]
[4]
Dhondt, J.; Eeckhout, Y.; Bertels, J.; Kumar, A.; Snick, B.V.; Klingeleers, D.; Beer, C.V.T. A multivariate methodology for material sparing characterization and blend design in drug product development. Int. J. Pharm., 2022, 621, 121801.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121801]
[5]
De la Cruz Morales, K.; Alarcón-Angeles, G.; Merkoçi, A. Nanomaterial-based sensors for the study of DNA interaction with drugs. Electroanalysis, 2019, 31(10), 1845-1867.
[http://dx.doi.org/10.1002/elan.201900286]
[6]
Weber, G.F. DNA damaging drugs. Mol. Ther. Cancer, 2014, 8, 9-112.
[7]
Lai, Y.; Chu, X.; Di, L.; Gao, W.; Guo, Y.; Liu, X.; Lu, C.; Mao, J.; Shen, H.; Tang, H.; Xia, C.Q.; Zhang, L.; Ding, X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm. Sin. B, 2022, 12(6), 2751-2777.
[http://dx.doi.org/10.1016/j.apsb.2022.03.009] [PMID: 35755285]
[8]
Erdem, A.; Karadeniz, H.; Calıskan, A. Electrochemical DNA sensor technology for monitoring of drug-DNA interactions. NANO, 2008, 3(4), 229-232.
[9]
Perveen, F.; Qureshi, R.; Ansari, F.L.; Kalsoom, S.; Ahmed, S. Investigations of drug–DNA interactions using molecular docking, cyclic voltammetry and UV–Vis spectroscopy. J. Mol. Struct., 2011, 1004(1-3), 67-73.
[http://dx.doi.org/10.1016/j.molstruc.2011.07.027]
[10]
Arshad, N.; Farooqi, S.I. Cyclic voltammetric DNA binding ınvestigations on some anticancer potential metal complexes: A review. Appl. Biochem. Biotechnol., 2018, 186(4), 1090-1110.
[http://dx.doi.org/10.1007/s12010-018-2818-z] [PMID: 29934844]
[11]
Hasanzadeh, M.; Shadjou, N. Pharmacogenomic study using bio and nanobioelectrochemistry: Drug–DNA interaction. Mater. Sci. Eng. C, 2016, 61, 1002-1017.
[http://dx.doi.org/10.1016/j.msec.2015.12.020] [PMID: 26838928]
[12]
Sirajuddin, M.; Ali, S.; Badshah, A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B, 2013, 124, 1-19.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.03.013] [PMID: 23648795]
[13]
Rauf, S.; Gooding, J.J.; Akhtar, K.; Ghauri, M.A.; Rahman, M.; Anwar, M.A.; Khalid, A.M. Electrochemical approach of anticancer drugs–DNA interaction. J. Pharm. Biomed. Anal., 2005, 37(2), 205-217.
[http://dx.doi.org/10.1016/j.jpba.2004.10.037] [PMID: 15708659]
[14]
Tadini-Buoninsegni, F.; Palchetti, I. Label-Free bioelectrochemical methods for evaluation of anticancer drug effects at a molecular level. Sensors, 2020, 20(7), 1812-1826.
[http://dx.doi.org/10.3390/s20071812] [PMID: 32218227]
[15]
Paleček, E.; Jelen, F. Electrochemistry of nucleic acids. Perspect. Bioanal., 2005, 1, 73-173.
[http://dx.doi.org/10.1016/S1871-0069(05)01003-7]
[16]
Paleček, E.; Bartošík, M. Electrochemistry of nucleic acids. Chem. Rev., 2012, 112(6), 3427-3481.
[http://dx.doi.org/10.1021/cr200303p] [PMID: 22372839]
[17]
Chupradit, S.; K.M., Nasution M.; Rahman, H.S.; Suksatan, W.; Turki Jalil, A.; Abdelbasset, W.K.; Bokov, D.; Markov, A.; Fardeeva, I.N.; Widjaja, G.; Shalaby, M.N.; Saleh, M.M.; Mustafa, Y.F.; Surendar, A.; Bidares, R. Various types of electrochemical biosensors for leukemia detection and therapeutic approaches. Anal. Biochem., 2022, 654, 114736.
[http://dx.doi.org/10.1016/j.ab.2022.114736] [PMID: 35588855]
[18]
Nemiwal, M.; Zhang, T.C.; Kumar, D. Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme Microb. Technol., 2022, 156, 110006.
[http://dx.doi.org/10.1016/j.enzmictec.2022.110006] [PMID: 35144119]
[19]
Schmidt-Speicher, L.M.; Länge, K. Microfluidic integration for electrochemical biosensor applications. Curr. Opin. Electrochem., 2021, 29, 100755.
[http://dx.doi.org/10.1016/j.coelec.2021.100755]
[20]
Reddy, Y.V.M.; Shin, J.H.; Palakollu, V.N.; Sravani, B.; Choi, C.H.; Park, K.; Kim, S.K.; Madhavi, G.; Park, J.P.; Shetti, N.P. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv. Colloid Interface Sci., 2022, 304, 102664.
[http://dx.doi.org/10.1016/j.cis.2022.102664] [PMID: 35413509]
[21]
Khan, G.S.; Shah, A. Zia-ur-Rehman; Barker, D. Chemistry of DNA minor groove binding agents. J. Photochem. Photobiol. B, 2012, 115, 105-118.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.07.003] [PMID: 22857824]
[22]
Kopka, M.L.; Goodsell, D.S.; Han, G.W.; Chiu, T.K.; Lown, J.W.; Dickerson, R.E. Defining GC-specificity in the minor groove: side-by-side binding of the di-imidazole lexitropsin to C-A-T-G-G-C-C-A-T-G. Structure, 1997, 5(8), 1033-1046.
[http://dx.doi.org/10.1016/S0969-2126(97)00255-4] [PMID: 9309219]
[23]
Tomczyk, M.D.; Walczak, K.Z. l,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur. J. Med. Chem., 2018, 159, 393-422.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.055] [PMID: 30312931]
[24]
Rescifina, A.; Zagni, C.; Varrica, M.G.; Pistarà, V.; Corsaro, A. Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modeling. Eur. J. Med. Chem., 2014, 74, 95-115.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.029] [PMID: 24448420]
[25]
Ferguson, L.R.; Denny, W.A. Genotoxicity of non-covalent interactions: DNA intercalators. Mutat. Res., 2007, 623(1-2), 14-23.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.03.014] [PMID: 17498749]
[26]
Raman, N.; Arun, T.R.; Mahalakshmi, R.; Packianathan, S.; Antony, R. Appraisal of DNA obligatory, DNA cleavage and in vitro anti-biogram efficiency of 9,10-phenanthrenequinone based metal complexes. Inorg. Chem. Commun., 2014, 46, 263-267.
[http://dx.doi.org/10.1016/j.inoche.2014.06.011]
[27]
He, Y.; Lopez, A.; Zhang, Z.; Chen, D.; Yang, R.; Liu, J. Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coord. Chem. Rev., 2019, 387, 235-248.
[http://dx.doi.org/10.1016/j.ccr.2019.02.020]
[28]
Boumya, W.; Taoufik, N.; Achak, M.; Barka, N. Chemically modified carbon-based electrodes for the determination of paracetamol in drugs and biological samples. J. Pharm. Anal., 2021, 11(2), 138-154.
[http://dx.doi.org/10.1016/j.jpha.2020.11.003] [PMID: 34012690]
[29]
Luong, J.H.T.; Male, K.B.; Glennon, J.D. Boron-doped diamond electrode: Synthesis, characterization, functionalization and analytical applications. Analyst (Lond.), 2009, 134(10), 1965-1979.
[http://dx.doi.org/10.1039/b910206j] [PMID: 19768202]
[30]
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103, 113-129.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[31]
Wang, L.; Xiong, Q.; Xiao, F.; Duan, H. 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens. Bioelectron., 2017, 89(Pt 1), 136-151.
[http://dx.doi.org/10.1016/j.bios.2016.06.011] [PMID: 27318880]
[32]
Lin, T.; Xu, Y.; Zhao, A.; He, W.; Xiao, F. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Anal. Chim. Acta, 2022, 1207, 339461.
[http://dx.doi.org/10.1016/j.aca.2022.339461] [PMID: 35491033]
[33]
Brett, C.M.A. Perspectives and challenges for self-assembled layer-by-layer biosensor and biomaterial architectures. Curr. Opin. Electrochem., 2018, 12, 21-26.
[http://dx.doi.org/10.1016/j.coelec.2018.11.004]
[34]
Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; Banavoth, M.; Sonar, P.; Badoni, B.; Chakravorty, A. Recent progress and growth in biosensors technology: A critical review. J. Ind. Eng. Chem., 2022, 109, 21-51.
[http://dx.doi.org/10.1016/j.jiec.2022.02.010]
[35]
Bao, C.; Shi, M.; Ma, W.; Li, J.; Huang, X.; Cheng, H. Simultaneous determination of aesculin and aesculetin and their interactions with DNA using carbon fiber microelectrode modified by Pt–Au bimetallic nanoparticles. Anal. Chim. Acta, 2022, 1202, 339664.
[http://dx.doi.org/10.1016/j.aca.2022.339664] [PMID: 35341516]
[36]
Bilge, S.; Dogan-Topal, B.; Taskin Tok, T.; Atici, E.B. Sınağ, A.; Ozkan, S.A. Investigation of the interaction between anticancer drug ibrutinib and double-stranded DNA by electrochemical and molecular docking techniques. Microchem. J., 2022, 180, 107622.
[http://dx.doi.org/10.1016/j.microc.2022.107622]
[37]
Temerk, Y.; Ibrahim, M.; Ibrahim, H.; Kotb, M. Interactions of an anticancer drug lomustine with single and double stranded DNA at physiological conditions analyzed by electrochemical and spectroscopic methods. J. Electroanal. Chem., 2016, 769, 62-71.
[http://dx.doi.org/10.1016/j.jelechem.2016.03.020]
[38]
de Carvalho, P.A.V.; Campelo Lopes, I.; Silva, E.H.C.; Bruzaca, E.E.S.; Alves, H.J.; Lima, M.I.S.; Tanaka, A.A. Electrochemical behaviour of anticancer drug lomustine and in situ evaluation of its interaction with DNA. J. Pharm. Biomed. Anal., 2019, 176, 112786.
[http://dx.doi.org/10.1016/j.jpba.2019.112786] [PMID: 31398506]
[39]
Diculescu, V.C.; Oliveira-Brett, A.M. In situ electrochemical evaluation of dsDNA interaction with the anticancer drug danusertib nitrenium radical product using the DNA-electrochemical biosensor. Bioelectrochemistry, 2016, 107, 50-57.
[http://dx.doi.org/10.1016/j.bioelechem.2015.10.004] [PMID: 26523506]
[40]
Wang, L.; Lin, L.; Ye, B. Electrochemical studies of the interaction of the anticancer herbal drug emodin with DNA. J. Pharm. Biomed. Anal., 2006, 42(5), 625-629.
[http://dx.doi.org/10.1016/j.jpba.2006.05.017] [PMID: 16828249]
[41]
Tian, X.; Song, Y.; Dong, H.; Ye, B. Interaction of anticancer herbal drug berberine with DNA immobilized on the glassy carbon electrode. Bioelectrochemistry, 2008, 73(1), 18-22.
[http://dx.doi.org/10.1016/j.bioelechem.2008.02.005] [PMID: 18455966]
[42]
Tian, X.; Li, F.; Zhu, L.; Ye, B. Study on the electrochemical behavior of anticancer herbal drug rutin and its interaction with DNA. J. Electroanal. Chem., 2008, 621(1), 1-6.
[http://dx.doi.org/10.1016/j.jelechem.2008.02.022]
[43]
Kalanur, S.S.; Katrahalli, U.; Seetharamappa, J. Electrochemical studies and spectroscopic investigations on the interaction of an anticancer drug with DNA and their analytical applications. J. Electroanal. Chem., 2009, 636(1-2), 93-100.
[http://dx.doi.org/10.1016/j.jelechem.2009.09.018]
[44]
Buoro, R.M.; Lopes, I.C.; Diculescu, V.C.; Serrano, S.H.P.; Lemos, L.; Oliveira-Brett, A.M. In situ evaluation of gemcitabine–DNA interaction using a DNA-electrochemical biosensor. Bioelectrochemistry, 2014, 99, 40-45.
[http://dx.doi.org/10.1016/j.bioelechem.2014.05.005] [PMID: 24984198]
[45]
Ibrahim, M.S. Voltammetric studies of the interaction of nogalamycin antitumor drug with DNA. Anal. Chim. Acta, 2001, 443(1), 63-72.
[http://dx.doi.org/10.1016/S0003-2670(01)01184-9]
[46]
Rafique, B.; Khalid, A.M.; Akhtar, K.; Jabbar, A. Interaction of anticancer drug methotrexate with DNA analyzed by electrochemical and spectroscopic methods. Biosens. Bioelectron., 2013, 44, 21-26.
[http://dx.doi.org/10.1016/j.bios.2012.12.028] [PMID: 23384765]
[47]
Shahabadi, N.; Moghadam, N.H. Determining the mode of interaction of calf thymus DNA with the drug sumatriptan using voltammetric and spectroscopic techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 99, 18-22.
[http://dx.doi.org/10.1016/j.saa.2012.09.022] [PMID: 23041917]
[48]
Temerk, Y.; Ibrahim, H. Electrochemical studies and spectroscopic investigations on the interaction of an anticancer drug flutamide with DNA and its analytical applications. J. Electroanal. Chem., 2015, 736, 1-7.
[http://dx.doi.org/10.1016/j.jelechem.2014.10.019]
[49]
Song, M.; Zhang, R.; Wang, X. Nano-titanium dioxide enhanced biosensing of the interaction of dacarbazine with DNA and DNA bases. Mater. Lett., 2006, 60(17-18), 2143-2147.
[http://dx.doi.org/10.1016/j.matlet.2005.12.100]
[50]
Eksin, E.; Polat, D.; Erdem, A. Voltammetric and impedimetric detection of interaction between dacarbazine and nucleic acids. Electroanalysis, 2019, 31(10), 2012-2019.
[http://dx.doi.org/10.1002/elan.201900284]
[51]
Çeşme, M.; Muslu, H.; Tumer, M.; Güngör, Ö.; Altunbek, M.; Culha, M.; Golcu, A. New metal-based drugs: Spectral, electrochemical, DNA-binding and anticancer activity properties. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 887-906.
[52]
Radi, A.E.; Eissa, A.; Nassef, H.M. Voltammetric and spectroscopic studies on the binding of the antitumor drug dacarbazine with DNA. J. Electroanal. Chem., 2014, 717-718, 24-28.
[http://dx.doi.org/10.1016/j.jelechem.2014.01.007]
[53]
Temerk, Y.; Ibrahim, H. Binding mode and thermodynamic studies on the interaction of the anticancer drug dacarbazine and dacarbazine–Cu(II) complex with single and double stranded DNA. J. Pharm. Biomed. Anal., 2014, 95, 26-33.
[http://dx.doi.org/10.1016/j.jpba.2014.02.010] [PMID: 24631711]
[54]
Altay, C.; Eksin, E.; Congur, G.; Erdem, A. Electrochemical monitoring of the interaction between Temozolamide and nucleic acids by using disposable pencil graphite electrodes. Talanta, 2015, 144, 809-815.
[http://dx.doi.org/10.1016/j.talanta.2015.07.017] [PMID: 26452894]
[55]
Jahandari, S.; Taher, M.A.; Karimi-Maleh, H.; Khodadadi, A.; Faghih-Mirzaei, E. A powerful DNA-based voltammetric biosensor modified with Au nanoparticles, for the determination of Temodal; an electrochemical and docking investigation. J. Electroanal. Chem., 2019, 840, 313-318.
[http://dx.doi.org/10.1016/j.jelechem.2019.03.049]
[56]
Wang, W.; Wang, S.F.; Xie, F. An electrochemical sensor of non-electroactive drug 6-thioguanine based on the dsDNA/AET/Au. Sens. Actuators B Chem., 2006, 120(1), 238-244.
[http://dx.doi.org/10.1016/j.snb.2006.02.012]
[57]
Eksin, E.; Congur, G.; Mese, F.; Erdem, A. Electrochemical monitoring of surface confined interaction between 6-Thioguanine and DNA by using single-use graphite electrode. J. Electroanal. Chem., 2014, 733, 33-38.
[http://dx.doi.org/10.1016/j.jelechem.2014.08.012]
[58]
Mirmomtaz, E.; Ensafi, A.A. Voltammetric determination of trace quantities of 6-thioguanine based on the interaction with DNA at a mercury electrode. Electrochim. Acta, 2009, 54(18), 4353-4358.
[http://dx.doi.org/10.1016/j.electacta.2009.03.004]
[59]
de Vasconcellos, M.C.; de Oliveira Costa, C.; da Silva Terto, E.G.; de Moura, M.A.F.B.; de Vasconcelos, C.C.; de Abreu, F.C.; de Lemos, T.L.G.; Costa-Lotufo, L.V.; Montenegro, R.C.; Goulart, M.O.F. Electrochemical, spectroscopic and pharmacological approaches toward the understanding of biflorin DNA damage effects. J. Electroanal. Chem., 2016, 765, 168-178.
[http://dx.doi.org/10.1016/j.jelechem.2015.09.040]
[60]
Eker, Y. Şenkuytu, E.; Ölçer, Z.; Yıldırım, T.; Çiftçi, G.Y. Novel coumarin cyclotriphosphazene derivatives: Synthesis, characterization, DNA binding analysis with automated biosensor and cytotoxicity. J. Mol. Struct., 2020, 1209, 127971.
[http://dx.doi.org/10.1016/j.molstruc.2020.127971]
[61]
Wang, J.; Ozsoz, M.; Cai, X.; Rivas, G.; Shiraishi, H.; Grant, D.H.; Chicharro, M.; Fernandes, J. Paleček, E. Interactions of antitumor drug daunomycin with DNA in solution and at the surface. Bioelectrochem. Bioenerg., 1998, 45(1), 33-40.
[http://dx.doi.org/10.1016/S0302-4598(98)00075-0]
[62]
Eksin, E.; Senturk, H.; Zor, E.; Bingol, H.; Erdem, A. Carbon quantum dot modified electrodes developed for electrochemical monitoring of Daunorubicin-DNA interaction. J. Electroanal. Chem., 2020, 862, 114011.
[http://dx.doi.org/10.1016/j.jelechem.2020.114011]
[63]
Findik, M.; Bingol, H.; Erdem, A. Electrochemical detection of interaction between daunorubicin and DNA by hybrid nanoflowers modified graphite electrodes. Sens. Actuators B Chem., 2021, 329, 129120.
[http://dx.doi.org/10.1016/j.snb.2020.129120]
[64]
Congur, G.; Eksin, E.; Erdem, A. Chitosan modified graphite electrodes developed for electrochemical monitoring of interaction between daunorubicin and DNA. Sens. Biosensing Res., 2019, 22, 100255.
[http://dx.doi.org/10.1016/j.sbsr.2018.100255]
[65]
Congur, G.; Eksin, E.; Erdem, A. Levan modified DNA biosensor for voltammetric detection of daunorubicin-DNA interaction. Sens. Actuators B Chem., 2021, 326, 128818.
[http://dx.doi.org/10.1016/j.snb.2020.128818]
[66]
Saljooqi, A.; Shamspur, T.; Mostafavi, A. Ag-4-ATP-MWCNT electrode modified with dsDNA as label-free electrochemical sensor for the detection of daunorubicin anticancer drug. Bioelectrochemistry, 2017, 118, 161-167.
[http://dx.doi.org/10.1016/j.bioelechem.2017.08.003] [PMID: 28843934]
[67]
Gong, Z.; Tang, D.; Zhang, X.; Ma, J.; Mao, Y. Self-assembly of thermoresponsive nanocomposites and their applications for sensing daunorubicin with DNA. Appl. Surf. Sci., 2014, 316, 194-201.
[http://dx.doi.org/10.1016/j.apsusc.2014.08.003]
[68]
Erdem, A.; Karadeniz, H.; Caliskan, A. Dendrimer modified graphite sensors for detection of anticancer drug Daunorubicin by voltammetry and electrochemical impedance spectroscopy. Analyst, 2011, 136(5), 1041-1045.
[http://dx.doi.org/10.1039/c0an00357c] [PMID: 21203608]
[69]
Hajian, R.; Mehrayin, Z.; Mohagheghian, M.; Zafari, M.; Hosseini, P.; Shams, N. Fabrication of an electrochemical sensor based on carbon nanotubes modified with gold nanoparticles for determination of valrubicin as a chemotherapy drug: Valrubicin-DNA interaction. Mater. Sci. Eng. C, 2015, 49, 769-775.
[http://dx.doi.org/10.1016/j.msec.2015.01.072] [PMID: 25687007]
[70]
Eda Satana Kara, H. Redox mechanism of anticancer drug idarubicin and in situ evaluation of interaction with DNA using an electrochemical biosensor. Bioelectrochemistry, 2014, 99, 17-23.
[http://dx.doi.org/10.1016/j.bioelechem.2014.06.002] [PMID: 24967755]
[71]
Foroughi, M.M.; Jahani, S. Investigation of a high-sensitive electrochemical DNA biosensor for determination of Idarubicin and studies of DNA-binding properties. Microchem. J., 2022, 179, 107546.
[http://dx.doi.org/10.1016/j.microc.2022.107546]
[72]
Karimi-Maleh, H.; Khataee, A.; Karimi, F.; Baghayeri, M.; Fu, L.; Rouhi, J.; Karaman, C.; Karaman, O.; Boukherroub, R. A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere, 2022, 291(Pt 3), 132928.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132928] [PMID: 34800513]
[73]
Shamagsumova, R.; Porfireva, A.; Stepanova, V.; Osin, Y.; Evtugyn, G.; Hianik, T. Polyaniline–DNA based sensor for the detection of anthracycline drugs. Sens. Actuators B Chem., 2015, 220, 573-582.
[http://dx.doi.org/10.1016/j.snb.2015.05.076]
[74]
Ilkhani, H.; Hughes, T.; Li, J.; Zhong, C.J.; Hepel, M. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens. Bioelectron., 2016, 80, 257-264.
[http://dx.doi.org/10.1016/j.bios.2016.01.068] [PMID: 26851584]
[75]
Zabost, E.; Liwinska, W.; Karbarz, M.; Kurek, E.; Lyp, M.; Donten, M.; Stojek, Z. Electrochemical examination of ability of dsDNA/PAM composites for storing and releasing of doxorubicin. Bioelectrochemistry, 2016, 109, 1-8.
[http://dx.doi.org/10.1016/j.bioelechem.2015.12.001] [PMID: 26764570]
[76]
Garcia-Melo, L.F.; Álvarez-González, I.; Madrigal-Bujaidar, E.; Madrigal-Santillán, E.O.; Morales-González, J.A.; Pineda Cruces, R.N.; Campoy Ramírez, J.A.; Matsumura, P.D.; Aguilar-Santamaría, M.A.; Batina, N. Construction of an electrochemical genosensor based on screen-printed gold electrodes (SPGE) for detection of a mutation in the adenomatous polyposis coli gene. J. Electroanal. Chem., 2019, 840, 93-100.
[http://dx.doi.org/10.1016/j.jelechem.2019.03.048]
[77]
Congur, G.; Erdem, A.; Mese, F. Electrochemical investigation of the interaction between topotecan and DNA at disposable graphite electrodes. Bioelectrochemistry, 2015, 102, 21-28.
[http://dx.doi.org/10.1016/j.bioelechem.2014.11.003] [PMID: 25461757]
[78]
Mahmoudi-Moghaddam, H.; Tajik, S.; Beitollahi, H. A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan. Microchem. J., 2019, 150, 104085.
[http://dx.doi.org/10.1016/j.microc.2019.104085]
[79]
Beitollahi, H.; Dehghannoudeh, G.; Moghaddam, H.M.; Forootanfar, H. A sensitive electrochemical DNA biosensor for anticancer drug topotecan based on graphene carbon paste electrode. J. Electrochem. Soc., 2017, 164(12), H812-H817.
[http://dx.doi.org/10.1149/2.0511712jes]
[80]
Top, M.; Er, O.; Congur, G.; Erdem, A.; Lambrecht, F.Y. Intracellular uptake study of radiolabeled anticancer drug and impedimetric detection of its interaction with DNA. Talanta, 2016, 160, 157-163.
[http://dx.doi.org/10.1016/j.talanta.2016.06.058] [PMID: 27591600]
[81]
Fojta, M. Paleček, E. Supercoiled DNA-modified mercury electrode: A highly sensitive tool for the detection of DNA damage. Anal. Chim. Acta, 1997, 342(1), 1-12.
[http://dx.doi.org/10.1016/S0003-2670(96)00551-X]
[82]
Marín, D.; Pérez, P.; Teijeiro, C. Paleček, E. Interactions of surface-confined DNA with acid-activated mitomycin C. Biophys. Chem., 1998, 75(2), 87-95.
[http://dx.doi.org/10.1016/S0301-4622(98)00190-2] [PMID: 9857478]
[83]
Ensafi, A.A.; Amini, M.; Rezaei, B. Impedimetric DNA-biosensor for the study of anti-cancer action of mitomycin C: Comparison between acid and electroreductive activation. Biosens. Bioelectron., 2014, 59, 282-288.
[http://dx.doi.org/10.1016/j.bios.2014.03.041] [PMID: 24747202]
[84]
Erdem, A.; Muti, M.; Papakonstantinou, P.; Canavar, E.; Karadeniz, H.; Congur, G.; Sharma, S. Graphene oxide integrated sensor for electrochemical monitoring of mitomycin C–DNA interaction. Analyst, 2012, 137(9), 2129-2135.
[http://dx.doi.org/10.1039/c2an16011k] [PMID: 22439135]
[85]
Sengiz, C.; Congur, G.; Eksin, E.; Erdem, A. Multiwalled carbon nanotubes-chitosan modified single-use biosensors for electrochemical monitoring of Drug-DNA interactions. Electroanalysis, 2015, 27(8), 1855-1863.
[http://dx.doi.org/10.1002/elan.201500107]
[86]
Bruzaca, E.E.S.; Lopes, I.C.; Silva, E.H.C.; Carvalho, P.A.V.; Tanaka, A.A. Electrochemical oxidation of the antitumor antibiotic mitomycin C and in situ evaluation of its interaction with DNA using a DNA-electrochemical biosensor. Microchem. J., 2017, 133, 81-89.
[http://dx.doi.org/10.1016/j.microc.2017.03.030]
[87]
Findik, M.; Bingol, H.; Erdem, A. Hybrid nanoflowers modified pencil graphite electrodes developed for electrochemical monitoring of interaction between Mitomycin C and DNA. Talanta, 2021, 222, 121647.
[http://dx.doi.org/10.1016/j.talanta.2020.121647] [PMID: 33167275]
[88]
Erdem, A.; Congur, G. Impedimetric detection of in situ interaction between anti-cancer drug bleomycin and DNA. Int. J. Biol. Macromol., 2013, 61, 295-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.07.012] [PMID: 23892034]
[89]
Heydari-Bafrooei, E.; Amini, M.; Saeednia, S. Electrochemical detection of DNA damage induced by Bleomycin in the presence of metal ions. J. Electroanal. Chem., 2017, 803, 104-110.
[http://dx.doi.org/10.1016/j.jelechem.2017.09.031]
[90]
Hu, J.B.; Li, Q.L.; Shang, J. Studies on electrochemical behavior of bleomycin and its interaction with DNA at a Co/Gc ion implantation modified electrode. Chin. J. Chem., 2002, 20(3), 267-271.
[http://dx.doi.org/10.1002/cjoc.20020200311]
[91]
Paimard, G.; Gholivand, M.B.; Shamsipur, M. Determination of ganciclovir as an antiviral drug and its interaction with DNA at Fe3O4/carboxylated multi-walled carbon nanotubes modified glassy carbon electrode. Measurement, 2016, 77, 269-277.
[http://dx.doi.org/10.1016/j.measurement.2015.09.019]
[92]
Morawska, K. Popławski, T.; Ciesielski, W.; Smarzewska, S. Electrochemical and spectroscopic studies of the interaction of antiviral drug Tenofovir with single and double stranded DNA. Bioelectrochemistry, 2018, 123, 227-232.
[http://dx.doi.org/10.1016/j.bioelechem.2018.06.002] [PMID: 29894899]
[93]
Şenel, P.; Cetinkaya, A.; Kaya, S.I.; Erdoğan, T.; Topal, B.D.; Gölcü, A.; Ozkan, S.A. Spectroscopic, electrochemical, and some theoretical studies on the interactional of neuraminidase inhibitor zanamivir with double helix deoxyribonucleic acid. J. Mol. Struct., 2022, 1262, 133029.
[http://dx.doi.org/10.1016/j.molstruc.2022.133029]
[94]
Mollarasouli, F.; Dogan-Topal, B.; Caglayan, M.G.; Taskin-Tok, T.; Ozkan, S.A. Electrochemical, spectroscopic, and molecular docking studies of the interaction between the anti-retroviral drug indinavir and dsDNA. J. Pharm. Anal., 2020, 10(5), 473-481.
[http://dx.doi.org/10.1016/j.jpha.2020.08.004] [PMID: 33133731]
[95]
Dogan-Topal, B.; Uslu, B.; Ozkan, S.A. Voltammetric studies on the HIV-1 inhibitory drug Efavirenz: The interaction between dsDNA and drug using electrochemical DNA biosensor and adsorptive stripping voltammetric determination on disposable pencil graphite electrode. Biosens. Bioelectron., 2009, 24(8), 2358-2364.
[http://dx.doi.org/10.1016/j.bios.2008.12.005] [PMID: 19135352]
[96]
Asghary, M.; Raoof, J.B.; Ojani, R.; Hamidi-Asl, E. A genosensor based on CPE for study the interaction between ketamine as an anesthesia drug with DNA. Int. J. Biol. Macromol., 2015, 80, 512-519.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.019] [PMID: 26188294]
[97]
Jalali, F.; Dorraji, P.S. Electrochemical and spectroscopic studies of the interaction between the neuroleptic drug, gabapentin, and DNA. J. Pharm. Biomed. Anal., 2012, 70, 598-601.
[http://dx.doi.org/10.1016/j.jpba.2012.06.005] [PMID: 22742920]
[98]
Jalali, F.; Rasaee, G. Electrochemical, spectroscopic, and theoretical studies on the interaction between azathioprine and DNA. Int. J. Biol. Macromol., 2015, 81, 427-434.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.025] [PMID: 26282930]
[99]
Svitková, V.; Hanzelyová, M.; Macková, H. Blaškovičová, J.; Vyskočil, V.; Farkašová, D.; Labuda, J. Behaviour and detection of acridine-type DNA intercalators in urine using an electrochemical DNA-based biosensor with the protective polyvinyl alcohol membrane. J. Electroanal. Chem., 2018, 821, 87-91.
[http://dx.doi.org/10.1016/j.jelechem.2017.11.028]
[100]
Radi, A.E.; El-Naggar, A.E.; Nassef, H.M. Electrochemical and spectral studies on the interaction of the antiparasitic drug nitazoxanide with DNA. Electrochim. Acta, 2014, 129, 259-265.
[http://dx.doi.org/10.1016/j.electacta.2014.02.092]
[101]
Shaghaghi, M.; Dehghan, G.; Jouyban, A.; Sistani, P.; Arvin, M. Studies of interaction between terbium(III)-deferasirox and double helix DNA by spectral and electrochemical methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 120, 467-472.
[http://dx.doi.org/10.1016/j.saa.2013.09.073] [PMID: 24211806]
[102]
Ipte, P.R.; Sharma, A.; Pal, H.; Satpati, A.K. Probing the interaction of ciprofloxacin with dsDNA: Electrochemical, spectro-electrochemical and AFM investigation. J. Electroanal. Chem., 2021, 885, 115098.
[http://dx.doi.org/10.1016/j.jelechem.2021.115098]
[103]
Rauf, S.; Nawaz, H.; Akhtar, K.; Ghauri, M.A.; Khalid, A.M. Studies on sildenafil citrate (Viagra) interaction with DNA using electrochemical DNA biosensor. Biosens. Bioelectron., 2007, 22(11), 2471-2477.
[http://dx.doi.org/10.1016/j.bios.2006.09.023] [PMID: 17085032]
[104]
Ensafi, A.A.; Lesani, S.; Amini, M.; Rezaei, B. Electrochemical ds-DNA-based biosensor decorated with chitosan modified multiwall carbon nanotubes for phenazopyridine biodetection. J. Taiwan Inst. Chem. Eng., 2015, 54, 165-169.
[http://dx.doi.org/10.1016/j.jtice.2015.03.024]
[105]
Walcarius, A. Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. Trends Analyt. Chem., 2012, 38, 79-97.
[http://dx.doi.org/10.1016/j.trac.2012.05.003]
[106]
Stefano, J.S.; Orzari, L.O.; Silva-Neto, H.A.; de Ataíde, V.N.; Mendes, L.F.; Coltro, W.K.T.; Longo Cesar Paixão, T.R.; Janegitz, B.C. Different approaches for fabrication of low-cost electrochemical sensors. Curr. Opin. Electrochem., 2022, 32, 100893.
[http://dx.doi.org/10.1016/j.coelec.2021.100893]
[107]
Mohan, J.M.; Amreen, K.; Javed, A.; Dubey, S.K.; Goel, S. Emerging trends in miniaturized and microfluidic electrochemical sensing platforms. Curr. Opin. Electrochem., 2022, 33, 100930.
[http://dx.doi.org/10.1016/j.coelec.2021.100930]
[108]
Couto, R.A.S.; Lima, J.L.F.C.; Quinaz, M.B. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta, 2016, 146, 801-814.
[http://dx.doi.org/10.1016/j.talanta.2015.06.011] [PMID: 26695333]
[109]
Pinkova Gajdosova, V.; Lorencova, L.; Blsakova, A.; Kasak, P.; Bertok, T.; Tkac, J. Challenges for impedimetric affinity sensors targeting protein detection. Curr. Opin. Electrochem., 2021, 28, 100717.
[http://dx.doi.org/10.1016/j.coelec.2021.100717]
[110]
Huang, J.; Zhang, Y.; Wu, J. Review of non-invasive continuous glucose monitoring based on impedance spectroscopy. Sens. Actuators A Phys., 2020, 311, 112103.
[http://dx.doi.org/10.1016/j.sna.2020.112103]
[111]
Bonanni, A.; Loo, A.H.; Pumera, M. Graphene for impedimetric biosensing. Trends Analyt. Chem., 2012, 37, 12-21.
[http://dx.doi.org/10.1016/j.trac.2012.02.011]
[112]
The Pharmacopoeia Committee of China. The Chinese Pharmacopoeia, Part I; Chinese: Beijing, China, 2015.
[113]
Tian, X.; Peng, Z.; Luo, S.; Zhang, S.; Li, B.; Zhou, C.; Fan, H. Aesculin protects against DSS-Induced colitis though activating PPARγ and inhibiting NF-кB pathway. Eur. J. Pharmacol., 2019, 857, 172453.
[http://dx.doi.org/10.1016/j.ejphar.2019.172453] [PMID: 31202807]
[114]
Marques, E.S.; Salles, D.B.; Maistro, E.L. Assessment of the genotoxic/clastogenic potential of coumarin derivative 6,7-dihydroxy-] coumarin (aesculetin) in multiple mouse organs. Toxicol. Rep., 2015, 2, 268-274.
[http://dx.doi.org/10.1016/j.toxrep.2015.01.005] [PMID: 28962359]
[115]
Zhao, M.; Ding, W.; Wang, S.; Wang, C.; Du, Y.; Xu, H.; Wang, Q.; Jin, S. Simultaneous determination of nine coumarins in rat plasma by HPLC-MS/MS for pharmacokinetics studies following oral administration of Fraxini cortex extract. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1025, 25-32.
[http://dx.doi.org/10.1016/j.jchromb.2016.04.042] [PMID: 27183215]
[116]
Chen, Q.; Zeng, Y.; Kuang, J.; Li, Y.; Li, X.; Zheng, Y.; Hou, H.; Hou, S. Quantification of aesculin in rabbit plasma and ocular tis-sues by high performance liquid chromatography using fluorescent detection: Application to a pharmacokinetic study. J. Pharm. Biomed. Anal., 2011, 55(1), 161-167.
[http://dx.doi.org/10.1016/j.jpba.2011.01.004] [PMID: 21295934]
[117]
Khan, M.A.R.; Mamun, M.S.A.; Ara, M.H. Review on platinum nanoparticles: Synthesis, characterization, and applications. Microchem. J., 2021, 171, 106840.
[http://dx.doi.org/10.1016/j.microc.2021.106840]
[118]
Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol., 2020, 8, 990.
[http://dx.doi.org/10.3389/fbioe.2020.00990] [PMID: 32903562]
[119]
Burger, J.A.; Buggy, J.J. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765). Leuk. Lymphoma, 2013, 54(11), 2385-2391.
[http://dx.doi.org/10.3109/10428194.2013.777837] [PMID: 23425038]
[120]
Lewandowicz, G.M.; Harding, B.; Harkness, W.; Hayward, R.; Thomas, D.G.T.; Darling, J.L. Chemosensitivity in childhood brain tumours in vitro. Eur. J. Cancer, 2000, 36(15), 1955-1964.
[http://dx.doi.org/10.1016/S0959-8049(00)00245-8] [PMID: 11000577]
[121]
Weller, M.; Le Rhun, E. How did lomustine become standard of care in recurrent glioblastoma? Cancer Treat. Rev., 2020, 87, 102029.
[http://dx.doi.org/10.1016/j.ctrv.2020.102029] [PMID: 32408220]
[122]
Meulenbeld, H.J.; Mathijssen, R.H.; Verweij, J.; de Wit, R.; de Jonge, M.J. Danusertib, an aurora kinase inhibitor. Expert Opin. Investig. Drugs, 2012, 21, 383-393.
[http://dx.doi.org/10.1517/13543784.2012.652303]
[123]
Kalua, N.N.; Mazumdara, T.; Peng, S.; Tong, P.; Shen, L.; Wang, J.; Banerjeea, U.; Myers, J.C.; Pickering, C.R.; Brunelle, D. Comprehensive pharmacogenomic profiling of human papillomavirus-positive and -negative squamous cell carcinoma identifies sensitivity to aurora kinase inhibition in KMT2D mutants. Cancer Lett., 2018, 431, 64-72.
[http://dx.doi.org/10.1016/j.canlet.2018.05.029]
[124]
Schöffski, P.; Besse, B.; Gauler, T.; de Jonge, M.J.A.; Scambia, G.; Santoro, A.; Davite, C.; Jannuzzo, M.G.; Petroccione, A.; Delord, J-P. Efficacy and safety of biweekly i.v. administrations of the Aurora kinase inhibitor danusertib hydrochloride in independent cohorts of patients with advanced or metastatic breast, ovarian, colorectal, pancreatic, small-cell and non-small-cell lung cancer: a multi-tumour, multi-institutional phase II study. Ann. Oncol., 2015, 26, 598-607.
[http://dx.doi.org/10.1093/annonc/mdu566]
[125]
Carmichael, J.; Walling, J. Advanced breast cancer: Investigational role of gemcitabine. Eur. J. Cancer, 1997, 33(Suppl. 1), S27-S30.
[http://dx.doi.org/10.1016/S0959-8049(96)00392-9] [PMID: 9166097]
[126]
Shelley, M.D.; Cleves, A.; Wilt, T.J.; Mason, M.D. Gemcitabine chemotherapy for the treatment of metastatic bladder carcinoma. BJU Int., 2011, 108(2), 168-179.
[http://dx.doi.org/10.1111/j.1464-410X.2011.10341.x] [PMID: 21718430]
[127]
Anzengruber, M.; Wimmer, L.; Szuchar, R.; Skoll, K.; Wirth, M.; Gabor, F. LogP of N-acyl-gemcitabine and lectin-corona emerge as key parameters in nanoparticulate intravesical cancer therapy. Eur. J. Pharm. Sci., 2023, 180, 106330.
[http://dx.doi.org/10.1016/j.ejps.2022.106330]
[128]
Lombardi, G.; Zustovich, F.; Farinati, F.; Cillo, U.; Vitale, A.; Zanus, G.; Donach, M.; Farina, M.; Zovato, S.; Pastorelli, D. Pegylated liposomal doxorubicin and gemcitabine in patients with advanced hepatocellular carcinoma. Cancer, 2011, 117(1), 125-133.
[http://dx.doi.org/10.1002/cncr.25578] [PMID: 21058409]
[129]
Maraveyas, A.; Waters, J.; Roy, R.; Fyfe, D.; Propper, D.; Lofts, F.; Sgouros, J.; Gardiner, E.; Wedgwood, K.; Ettelaie, C.; Bozas, G. Gemcitabine versus gemcitabine plus dalteparin thromboprophylaxis in pancreatic cancer. Eur. J. Cancer, 2012, 48(9), 1283-1292.
[http://dx.doi.org/10.1016/j.ejca.2011.10.017] [PMID: 22100906]
[130]
Tsai, T.H. Analytical approaches for traditional Chinese medicines exhibiting antineoplastic activity. J. Chromatogr., Biomed. Appl., 2001, 764(1-2), 27-48.
[http://dx.doi.org/10.1016/S0378-4347(01)00277-8] [PMID: 11817032]
[131]
Islam, M.M.; Sinha, R.; Kumar, G.S. RNA binding small molecules: Studies on t-RNA binding by cytotoxic plant alkaloids berberine, palmatine and the comparison to ethidium. Biophys. Chem., 2007, 125(2-3), 508-520.
[http://dx.doi.org/10.1016/j.bpc.2006.11.001] [PMID: 17156912]
[132]
Iyer, V.N.; Szybalski, W. A molecular mechanism of mitomycin action. Proc. Natl. Acad. Sci. USA, 1963, 50(2), 355-362.
[http://dx.doi.org/10.1073/pnas.50.2.355] [PMID: 14060656]
[133]
Iyer, V.N.; Szybalski, W. Mitomycins and porfiromycin: Chemical mechanism of activatıon and cross-linking of DNA. Science, 1964, 145(3627), 55-58.
[http://dx.doi.org/10.1126/science.145.3627.55] [PMID: 14162693]
[134]
Shende, P.; Kasture, P.; Gaud, R.S. Nanoflowers: the future trend of nanotechnology for multi-applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 413-422.
[http://dx.doi.org/10.1080/21691401.2018.1428812] [PMID: 29361844]
[135]
Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B, 2021, 268, 115095.
[http://dx.doi.org/10.1016/j.mseb.2021.115095]
[136]
Chen, J.; Stubbe, J. Bleomycins: Towards better therapeutics. Nat. Rev. Cancer, 2005, 5(2), 102-112.
[http://dx.doi.org/10.1038/nrc1547] [PMID: 15685195]
[137]
Stubbe, J.; Kozarich, J.W.; Wu, W.; Vanderwall, D.E. Bleomycins: A Structural model for specificity, binding, and double strand cleavage. Acc. Chem. Res., 1996, 29(7), 322-330.
[http://dx.doi.org/10.1021/ar9501333]
[138]
Burger, R.M. Cleavage of nucleic acids by bleomycin. Chem. Rev., 1998, 98(3), 1153-1170.
[http://dx.doi.org/10.1021/cr960438a] [PMID: 11848928]
[139]
Fischer, J.; Ganellin, C.R.; Robin, C. Analogue-based Drug Discovery; Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, , 2006.
[140]
Rajendiran, N.; Suresh, M. Study of the ınteraction of ciprofloxacin and sparfloxacin with biomolecules by spectral, electrochemical and molecular docking methods. Int. Lett. Chem. Phys. Astronomy, 2018, 78, 1-29.
[141]
Jacobs, M. Fluoroquinolones as chemotherapeutics against mycobacterial infections. Curr. Pharm. Des., 2004, 10(26), 3213-3220.
[http://dx.doi.org/10.2174/1381612043383296] [PMID: 15544510]
[142]
Brunner, M.; Langer, O.; Dobrozemsky, G.; Müller, U.; Zeitlinger, M.; Mitterhauser, M.; Wadsak, W.; Dudczak, R.; Kletter, K.; Müller, M. [18F]Ciprofloxacin, a new positron emission tomography tracer for noninvasive assessment of the tissue distribution and pharmacokinetics of ciprofloxacin in humans. Antimicrob. Agents Chemother., 2004, 48(10), 3850-3857.
[http://dx.doi.org/10.1128/AAC.48.10.3850-3857.2004] [PMID: 15388445]
[143]
Rezaei, B.; Jafari, M.T.; Rahmanian, O. Selective pretreatment and determination of phenazopyridine using an imprinted polymer-electrospray ionization ion mobility spectrometry system. Talanta, 2011, 83(3), 765-769.
[http://dx.doi.org/10.1016/j.talanta.2010.10.041] [PMID: 21147318]
[144]
Krüger, A.D. Current aspects of using ketamine in childhood. Anaesthesiol. Reanim., 1998, 23(3), 64-71.
[PMID: 9707751]
[145]
Joe-Laidler, K.; Hunt, G. The cultural meaning of ketamine use in Hong Kong. Addict. Res. Theory, 2008, 16(3), 259-271.
[http://dx.doi.org/10.1080/16066350801983673] [PMID: 19759834]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy