Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Mini-Review Article

A Critical Review on Smartphone Based Determinations of Drugs

Author(s): Alankar Shrivastava*

Volume 19, Issue 3, 2023

Published on: 07 February, 2023

Page: [177 - 183] Pages: 7

DOI: 10.2174/1573412919666230119145548

Price: $65

Abstract

Cell phones are like a notepad PC with their own working framework, processor, interior memory, and top-notch camera focal points. Cell phones are more open and less expensive than versatile analytical devices. The quantity of cell phone users overall outperformed 2 billion in 2016 and it addresses more than a fourth of the worldwide population. There have been numerous new articles on the utilization of cell phones as versatile detectors, bioanalytical equipment, and instrument interfaces. The utilization of cell phones has opened doors for prognostic, diagnostic, detection, observing, quantification, control, or making versatile applications, since it can be very well utilized to run routine tests. Moreover it does not require a trained personnel and it is convenient and considered a minimal-expense gadget. The development of analytical methods is crucial in drug development. Improvement of existing and execution of new methodologies are essential for the present-day analytical chemistry of drugs. Recently published studies focussed on some of the applications of smartphone-based analytical methodologies in the last few years for the determination of drugs in different matrices. The aim of the presented review was to enhance the visibility of one of the fast and novel applications of smartphone technology. This will help scientists and researchers to understand the recent developments and explore new possibilities in this field.

Next »
Graphical Abstract

[1]
Yang, C. Vertical structure and innovation: A study of the SoC and smartphone industries. RAND J. Econ., 2020, 51(3), 739-785.
[http://dx.doi.org/10.1111/1756-2171.12339]
[2]
Derks, D.; van Duin, D.; Tims, M.; Bakker, A.B. Smartphone use and work-home interference: The moderating role of social norms and employee work engagement. J. Occup. Organ. Psychol., 2015, 88(1), 155-177.
[http://dx.doi.org/10.1111/joop.12083]
[3]
Tapia, P.; Thelander, M.; Halonen, T.; Smith, J.; Aalto, M. Smartphone Performance. In: HSPA+ Evolution to Release; Holma, H.; Toskala, A.; Tapia, P., Eds.; Jhon wiley & Sons, Ltd.: Hoboken, 2014; pp. 293-335.
[http://dx.doi.org/10.1002/9781118693728.ch13]
[4]
Sanchez, A.; Carro, B. Devices: Smartphones. In: Digital Services in the 21st Century: A Strategic and Busihers Perspective; Sanchez, A.; Carro, B., Eds.; , 2017; pp. 37-50.
[http://dx.doi.org/10.1002/9781119314905.ch4]
[5]
Kalia, P.; Dwivedi, Y.K.; Acevedo-Duque, Á. Cellulographics©: A novel smartphone user classification metrics. J. Innovat. Knowledge, 2022, 7(2), 100179.
[http://dx.doi.org/10.1016/j.jik.2022.100179]
[6]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2017, 10(S1), S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[7]
Shrivastava, A.; Mittal, A. A mini review on characteristics and analytical methods of otilonium bromide. Crit. Rev. Anal. Chem., 2022, 52(7), 1717-1725.
[http://dx.doi.org/10.1080/10408347.2021.1913983] [PMID: 34039224]
[8]
Shrivastava, A.; Mittal, A.; Khabiya, R.; Choudhary, G.P.; Gajanan, D.N. Brexpiprazole: Characteristics, biological activities, synthesis and methods for determination in different matrices. Curr. Pharm. Anal., 2022. Epub ahead of print
[http://dx.doi.org/10.2174/1573412918666220406123600]
[9]
Uslu, B.; Lingeman, H.; Ozkan, S.A.; Palit, M.; Dogan-Topal, B. Analytical method development and validation of pharmaceutical analysis using chromatographic techniques. Chromatogr. Res. Int., 2012, 2012, 948129.
[http://dx.doi.org/10.1155/2012/948129]
[10]
Shen, L.; Hagen, J.A.; Papautsky, I. Point-of-care colorimetric detection with a smartphone. Lab Chip, 2012, 12(21), 4240-4243.
[http://dx.doi.org/10.1039/c2lc40741h] [PMID: 22996728]
[11]
Carrio, A.; Sampedro, C.; Sanchez-Lopez, J.; Pimienta, M.; Campoy, P. Automated low-cost smartphone-based lateral flow saliva test reader for drugs-of-abuse detection. Sensors (Basel), 2015, 15(11), 29569-29593.
[http://dx.doi.org/10.3390/s151129569] [PMID: 26610513]
[12]
Yu, H.; Le, H.M.; Kaale, E.; Long, K.D.; Layloff, T.; Lumetta, S.S.; Cunningham, B.T. Characterization of drug authenticity using thin-layer chromatography imaging with a mobile phone. J. Pharm. Biomed. Anal., 2016, 125, 85-93.
[http://dx.doi.org/10.1016/j.jpba.2016.03.018] [PMID: 27015410]
[13]
Schwab, B.W.; Hayes, E.P.; Fiori, J.M.; Mastrocco, F.J.; Roden, N.M.; Cragin, D.; Meyerhoff, R.D.; D’Aco, V.J.; Anderson, P.D. Human pharmaceuticals in US surface waters: A human health risk assessment. Regul. Toxicol. Pharmacol., 2005, 42(3), 296-312.
[http://dx.doi.org/10.1016/j.yrtph.2005.05.005] [PMID: 15979221]
[14]
Coutinho, M.; Morais, C.; Neves, A.; Menezes, F.; Lima, K. Colorimetric determination of ascorbic acid based on its interfering effect in the enzymatic analysis of glucose: An approach using smartphone image analysis. J. Braz. Chem. Soc., 2017, 28, 2500-2505.
[http://dx.doi.org/10.21577/0103-5053.20170086]
[15]
Ait Errayess, S.; Idrissi, L.; Amine, A. Smartphone-based colorimetric determination of sulfadiazine and sulfasalazine in pharmaceutical and veterinary formulations. Instrum. Sci. Technol., 2018, 46(6), 656-675.
[http://dx.doi.org/10.1080/10739149.2018.1443943]
[16]
Moonrungsee, N.; Prachain, C.; Bumrungkij, C.; Peamaroon, N.; Jakmunee, J. A simple device with a smartphone camera for determination of salicylic acid in foods, drugs and cosmetics. J. King Mongkut’s Univ. Technol. North Bangkok, 2018, 28, 639-648.
[http://dx.doi.org/10.14416/j.kmutnb.2018.03.001]
[17]
Phadungcharoen, N.; Patrojanasophon, P.; Opanasopit, P.; Ngawhirunpat, T.; Chinsriwongkul, A.; Rojanarata, T. Smartphone-based Ellman’s colourimetric methods for the analysis of d-penicillamine formulation and thiolated polymer. Int. J. Pharm., 2019, 558, 120-127.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.078] [PMID: 30639223]
[18]
Merli, D.; Profumo, A.; Tinivella, S.; Protti, S. From smart drugs to smartphone: A colorimetric spot test for the analysis of the synthetic cannabinoid AB-001. Forensic Chem., 2019, 14, 100167.
[http://dx.doi.org/10.1016/j.forc.2019.100167]
[19]
Aguirre, M.Á.; Long, K.D.; Cunningham, B.T. Spectrometric smartphone-based system for ibuprofen quantification in commercial dosage tablets. J. Pharm. Sci., 2019, 108(8), 2593-2598.
[http://dx.doi.org/10.1016/j.xphs.2019.03.010] [PMID: 30885661]
[20]
Liang, S.; Wu, Q.; Mao, J.; Gong, C.; Yu, D.; Zhou, J. A novel smartphone-based device for rapid on-site methamphetamine detection. Mater. Express, 2020, 10(10), 1638-1645.
[http://dx.doi.org/10.1166/mex.2020.1791]
[21]
Khachornsakkul, K.; Dungchai, W. A portable reflective absorbance spectrophotometric smartphone device for the rapid and highly accurate determination of amlodipine in pharmaceutical formulation and human urine samples. Anal. Sci., 2021, 37(7), 963-969.
[http://dx.doi.org/10.2116/analsci.20P349] [PMID: 33229823]
[22]
Gad, A.G.; Fayez, Y.M.; Kelani, K.M.; Mahmoud, A.M. TLC-smartphone in antibiotics determination and low-quality pharmaceuticals detection. RSC Advances, 2021, 11(31), 19196-19202.
[http://dx.doi.org/10.1039/D1RA01346G] [PMID: 35478607]
[23]
Maroubo, L.A.; Pedrina, G.; Melchert, W.R. Total sulfonamides determination in bovine milk using smartphone-based digital images. Microchem. J., 2021, 170, 106657.
[http://dx.doi.org/10.1016/j.microc.2021.106657]
[24]
Amelin, V.G.; Shogah, Z.A.C.; Bolshakov, D.S. Sorption-fluorimetric determination of quinolones in waste and natural waters with a smartphone. Moscow Univ. Chem. Bull., 2021, 76(4), 262-268.
[http://dx.doi.org/10.3103/S0027131421040027]
[25]
Prajapati, D.M.; Mashru, R. Development and validation of new smartphone based colorimetric method for metoprolol succinate in bulk and tablet dosage form. J. Drug Deliv. Ther., 2022, 12(3), 108-115.
[http://dx.doi.org/10.22270/jddt.v12i3.5469]
[26]
Amelin, V.G.; Shogah, Z.A.C.; Bolshakov, D.S.; Tretyakov, A.V. Digital colorimetry of indicator test-systems using a smartphone and chemometric analysis in determination of quinolones in pharmaceuticals. J. Appl. Spectrosc., 2022, 89(1), 75-83.
[http://dx.doi.org/10.1007/s10812-022-01328-2]
[27]
Procida, A.; Honeychurch, K.C. Smartphone‐based colorimetric determination of gamma‐butyrolactone and gamma‐hydroxybutyrate in alcoholic beverage samples. J. Forensic Sci., 2022, 67(4), 1697-1703.
[http://dx.doi.org/10.1111/1556-4029.15042] [PMID: 35368091]
[28]
Amelin, V.G.; Shogah, Z.A.C.; Bol’shakov, D.S. Solid-phase fluorimetric determination of some nonsteroidal anti-inflammatory drugs in medicines with the aid of a smartphone. Pharm. Chem. J., 2021, 55(9), 964-969.
[http://dx.doi.org/10.1007/s11094-021-02523-9]
[29]
Kaur, G.; Singh, H.; Singh, J. UV-vis spectrophotometry for environmental and industrial analysis. In: Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin; Boddula, R.; Asiri, A.M., Eds.; Elsevier: Amsterdam, 2021; pp. 49-68.
[http://dx.doi.org/10.1016/B978-0-12-821883-9.00004-7]
[30]
Bachmann, L.M.; Miller, W.G. Spectrophotometry. In: Contemporary Practice in Clinical Chemistry, 4th ed.; Clarke, W.; Marzinke, M.A., Eds.; Academic Press: Cambridge, 2020; pp. 119-133.
[http://dx.doi.org/10.1016/B978-0-12-815499-1.00007-7]
[31]
Vysetti, B. Current advances in the miniaturization of analytical instruments -applications in cosmochemistry, geochemistry, exploration, and environmental sciences. Spectroscopy (Springf.), 2016, 31, 40-44.
[32]
Bacon, C.P.; Mattley, Y.; DeFrece, R. Miniature spectroscopic instrumentation: Applications to biology and chemistry. Rev. Sci. Instrum., 2004, 75(1), 1-16.
[http://dx.doi.org/10.1063/1.1633025]
[33]
Crocombe, R. Miniature and handheld spectroscopic instruments for chemical sensing and security applications: Enabled by photonics, in CLEO, OSA technical digest. 2015. Available from: https://opg.optica.org/abstract.cfm?uri=CLEO_AT-2015-AF2J.4
[34]
Winters, B.J.; Banfield, N.; Dixon, C.; Swensen, A.; Holman, D.; Fillbrown, B. III 3D-Printable and open-source modular smartphone visible spectrophotometer. HardwareX, 2021, 10, e00232.
[http://dx.doi.org/10.1016/j.ohx.2021.e00232] [PMID: 35607665]
[35]
Luka, G.S.; Nowak, E.; Kawchuk, J.; Hoorfar, M.; Najjaran, H. Portable device for the detection of colorimetric assays. R. Soc. Open Sci., 2017, 4(11), 171025.
[http://dx.doi.org/10.1098/rsos.171025] [PMID: 29291093]
[36]
Parrilla, M.; Slosse, A.; Van Echelpoel, R.; Felipe Montiel, N.; Langley, A.R.; Van Durme, F.; De Wael, K. Rapid on-site detection of illicit drugs in smuggled samples with a portable electrochemical device. Chemosensors (Basel), 2022, 10(3), 108.
[http://dx.doi.org/10.3390/chemosensors10030108]
[37]
World Health Organization. A study on the public health and socioeconomic impact of substandard and falsified medical products. , 2017. Available from: https://www.who.int/publications/i/item/9789241513432
[38]
Tobolkina, E.; Rudaz, S. Capillary electrophoresis instruments for medical applications and falsified drug analysis/quality control in developing countries. Anal. Chem., 2021, 93(23), 8107-8115.
[http://dx.doi.org/10.1021/acs.analchem.1c00839] [PMID: 34061489]
[39]
Vickers, S.; Bernier, M.; Zambrzycki, S.; Fernandez, F.M.; Newton, P.N.; Caillet, C. Field detection devices for screening the quality of medicines: a systematic review. BMJ Glob. Health, 2018, 3(4), e000725.
[http://dx.doi.org/10.1136/bmjgh-2018-000725] [PMID: 30233826]
[40]
Walt, D.R. Chemistry. Miniature analytical methods for medical diagnostics. Science, 2005, 308(5719), 217-219.
[http://dx.doi.org/10.1126/science.1108161] [PMID: 15821081]
[41]
Ding, Z.; Zhang, D.; Wang, G.; Tang, M.; Dong, Y.; Zhang, Y.; Ho, H.; Zhang, X. An in-line spectrophotometer on a centrifugal microfluidic platform for real-time protein determination and calibration. Lab Chip, 2016, 16(18), 3604-3614.
[http://dx.doi.org/10.1039/C6LC00542J] [PMID: 27531134]
[42]
Ju, H. Grand challenges in analytical chemistry: towards more bright eyes for scientific research, social events and human health. Front Chem., 2013, 1, 5.
[http://dx.doi.org/10.3389/fchem.2013.00005] [PMID: 24790934]
[43]
Huang, X.; Xu, D.; Chen, J.; Liu, J.; Li, Y.; Song, J.; Ma, X.; Guo, J. Smartphone-based analytical biosensors. Analyst (Lond.), 2018, 143(22), 5339-5351.
[http://dx.doi.org/10.1039/C8AN01269E] [PMID: 30327808]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy