Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Huatan Tongluo Decoction Inhibits Inflammatory Infiltration and Airway Remodeling by Attenuating TGF-β1/Smad2/3 and Oxidative Stress-mediated NF-kB/HIF-1α/MMPs Signaling Pathway in Chronic Asthma Mice

Author(s): Huimin Lao*, Mengqi Chen, Xuanyu Liu, Libo Li, Qian Li and Baoqing Zhang

Volume 21, Issue 5, 2024

Published on: 01 March, 2023

Page: [897 - 904] Pages: 8

DOI: 10.2174/1570180820666230117141701

Price: $65

Abstract

Background: Asthma is a common chronic respiratory disorder characterized by inflammation and remodeling of the airways.

Aims: This study aimed to identify the inhibitory effects of Huatan Tongluo decoction (HTTLD) on airway inflammation and associated remodeling mechanisms.

Methods: Mice were immunized with ovalbumin (OVA) for 8 weeks to generate chronic asthma mouse models (CAS), which were randomly divided into 4 groups administrated with pachyman, dexamethasone (DEX), HTTLD, and without anything (CAS model), while mice who administrated saline were assigned as the control group. Hematoxylin-eosin (H&E) and Masson trichrome were used to determine inflammatory infiltration and airway remodeling (fiber deposition). Inflammatory cytokines, including VEGF, PDGF, and TGF-β1, were analyzed using ELISA. The gene transcriptions and expressions of MMP-9, TIMP-1, VEGF, HIF-1α, NF-kB, and β-actin were evaluated using RT-PCR and Western blot, while the expression of p-Smad2/3 was determined by Western blot.

Results: HTTLD inhibited inflammatory infiltration and airway remodeling (reducing airway wall thickness and decreasing fiber deposition) of lung tissues in the CAS mouse model. HTTLD markedly attenuated levels of TGF-β1, VEGF, and PDGF compared to those of mice in the CAS model group (p < 0.05). HTTLD significantly reduced the secretion of matrix metalloproteinases (MMP-9 and TIMP-1) and the expression of NF-kB/HIF-1α compared to mice in the CAS model group (p < 0.05). HTTLD prominently downregulated phosphorylated levels of the Smad2/3 molecule (ratio of p-Smad3/2/Smad2/3) compared to mice in the CAS group (p < 0.05).

Conclusion: HTTLD inhibited inflammatory infiltration and airway remodeling in an OVA-induced chronic asthma mouse model by attenuating the TGF-β1/Smad2/3 signaling pathway and suppressing the oxidative stress-mediated NF-kB/HIF-1α/MMPs signaling pathway.

Graphical Abstract

[1]
Frey, S.M.; Jones, M.R.; Goldstein, N.; Riekert, K.; Fagnano, M.; Halterman, J.S. Knowledge of inhaled therapy and responsibility for asthma management among young teens with uncontrolled persistent asthma. Acad. Pediatr., 2018, 18(3), 317-323.
[http://dx.doi.org/10.1016/j.acap.2018.01.006] [PMID: 29369804]
[2]
Ahmadi, M.; Fathi, F.; Fouladi, S.; Alsahebfosul, F.; Manian, M.; Eskandari, N. Serum IL-33 level and IL-33, IL1RL1 gene polymorphisms in asthama and multiple sclerosis patients. Curr. Mol. Med., 2019, 19(5), 357-363.
[http://dx.doi.org/10.2174/1566524019666190405120137] [PMID: 30950351]
[3]
Li, P.; Lang, X.; Xia, S. Elevated expression of microRNA-378 in children with asthma aggravates airway remodeling by promoting the proliferation and apoptosis resistance of airway smooth muscle cells. Exp. Ther. Med., 2019, 17(3), 1529-1536.
[PMID: 30783418]
[4]
Locksley, R.M. Asthma and allergic inflammation. Cell, 2010, 140(6), 777-783.
[http://dx.doi.org/10.1016/j.cell.2010.03.004] [PMID: 20303868]
[5]
Al-Muhsen, S.; Johnson, J.R.; Hamid, Q. Remodeling in asthma. J. Allergy Clin. Immunol., 2011, 128(3), 451-462.
[http://dx.doi.org/10.1016/j.jaci.2011.04.047] [PMID: 21636119]
[6]
Lin, Y.; Yao, J.; Wu, M.; Ying, X.; Ding, M.; Wei, Y.; Fu, X.; Feng, W.; Wang, Y. Tetrandrine ameliorates airway remodeling of chronic asthma by interfering TGF-beta1/Nrf-2/HO-1 signaling pathway-mediated oxidative stress. Can. Respir. J., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/7930396] [PMID: 31781316]
[7]
Kistemaker, L.E.M.; Bos, I.S.T.; Menzen, M.H.; Maarsingh, H.; Meurs, H.; Gosens, R. Combination therapy of tiotropium and ciclesonide attenuates airway inflammation and remodeling in a guinea pig model of chronic asthma. Respir. Res., 2016, 17(1), 13.
[http://dx.doi.org/10.1186/s12931-016-0327-6] [PMID: 26846267]
[8]
Babayigit, A.; Olmez, D.; Karaman, O.; Ozogul, C.; Yilmaz, O.; Kivcak, B.; Erbil, G.; Uzuner, N. Effects of Ginkgo biloba on airway histology in a mouse model of chronic asthma. Allergy Asthma Proc., 2009, 30(2), 186-191.
[http://dx.doi.org/10.2500/aap.2009.30.3187] [PMID: 19118503]
[9]
Zhang, C.; Zhang, L.H.; Wu, Y.F.; Lai, T.W.; Wang, H.S.; Xiao, H.; Che, L.Q.; Ying, S.M.; Li, W.; Chen, Z.H.; Shen, H.H. Suhuang antitussive capsule at lower doses attenuates airway hyperresponsiveness, inflammation and remodeling in a murine model of chronic asthma. Sci. Rep., 2016, 6(1), 21515.
[http://dx.doi.org/10.1038/srep21515] [PMID: 26861679]
[10]
Clark, C.E.; Arnold, E.; Lasserson, T.J.; Wu, T. Herbal interventions for chronic asthma in adults and children: A systematic review and meta-analysis. Prim. Care Respir. J., 2010, 19(4), 307-314.
[http://dx.doi.org/10.4104/pcrj.2010.00041] [PMID: 20640388]
[11]
Karaman, M.; Firinci, F.; Cilaker, S.; Uysal, P.; Tugyan, K.; Yilmaz, O.; Uzuner, N.; Karaman, O. Anti-inflammatory effects of curcumin in a murine model of chronic asthma. Allergol. Immunopathol., 2012, 40(4), 210-214.
[http://dx.doi.org/10.1016/j.aller.2011.04.006] [PMID: 21862198]
[12]
Chen, J.; Qiu, M.; Li, Y.; Zhang, Q.; Zhang, Y.; Lin, S.; Zhang, S.; Qian, L.; Li, L.C.; Gao, H. Effects of huatan tongluo decoction on vascular endothelial growth factor receptor 2 expression in synovial tissues of rats with collagen-induced arthritis. J. Tradit. Chin. Med., 2019, 39(2), 191-198.
[PMID: 32186041]
[13]
Xu, Z.X.; Chen, J.C.; Qiu, M.S.; Teng, J.; Xu, M. Effect of huatan tongluo recipe on il-1 beta-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of TNF-alpha and aFGF. Zhongguo Zhong Yi Yi Jie He Za Zhi, 2017, 37, 101-105.
[14]
Wu, X.C.; Wang, S.Q.; Tang, L.; Zhu, W.H.; Gao, Y. Effect of modified dihuang yinzi recipe and huatan tongluo decoction on neurological function of mcao rats. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2016, 36(11), 1352-1357.
[PMID: 30641630]
[15]
Tong, J.; Bandulwala, H.S.; Clay, B.S.; Anders, R.A.; Shilling, R.A.; Balachandran, D.D.; Chen, B.; Weinstock, J.V.; Solway, J.; Hamann, K.J.; Sperling, A.I. Fas-positive T cells regulate the resolution of airway inflammation in a murine model of asthma. J. Exp. Med., 2006, 203(5), 1173-1184.
[http://dx.doi.org/10.1084/jem.20051680] [PMID: 16618792]
[16]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[17]
Johnson, J.R.; Folestad, E.; Rowley, J.E.; Noll, E.M.; Walker, S.A.; Lloyd, C.M.; Rankin, S.M.; Pietras, K.; Eriksson, U.; Fuxe, J. Pericytes contribute to airway remodeling in a mouse model of chronic allergic asthma. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 308(7), L658-L671.
[http://dx.doi.org/10.1152/ajplung.00286.2014] [PMID: 25637607]
[18]
Makinde, T.; Murphy, R.F.; Agrawal, D.K. The regulatory role of TGF-β in airway remodeling in asthma. Immunol. Cell Biol., 2007, 85(5), 348-356.
[http://dx.doi.org/10.1038/sj.icb.7100044] [PMID: 17325694]
[19]
Shimizu, S.; Kouzaki, H.; Ogawa, T.; Takezawa, K.; Tojima, I.; Shimizu, T. Eosinophil-epithelial cell interactions stimulate the production of MUC5AC mucin and profibrotic cytokines involved in airway tissue remodeling. Am. J. Rhinol. Allergy, 2014, 28(2), 103-109.
[http://dx.doi.org/10.2500/ajra.2014.28.4018] [PMID: 24717945]
[20]
Shang, S.; Li, J.; Zhao, Y.; Xi, Z.; Lu, Z.; Li, B.; Yang, X.; Li, R. Oxidized graphene-aggravated allergic asthma is antagonized by antioxidant vitamin E in Balb/c mice. Environ. Sci. Pollut. Res. Int., 2017, 24(2), 1784-1793.
[http://dx.doi.org/10.1007/s11356-016-7903-7] [PMID: 27796986]
[21]
Lee, H.Y.; Kim, I.K.; Yoon, H.K.; Kwon, S.S.; Rhee, C.K.; Lee, S.Y. Inhibitory effects of resveratrol on airway remodeling by transforming growth factor-beta/Smad signaling pathway in chronic asthma model. Allergy Asthma Immunol. Res., 2017, 9(1), 25-34.
[http://dx.doi.org/10.4168/aair.2017.9.1.25] [PMID: 27826959]
[22]
Saglani, S.; Lloyd, C.M. Novel concepts in airway inflammation and remodelling in asthma. Eur. Respir. J., 2015, 46(6), 1796-1804.
[http://dx.doi.org/10.1183/13993003.01196-2014] [PMID: 26541520]
[23]
Chen, X.; Luo, Y.; Wang, M.; Sun, L.; Huang, K.; Li, Y.; Chen, Y.; Ding, Y.; Zhang, X.; Jiao, L.; Yang, J.; Huang, T. Wuhu decoction regulates dendritic cell autophagy in the treatment of respiratory syncytial virus (RSV)-induced mouse asthma by AMPK/ULK1 signaling pathway. Med. Sci. Monit., 2019, 25, 5389-5400.
[http://dx.doi.org/10.12659/MSM.917692] [PMID: 31325378]
[24]
Ge, Y.; Cheng, R.; Sun, S.; Zhang, S.; Li, L.; Jiang, J.; Yang, C.; Xuan, X.; Chen, J. Fangxiao formula alleviates airway inflammation and remodeling in rats with asthma via suppression of transforming growth factor-β/smad3 signaling pathway. Biomed. Pharmacother., 2019, 119, 109429.
[http://dx.doi.org/10.1016/j.biopha.2019.109429] [PMID: 31505422]
[25]
Cook, T.M. Strategies for the prevention of airway complications - a narrative review. Anaesthesia, 2018, 73(1), 93-111.
[http://dx.doi.org/10.1111/anae.14123] [PMID: 29210033]
[26]
Qu, Z.H.; Yang, Z.C.; Chen, L.; Lv, Z.D.; Yi, M.J.; Ran, N. Inhibition airway remodeling and transforming growth factor-β1/Smad signaling pathway by astragalus extract in asthmatic mice. Int. J. Mol. Med., 2012, 29(4), 564-568.
[http://dx.doi.org/10.3892/ijmm.2011.868] [PMID: 22200784]
[27]
Chen, M.; Lv, Z.; Jiang, S. The effects of triptolide on airway remodelling and transforming growth factor-β1/Smad signalling pathway in ovalbumin-sensitized mice. Immunology, 2011, 132(3), 376-384.
[http://dx.doi.org/10.1111/j.1365-2567.2010.03392.x] [PMID: 21214541]
[28]
El-Sherbeeny, N.A.; Hassan, Z.A.; Ateyya, H. Tiron ameliorates oxidative stress and inflammation in a murine model of airway remodeling. Int. Immunopharmacol., 2016, 39, 172-180.
[http://dx.doi.org/10.1016/j.intimp.2016.07.025] [PMID: 27485290]
[29]
Kang, J.; Duan, J.; Song, J.; Luo, C.; Liu, H.; Li, B.; Yang, X.; Yu, W.; Chen, M. Exposure to a combination of formaldehyde and DINP aggravated asthma-like pathology through oxidative stress and NF-κB activation. Toxicology, 2018, 404-405, 49-58.
[http://dx.doi.org/10.1016/j.tox.2018.05.006] [PMID: 29758289]
[30]
Lambert, C.M.; Roy, M.; Robitaille, G.A.; Richard, D.E.; Bonnet, S. HIF-1 inhibition decreases systemic vascular remodelling diseases by promoting apoptosis through a hexokinase 2-dependent mechanism. Cardiovasc. Res., 2010, 88(1), 196-204.
[http://dx.doi.org/10.1093/cvr/cvq152] [PMID: 20498255]
[31]
Boorsma, C.E.; Dekkers, B.G.J.; van Dijk, E.M.; Kumawat, K.; Richardson, J.; Burgess, J.K.; John, A.E. Beyond TGFβ – Novel ways to target airway and parenchymal fibrosis. Pulm. Pharmacol. Ther., 2014, 29(2), 166-180.
[http://dx.doi.org/10.1016/j.pupt.2014.08.009] [PMID: 25197006]
[32]
Stellari, F.; Sala, A.; Ruscitti, F.; Carnini, C.; Mirandola, P.; Vitale, M.; Civelli, M.; Villetti, G. Monitoring inflammation and airway remodeling by fluorescence molecular tomography in a chronic asthma model. J. Transl. Med., 2015, 13(1), 336.
[http://dx.doi.org/10.1186/s12967-015-0696-5] [PMID: 26496719]

© 2025 Bentham Science Publishers | Privacy Policy