Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Mini-Review Article

Therapeutic Potential of Herbal Medicine against Non-alcoholic Fatty Liver Disease

Author(s): Ghazaleh Pourali, Zeinab S. Hosseini, Mina Maftooh, Elham Nazari, Majid Khazaei, Mohammadreza Nassiri, Seyed M. Hassanian, Majid Ghayour-Mobarhan, Gordon A. Ferns, Mohammad A. Kiani and Amir Avan*

Volume 24, Issue 4, 2023

Published on: 03 February, 2023

Page: [300 - 319] Pages: 20

DOI: 10.2174/1389450124666230113150116

Price: $65

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder associated with obesity, diabetes mellitus, dyslipidemia, and cardiovascular disease. A “multiple hit” model has been a widely accepted explanation for the disease's complicated pathogenesis. Despite advances in our knowledge of the processes underlying NAFLD, no conventional pharmaceutical therapy exists. The only currently approved option is to make lifestyle modifications, such as dietary and physical activity changes. The use of medicinal plants in the treatment of NAFLD has recently gained interest. Thus, we review the current knowledge about these agents based on clinical and preclinical studies. Moreover, the association between NAFLD and colorectal cancer (CRC), one of the most common and lethal malignancies, has recently emerged as a new study area. We overview the shared dysregulated pathways and the potential therapeutic effect of herbal medicines for CRC prevention in patients with NAFLD.

[1]
Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15(1): 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[2]
Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: A weighty connection. Hepatology 2010; 51(5): 1820-32.
[http://dx.doi.org/10.1002/hep.23594] [PMID: 20432259]
[3]
Streba LAM, Vere CC, Rogoveanu I, Streba CT. Nonalcoholic fatty liver disease, metabolic risk factors, and hepatocellular carcinoma: An open question. World J Gastroenterol 2015; 21(14): 4103-10.
[http://dx.doi.org/10.3748/wjg.v21.i14.4103] [PMID: 25892859]
[4]
Cariou B. The metabolic triad of NAFLD, visceral adiposity and type 2 diabetes: Implications for treatment. Diabetes Obes Metab 2022; 24(s20): 15-27.
[http://dx.doi.org/10.1111/dom.14651]
[5]
Papandreou D, Andreou E. Role of diet on non-alcoholic fatty liver disease: An updated narrative review. World J Hepatol 2015; 7(3): 575-82.
[http://dx.doi.org/10.4254/wjh.v7.i3.575] [PMID: 25848481]
[6]
Liu Q, Zhu L, Cheng C, Hu YY, Feng Q. Natural active compounds from plant food and Chinese herbal medicine for nonalcoholic fatty liver disease. Curr Pharm Des 2017; 23(34): 5136-62.
[PMID: 28925892]
[7]
Panyod S, Sheen LY. Beneficial effects of Chinese herbs in the treatment of fatty liver diseases. J Tradit Complement Med 2020; 10(3): 260-7.
[http://dx.doi.org/10.1016/j.jtcme.2020.02.008] [PMID: 32670821]
[8]
Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: Pathology and pathogenesis. Annu Rev Pathol 2010; 5(1): 145-71.
[http://dx.doi.org/10.1146/annurev-pathol-121808-102132] [PMID: 20078219]
[9]
Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol 2015; 62(1): S47-64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[10]
Pafili K, Roden M. Nonalcoholic Fatty Liver Disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab 2021; 50: 101122.
[http://dx.doi.org/10.1016/j.molmet.2020.101122] [PMID: 33220492]
[11]
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metabolism 2016; 65(8): 1038-48.
[http://dx.doi.org/10.1016/j.metabol.2015.12.012] [PMID: 26823198]
[12]
Ferramosca A, Zara V. Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol 2014; 20(7): 1746-55.
[http://dx.doi.org/10.3748/wjg.v20.i7.1746] [PMID: 24587652]
[13]
Ratziu V, Bellentani S, Cortez-Pinto H, Day C, Marchesini G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol 2010; 53(2): 372-84.
[http://dx.doi.org/10.1016/j.jhep.2010.04.008] [PMID: 20494470]
[14]
Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444(7121): 860-7.
[http://dx.doi.org/10.1038/nature05485] [PMID: 17167474]
[15]
Ribeiro PS, Cortez-Pinto H, Solá S, Castro RE, Ramalho RM, Baptista A. Hepatocyte apoptosis, expression of death receptors, and activation of NF-κ B in the liver of nonalcoholic and alcoholic steatohepatitis patients. Official J Am College Gastroenterol 2004; 99(9): 1708-17.
[16]
Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med 2005; 11(2): 183-90.
[http://dx.doi.org/10.1038/nm1166] [PMID: 15685173]
[17]
Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010; 10(11): 753-66.
[http://dx.doi.org/10.1038/nri2858] [PMID: 20972472]
[18]
Luedde T, Schwabe RF. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011; 8(2): 108-18.
[http://dx.doi.org/10.1038/nrgastro.2010.213] [PMID: 21293511]
[19]
Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol 2012; 57(3): 642-54.
[http://dx.doi.org/10.1016/j.jhep.2012.03.035] [PMID: 22634126]
[20]
Zafari N, Velayati M, Fahim M, et al. Role of gut bacterial and non-bacterial microbiota in alcohol-associated liver disease: Molecular mechanisms, biomarkers, and therapeutic prospective. Life Sci 2022; 305: 120760.
[http://dx.doi.org/10.1016/j.lfs.2022.120760] [PMID: 35787997]
[21]
Klein I, Cornejo JC, Polakos NK, et al. Kupffer cell heterogeneity: functional properties of bone marrow–derived and sessile hepatic macrophages. Blood 2007; 110(12): 4077-85.
[http://dx.doi.org/10.1182/blood-2007-02-073841] [PMID: 17690256]
[22]
Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 2006; 55(3): 415-24.
[http://dx.doi.org/10.1136/gut.2005.071118] [PMID: 16174657]
[23]
Tang F, Tang G, Xiang J, Dai Q, Rosner MR, Lin A. The absence of NF-kappaB-mediated inhibition of c-Jun N-terminal kinase activation contributes to tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 2002; 22(24): 8571-9.
[http://dx.doi.org/10.1128/MCB.22.24.8571-8579.2002] [PMID: 12446776]
[24]
De Smaele E, Zazzeroni F, Papa S, et al. Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature 2001; 414(6861): 308-13.
[http://dx.doi.org/10.1038/35104560] [PMID: 11713530]
[25]
Schwabe RF, Brenner DA. Mechanisms of Liver Injury. I. TNF-α-induced liver injury: Role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 2006; 290(4): G583-9.
[http://dx.doi.org/10.1152/ajpgi.00422.2005] [PMID: 16537970]
[26]
Yan H, Gao YQ, Zhang Y, Wang H, Liu GS, Lei JY. Chlorogenic acid alleviates autophagy and insulin resistance by suppressing JNK pathway in a rat model of nonalcoholic fatty liver disease. J Biosci 2018; 43(2): 287-94.
[http://dx.doi.org/10.1007/s12038-018-9746-5] [PMID: 29872017]
[27]
Susutlertpanya W, Werawatganon D, Siriviriyakul P, Klaikeaw N. Genistein attenuates nonalcoholic steatohepatitis and increases hepatic PPARγ in a rat model. Evid Based Complement Alter Med 2015; 2015: 509057.
[28]
Vailas M, Sotiropoulou M, Katsaros I, et al. Nonalcoholic fatty liver disease: The role of quercetin and its therapeutic implications. Saudi J Gastroenterol 2021; 27(6): 319-30.
[http://dx.doi.org/10.4103/sjg.sjg_249_21] [PMID: 34810376]
[29]
Salvoza N, Giraudi PJ, Tiribelli C, Rosso N. Natural compounds for counteracting Nonalcoholic Fatty Liver Disease (NAFLD): advantages and limitations of the suggested candidates. Int J Mol Sci 2022; 23(5): 2764.
[http://dx.doi.org/10.3390/ijms23052764] [PMID: 35269912]
[30]
Mirmiran P, Amirhamidi Z, Ejtahed H-S, Bahadoran Z, Azizi F. Relationship between diet and non-alcoholic fatty liver disease: a review article. Iran J Public Health 2017; 46(8): 1007-17.
[PMID: 28894701]
[31]
Praveenraj P, Gomes RM, Kumar S, et al. Prevalence and predictors of non-alcoholic fatty liver disease in morbidly obese south Indian patients undergoing bariatric surgery. Obes Surg 2015; 25(11): 2078-87.
[http://dx.doi.org/10.1007/s11695-015-1655-1] [PMID: 25835982]
[32]
Cho EJ, Yu SJ, Jung GC, et al. Body weight gain rather than body weight variability is associated with increased risk of nonalcoholic fatty liver disease. Sci Rep 2021; 11(1): 14428.
[http://dx.doi.org/10.1038/s41598-021-93883-5] [PMID: 34257374]
[33]
Heredia NI, Gaba R, Liu Y, et al. Perceptions of weight status and energy balance behaviors among patients with non-alcoholic fatty liver disease. Sci Rep 2022; 12(1): 5695.
[http://dx.doi.org/10.1038/s41598-022-09583-1] [PMID: 35383229]
[34]
Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67(1): 328-57.
[http://dx.doi.org/10.1002/hep.29367] [PMID: 28714183]
[35]
Glass LM, Dickson RC, Anderson JC, et al. Total body weight loss of ≥ 10 % is associated with improved hepatic fibrosis in patients with nonalcoholic steatohepatitis. Dig Dis Sci 2015; 60(4): 1024-30.
[http://dx.doi.org/10.1007/s10620-014-3380-3] [PMID: 25354830]
[36]
Scragg J, Avery L, Cassidy S, et al. Feasibility of a very low calorie diet to achieve a sustainable 10% weight loss in patients with nonalcoholic fatty liver disease. Clin Transl Gastroenterol 2020; 11(9): e00231.
[http://dx.doi.org/10.14309/ctg.0000000000000231] [PMID: 33094956]
[37]
Hohenester S, Christiansen S, Nagel J, et al. Lifestyle intervention for morbid obesity: Effects on liver steatosis, inflammation, and fibrosis. Am J Physiol Gastrointest Liver Physiol 2018; 315(3): G329-38.
[http://dx.doi.org/10.1152/ajpgi.00044.2018] [PMID: 29878845]
[38]
Haas SL, Löfgren P, Stål P, Hoffstedt J. Glucagon and liver fat are downregulated in response to very low-calorie diet in patients with obesity and type-2 diabetes. Exp Clin Endocrinol Diabetes 2022; 130(1): 55-60.
[http://dx.doi.org/10.1055/a-1220-6160] [PMID: 32767285]
[39]
Diabetes EAftSo. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Obes Facts 2016; 9(2): 65-90.
[http://dx.doi.org/10.1159/000443344] [PMID: 27055256]
[40]
Katan MB. Weight-loss diets for the prevention and treatment of obesity. N Engl J Med 2009; 360(9): 923-5.
[http://dx.doi.org/10.1056/NEJMe0810291] [PMID: 19246365]
[41]
Salehi-sahlabadi A, Sadat S, Beigrezaei S, et al. Dietary patterns and risk of non-alcoholic fatty liver disease. BMC Gastroenterol 2021; 21(1): 41.
[http://dx.doi.org/10.1186/s12876-021-01612-z] [PMID: 33509112]
[42]
Rakhra V, Galappaththy SL, Bulchandani S, Cabandugama PK. Obesity and the Western diet: How we got here. Missouri Medicine 2020; 117(6): 536.
[43]
Moradi F, Moosavian SP, Djafari F, Teimori A, Imani ZF, Naeini AA. The association between major dietary patterns with the risk of non-alcoholic fatty liver disease, oxidative stress and metabolic parameters: A case–control study. J Diabetes Metab Disord 2022; 21(1): 657-67.
[http://dx.doi.org/10.1007/s40200-022-01028-w] [PMID: 35673496]
[44]
Giraldi L, Miele L, Aleksovska K, et al. Mediterranean diet and the prevention of non-alcoholic fatty liver disease: results from a case-control study. Eur Rev Med Pharmacol Sci 2020; 24(13): 7391-8.
[PMID: 32706078]
[45]
Willett WC, Sacks F, Trichopoulou A, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 1995; 61(6): 1402S-6S.
[http://dx.doi.org/10.1093/ajcn/61.6.1402S] [PMID: 7754995]
[46]
Koushki M, Amiri-Dashatan N, Ahmadi N, Abbaszadeh HA, Rezaei-Tavirani M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci Nutr 2018; 6(8): 2473-90.
[http://dx.doi.org/10.1002/fsn3.855] [PMID: 30510749]
[47]
Xiao ML, Lin JS, Li YH, et al. Adherence to the Dietary Approaches to Stop Hypertension (DASH) diet is associated with lower presence of non-alcoholic fatty liver disease in middle-aged and elderly adults. Public Health Nutr 2020; 23(4): 674-82.
[http://dx.doi.org/10.1017/S1368980019002568] [PMID: 31566148]
[48]
Heart N, Lung, Institute B. Your guide to lowering your blood pressure with DASH. Smashbooks. 2006.
[49]
Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the american association for the study of liver diseases, american college of gastroenterology, and the american gastroenterological association. Hepatology 2012; 55(6): 2005-23.
[http://dx.doi.org/10.1002/hep.25762] [PMID: 22488764]
[50]
Babu AF, Csader S, Lok J, et al. Positive effects of exercise intervention without weight loss and dietary changes in NAFLD-related clinical parameters: A systematic review and meta-analysis. Nutrients 2021; 13(9): 3135.
[http://dx.doi.org/10.3390/nu13093135] [PMID: 34579012]
[51]
Kim SA, Shin S. Fruit and vegetable consumption and non-alcoholic fatty liver disease among Korean adults: A prospective cohort study. J Epidemiol Community Health 2020; 74(12): jech-2020-214568.
[http://dx.doi.org/10.1136/jech-2020-214568] [PMID: 32796047]
[52]
Cao Y, Wang C, Liu J, Liu Z, Ling W, Chen Y. Greater serum carotenoid levels associated with lower prevalence of nonalcoholic fatty liver disease in Chinese adults. Sci Rep 2015; 5(1): 12951.
[http://dx.doi.org/10.1038/srep12951] [PMID: 26256414]
[53]
Gostin AI, Waisundara VY. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.). Trends Food Sci Technol 2019; 86: 381-91.
[http://dx.doi.org/10.1016/j.tifs.2019.02.015]
[54]
Stumpf B, Künne M, Ma L, et al. Optimization of the extraction procedure for the determination of phenolic acids and flavonoids in the leaves of globe artichoke (Cynara cardunculus var. scolymus L.). J Pharm Biomed Anal 2020; 177: 112879.
[http://dx.doi.org/10.1016/j.jpba.2019.112879] [PMID: 31542418]
[55]
Zayed A, Farag MA. Valorization, extraction optimization and technology advancements of artichoke biowastes: Food and non- food applications. Lebensm Wiss Technol 2020; 132: 109883.
[http://dx.doi.org/10.1016/j.lwt.2020.109883]
[56]
Shallan MA, Ali MA, Meshrf WA, Marrez DA. In vitro antimicrobial, antioxidant and anticancer activities of globe artichoke (Cynara cardunculus var. scolymus L.) bracts and receptacles ethanolic extract. Biocatal Agric Biotechnol 2020; 29: 101774.
[http://dx.doi.org/10.1016/j.bcab.2020.101774]
[57]
Keramati M, Musazadeh V, Ghadimi K. Antioxidant and anti-inflammatory effects of artichoke or Cynara scolymus l. as promising potential therapeutic in anemia. J Nutri Food Secur 2022; 7(1): 129-35.
[http://dx.doi.org/10.18502/jnfs.v7i1.8544]
[58]
Salem MB, Affes H, Ksouda K, et al. Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum Nutr 2015; 70(4): 441-53.
[http://dx.doi.org/10.1007/s11130-015-0503-8] [PMID: 26310198]
[59]
Tang X, Wei R, Deng A, Lei T. Protective effects of ethanolic extracts from artichoke, an edible herbal medicine, against acute alcohol-induced liver injury in mice. Nutrients 2017; 9(9): 1000.
[http://dx.doi.org/10.3390/nu9091000] [PMID: 28891983]
[60]
Heidarian E, Rafieian-Kopaei M. Protective effect of artichoke (Cynara scolymus) leaf extract against lead toxicity in rat. Pharm Biol 2013; 51(9): 1104-9.
[http://dx.doi.org/10.3109/13880209.2013.777931] [PMID: 23745593]
[61]
Liao GC, Jhuang JH, Yao HT. Artichoke leaf extract supplementation lowers hepatic oxidative stress and inflammation and increases multidrug resistance-associated protein 2 in mice fed a high-fat and high-cholesterol diet. Food Funct 2021; 12(16): 7239-49.
[http://dx.doi.org/10.1039/D1FO00861G] [PMID: 34165128]
[62]
Ahmadi A, Heidarian E, Ghatreh-Samani K. Modulatory effects of artichoke (Cynara scolymus L.) leaf extract against oxidative stress and hepatic TNF-α gene expression in acute diazinon-induced liver injury in rats. J Basic Clin Physiol Pharmacol 2019; 30(5): 20180180.
[http://dx.doi.org/10.1515/jbcpp-2018-0180] [PMID: 31469651]
[63]
Ahmed SF, Abd Al Haleem EN, El-Tantawy WH. Evaluation of the anti-atherogenic potential of Egyptian artichoke leaf extract in hypercholesterolemic rats. Arch Physiol Biochem 2022; 128(1): 163-74.
[http://dx.doi.org/10.1080/13813455.2019.1669662] [PMID: 31566004]
[64]
Preiss D, Sattar N. Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis and treatment considerations. Clin Sci 2008; 115(5): 141-50.
[http://dx.doi.org/10.1042/CS20070402] [PMID: 18662168]
[65]
Panahi Y, Kianpour P, Mohtashami R, et al. Efficacy of artichoke leaf extract in non-alcoholic fatty liver disease: A pilot double-blind randomized controlled trial. Phytother Res 2018; 32(7): 1382-7.
[http://dx.doi.org/10.1002/ptr.6073] [PMID: 29520889]
[66]
Rangboo V, Noroozi M, Zavoshy R, Rezadoost SA, Mohammadpoorasl A. The effect of artichoke leaf extract on alanine aminotransferase and aspartate aminotransferase in the patients with nonalcoholic steatohepatitis. Int J Hepatol 2016; 2016 Article ID 4030476.
[http://dx.doi.org/10.1155/2016/4030476]
[67]
Yazdani Biouki R, Khajahhosseini S, Rad M. The potential of using medicinal herbs in haloculture, a case study of the caper plant (Capparis spinosa L.). XXX International Horticultural Congress IHC2018: International Symposium on Medicinal and Aromatic Plants, Culinary Herbs, 2018; pp. 1287.
[68]
Tlili N, Nasri N, Saadaoui E, Khaldi A, Triki S. Carotenoid and tocopherol composition of leaves, buds, and flowers of Capparis spinosa grown wild in Tunisia. J Agric Food Chem 2009; 57(12): 5381-5.
[http://dx.doi.org/10.1021/jf900457p] [PMID: 19473002]
[69]
Rezzan A, Ozan EE, Huseyin S, Oktay Y, Nimet B. Phenolic components, antioxidant activity, and mineral analysis of Capparis spinosa L. Afr J Biotechnol 2013; 12(47): 6643-9.
[http://dx.doi.org/10.5897/AJB2013.13241]
[70]
Zia-Ul-Haq M, Ćavar S, Qayum M, Imran I, Feo V. Compositional studies: Antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew. Int J Mol Sci 2011; 12(12): 8846-61.
[http://dx.doi.org/10.3390/ijms12128846] [PMID: 22272107]
[71]
Ramezani Z, Aghel N, Keyghobadi H. Rutin from different parts of Capparis spinosa growing wild in Khuzestan/Iran. Pak J Biol Sci 2008; 11(5): 768-72.
[http://dx.doi.org/10.3923/pjbs.2008.768.772] [PMID: 18819575]
[72]
Lam SK, Han QF, Ng TB. Isolation and characterization of a lectin with potentially exploitable activities from caper ( Capparis spinosa ) seeds. Biosci Rep 2009; 29(5): 293-9.
[http://dx.doi.org/10.1042/BSR20080110] [PMID: 18847434]
[73]
Triggiani V, Resta F, Guastamacchia E, Sabbà C, Licchelli B, Ghiyasaldin S. Role of antioxidants, essential fatty acids, carnitine, vitamins, phytochemicals and trace elements in the treatment of diabetes mellitus and its chronic complications. Endocrine, Metabol Immune Disorders-Drug Targets 2006; 6(1): 77-93.
[http://dx.doi.org/10.2174/187153006776056611]
[74]
Khavasi N, Somi M, Khadem E, et al. Effect of daily caper fruit pickle consumption on disease regression in patients with non-alcoholic fatty liver disease: A double-blinded randomized clinical trial. Adv Pharm Bull 2017; 7(4): 645-50.
[http://dx.doi.org/10.15171/apb.2017.077] [PMID: 29399555]
[75]
Gull T, Anwar F, Sultana B, Alcayde MAC, Nouman W. Capparis species: A potential source of bioactives and high-value components: A review. Ind Crops Prod 2015; 67: 81-96.
[http://dx.doi.org/10.1016/j.indcrop.2014.12.059]
[76]
Manikandaselvi S, Brindha P, Vadivel V. Pharmacognostic and pharmacological studies on flower buds of Capparis spinosa L. Int J Pharm Qual Assur 2018; 9(3): 246-52.
[77]
Akbari R, Yaghooti H, Jalali MT, Khorsandi LS, Mohammadtaghvaei N. Capparis spinosa improves non-alcoholic steatohepatitis through down-regulating srebp-1c and a pparα-independent pathway in high-fat diet-fed rats. Research square 2021; 15(1): 1-8.
[http://dx.doi.org/10.21203/rs.3.rs-523948/v1]
[78]
Riaz G, Chopra R. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed Pharmacother 2018; 102: 575-86.
[http://dx.doi.org/10.1016/j.biopha.2018.03.023] [PMID: 29597091]
[79]
Bule M, Albelbeisi AH, Nikfar S, Amini M, Abdollahi M. The antidiabetic and antilipidemic effects of Hibiscus sabdariffa: A systematic review and meta-analysis of randomized clinical trials. Food Res Int 2020; 130: 108980.
[http://dx.doi.org/10.1016/j.foodres.2020.108980] [PMID: 32156406]
[80]
Huong TT, Tuan HM, Van Thong N, et al. Study on the chemical constituents and antioxidant activity of Hibiscus sabdariffa L. calyx. Vietnam J Sci Technol 2020; 58(6A): 174-80.
[81]
Prasomthong J, Limpeanchob N, Daodee S, Chonpathompikunlert P, Tunsophon S. Hibiscus sabdariffa extract improves hepatic steatosis, partially through IRS-1/Akt and Nrf2 signaling pathways in rats fed a high fat diet. Sci Rep 2022; 12(1): 7022.
[http://dx.doi.org/10.1038/s41598-022-11027-9] [PMID: 35487948]
[82]
Long Q, Chen H, Yang W, Yang L, Zhang L. Delphinidin-3-sambubioside from Hibiscus sabdariffa. L attenuates hyperlipidemia in high fat diet-induced obese rats and oleic acid-induced steatosis in HepG2 cells. Bioengineered 2021; 12(1): 3837-49.
[http://dx.doi.org/10.1080/21655979.2021.1950259] [PMID: 34281481]
[83]
Stienstra R, Duval C, Müller M, Kersten S. Duval c, Müller M, Kersten S. PPARs, obesity, and inflammation. PPAR Res 2007; 2007: 1-10.
[http://dx.doi.org/10.1155/2007/95974]
[84]
Marhuenda J, Perez S, Victoria-Montesinos D, et al. A randomized, double-blind, placebo controlled trial to determine the effectiveness a polyphenolic extract (Hibiscus sabdariffa and Lippia citriodora) in the reduction of body fat mass in healthy subjects. Foods 2020; 9(1): 55.
[http://dx.doi.org/10.3390/foods9010055] [PMID: 31935957]
[85]
Amos A, Khiatah B. Mechanisms of action of nutritionally rich Hibiscus sabdariffa’s therapeutic uses in major common chronic diseases: A literature review. J Am Nutri Assoc 2022; 41(1): 116-24.
[http://dx.doi.org/10.1080/07315724.2020.1848662] [PMID: 33507846]
[86]
Sun B, Li F, Zhang X, Wang W, Shao J, Zheng Y. Delphinidin-3- O -glucoside, an active compound of Hibiscus sabdariffa calyces, inhibits oxidative stress and inflammation in rabbits with atherosclerosis. Pharm Biol 2022; 60(1): 247-54.
[http://dx.doi.org/10.1080/13880209.2021.2017469] [PMID: 35130117]
[87]
Chang HC, Peng CH, Yeh DM, Kao ES, Wang CJ. Hibiscus sabdariffa extract inhibits obesity and fat accumulation, and improves liver steatosis in humans. Food Funct 2014; 5(4): 734-9.
[http://dx.doi.org/10.1039/c3fo60495k] [PMID: 24549255]
[88]
Husain I, Bala K, Khan IA, Khan SI. A review on phytochemicals, pharmacological activities, drug interactions, and associated toxicities of licorice ( Glycyrrhiza sp.). Food Front 2021; 2(4): 449-85.
[http://dx.doi.org/10.1002/fft2.110]
[89]
Hajiaghamohammadi AA, Ziaee A, Samimi R. The efficacy of licorice root extract in decreasing transaminase activities in non-alcoholic fatty liver disease: A randomized controlled clinical trial. Phytother Res 2012; 26(9): 1381-4.
[http://dx.doi.org/10.1002/ptr.3728] [PMID: 22308054]
[90]
Chen L, Kan J, Zheng N, et al. A botanical dietary supplement from white peony and licorice attenuates nonalcoholic fatty liver disease by modulating gut microbiota and reducing inflammation. Phytomedicine 2021; 91: 153693.
[http://dx.doi.org/10.1016/j.phymed.2021.153693] [PMID: 34403877]
[91]
Kikete S, Luo L, Jia B, Wang L, Ondieki G, Bian Y. Plant-derived polysaccharides activate dendritic cell-based anti-cancer immunity. Cytotechnology 2018; 70(4): 1097-110.
[http://dx.doi.org/10.1007/s10616-018-0202-z] [PMID: 29556897]
[92]
Sedighinia F, Safipour Afshar A, Soleimanpour S, Zarif R, Asili J, Ghazvini K. Antibacterial activity of Glycyrrhiza glabra against oral pathogens: An in vitro study. Avicenna J Phytomed 2012; 2(3): 118-24.
[PMID: 25050240]
[93]
Sun X, Duan X, Wang C, et al. Protective effects of glycyrrhizic acid against non-alcoholic fatty liver disease in mice. Eur J Pharmacol 2017; 806: 75-82.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.021] [PMID: 28414056]
[94]
Abo El-Magd NF, El-Karef A, El-Shishtawy MM, Eissa LA. Hepatoprotective effects of glycyrrhizin and omega-3 fatty acids on Nuclear Factor-kappa B pathway in thioacetamide-induced fibrosis in rats. Egypt J Basic Appl Sci 2015; 2(2): 65-74.
[http://dx.doi.org/10.1016/j.ejbas.2014.12.005]
[95]
Rostamizadeh P, Asl SMKH, Far ZG, et al. Effects of licorice root supplementation on liver enzymes, hepatic steatosis, metabolic and oxidative stress parameters in women with nonalcoholic fatty liver disease: A randomized double-blind clinical trial. Phytother Res 2022; 36(10): 3949-56.
[http://dx.doi.org/10.1002/ptr.7543] [PMID: 35785498]
[96]
Hariri M, Gholami A, Mirhafez SR, Bidkhori M, Sahebkar A. A pilot study of the effect of curcumin on epigenetic changes and DNA damage among patients with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled, clinical trial. Complement Ther Med 2020; 51: 102447.
[http://dx.doi.org/10.1016/j.ctim.2020.102447] [PMID: 32507446]
[97]
Chen S, Zhao X, Wan J, et al. Dihydromyricetin improves glucose and lipid metabolism and exerts anti-inflammatory effects in nonalcoholic fatty liver disease: A randomized controlled trial. Pharmacol Res 2015; 99: 74-81.
[http://dx.doi.org/10.1016/j.phrs.2015.05.009] [PMID: 26032587]
[98]
Zhang LX, Li CX, Kakar MU, et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143: 112164.
[http://dx.doi.org/10.1016/j.biopha.2021.112164] [PMID: 34649335]
[99]
Charytoniuk T, Drygalski K, Konstantynowicz-Nowicka K, Berk K, Chabowski A. Alternative treatment methods attenuate the development of NAFLD: A review of resveratrol molecular mechanisms and clinical trials. Nutrition 2017; 34: 108-17.
[http://dx.doi.org/10.1016/j.nut.2016.09.001] [PMID: 28063505]
[100]
Choi YJ, Suh HR, Yoon Y, et al. Protective effect of resveratrol derivatives on high-fat diet induced fatty liver by activating AMP-activated protein kinase. Arch Pharm Res 2014; 37(9): 1169-76.
[http://dx.doi.org/10.1007/s12272-014-0347-z] [PMID: 24633463]
[101]
Hosseini H, Teimouri M, Shabani M, et al. Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway. Int J Biochem Cell Biol 2020; 119: 105667.
[http://dx.doi.org/10.1016/j.biocel.2019.105667] [PMID: 31838177]
[102]
Aslam M, Ladilov Y. Emerging role of cAMP/AMPK signaling. Cells 2022; 11(2): 308.
[http://dx.doi.org/10.3390/cells11020308] [PMID: 35053423]
[103]
Gerhart-Hines Z, Dominy JE Jr, Blättler SM, et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol Cell 2011; 44(6): 851-63.
[http://dx.doi.org/10.1016/j.molcel.2011.12.005] [PMID: 22195961]
[104]
Parsamanesh N, Asghari A, Sardari S, et al. Resveratrol and endothelial function: A literature review. Pharmacol Res 2021; 170: 105725.
[http://dx.doi.org/10.1016/j.phrs.2021.105725] [PMID: 34119624]
[105]
Pellegrini C, Fornai M, Antonioli L, Blandizzi C, Calderone V. Phytochemicals as novel therapeutic strategies for NLRP3 inflammasome-related neurological, metabolic, and inflammatory diseases. Int J Mol Sci 2019; 20(12): 2876.
[http://dx.doi.org/10.3390/ijms20122876] [PMID: 31200447]
[106]
Wang ZM, Chen YC, Wang DP. Resveratrol, a natural antioxidant, protects monosodium iodoacetate-induced osteoarthritic pain in rats. Biomed Pharmacother 2016; 83: 763-70.
[http://dx.doi.org/10.1016/j.biopha.2016.06.050] [PMID: 27484345]
[107]
Pourhanifeh MH, Shafabakhsh R, Reiter RJ, Asemi Z. The effect of resveratrol on neurodegenerative disorders: Possible protective actions against autophagy, apoptosis, inflammation and oxidative stress. Curr Pharm Des 2019; 25(19): 2178-91.
[http://dx.doi.org/10.2174/1381612825666190717110932] [PMID: 31333112]
[108]
Deng Y, Gong W, Li Q, et al. Resveratrol inhibits high glucose-induced activation of AP-1 and NF-κB via SphK1/S1P2 pathway to attenuate mesangial cells proliferation and inflammation. J Funct Foods 2019; 55: 86-94.
[http://dx.doi.org/10.1016/j.jff.2019.02.014]
[109]
Liu X, Zhao H, Jin Q, et al. Resveratrol induces apoptosis and inhibits adipogenesis by stimulating the SIRT1-AMPKα-FOXO1 signalling pathway in bovine intramuscular adipocytes. Mol Cell Biochem 2018; 439(1-2): 213-23.
[http://dx.doi.org/10.1007/s11010-017-3149-z] [PMID: 28819881]
[110]
Truong VL, Jun M, Jeong WS. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors 2018; 44(1): 36-49.
[http://dx.doi.org/10.1002/biof.1399] [PMID: 29193412]
[111]
Ahmad I, Hoda M. Molecular mechanisms of action of resveratrol in modulation of diabetic and non-diabetic cardiomyopathy. Pharmacol Res 2020; 161: 105112.
[http://dx.doi.org/10.1016/j.phrs.2020.105112] [PMID: 32758636]
[112]
Chen S, Zhao X, Ran L, et al. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Dig Liver Dis 2015; 47(3): 226-32.
[http://dx.doi.org/10.1016/j.dld.2014.11.015] [PMID: 25577300]
[113]
Ali Sangouni A, Abdollahi S, Mozaffari-Khosravi H. Effect of resveratrol supplementation on hepatic steatosis and cardiovascular indices in overweight subjects with type 2 diabetes: a double-blind, randomized controlled trial. BMC Cardiovasc Disord 2022; 22(1): 212.
[http://dx.doi.org/10.1186/s12872-022-02637-2] [PMID: 35538431]
[114]
Farzin L, Asghari S, Rafraf M, Asghari-Jafarabadi M, Shirmohammadi M. No beneficial effects of resveratrol supplementation on atherogenic risk factors in patients with nonalcoholic fatty liver disease. Int J Vitam Nutr Res 2019.
[PMID: 30789808]
[115]
Díaz-Mula HM, Tomás-Barberán FA, García-Villalba R. Pomegranate fruit and juice (cv. Mollar), rich in ellagitannins and anthocyanins, also provide a significant content of a wide range of proanthocyanidins. J Agric Food Chem 2019; 67(33): 9160-7.
[http://dx.doi.org/10.1021/acs.jafc.8b07155] [PMID: 30768267]
[116]
Butkeviciute A, Viskelis J, Liaudanskas M, Viskelis P, Janulis V. Impact of storage controlled atmosphere on the apple phenolic acids, flavonoids, and anthocyanins and antioxidant activity in vitro. Plants 2022; 11(2): 201.
[http://dx.doi.org/10.3390/plants11020201] [PMID: 35050089]
[117]
Currie TL, Engler MM, Olsen CH, et al. The effects of berry extracts on oxidative stress in cultured cardiomyocytes and microglial cells: A potential cardioprotective and neuroprotective mechanism. Molecules 2022; 27(9): 2789.
[http://dx.doi.org/10.3390/molecules27092789] [PMID: 35566133]
[118]
Huang W, Yan Z, Li D, Ma Y, Zhou J, Sui Z. Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxidative Medicine and Cellular Longevity 2018; 2018: Article ID 1862462.
[http://dx.doi.org/10.1155/2018/1862462]
[119]
Vendrame S, Klimis-Zacas D. Potential factors influencing the effects of anthocyanins on blood pressure regulation in humans: a review. Nutrients 2019; 11(6): 1431.
[http://dx.doi.org/10.3390/nu11061431] [PMID: 31242638]
[120]
Cui HX, Luo Y, Mao YY, et al. Purified anthocyanins from ZEA MAYS L. cob ameliorates chronic liver injury in mice via modulating of oxidative stress and apoptosis. J Sci Food Agric 2021; 101(11): 4672-80.
[http://dx.doi.org/10.1002/jsfa.11112] [PMID: 33491773]
[121]
Ma Y, Ding S, Fei Y, Liu G, Jang H, Fang J. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control 2019; 106: 106712.
[http://dx.doi.org/10.1016/j.foodcont.2019.106712]
[122]
Bayram HM, Majoo FM, Ozturkcan A. Polyphenols in the prevention and treatment of non-alcoholic fatty liver disease: An update of preclinical and clinical studies. Clin Nutr ESPEN 2021; 44: 1-14.
[http://dx.doi.org/10.1016/j.clnesp.2021.06.026] [PMID: 34330452]
[123]
Parra-Vargas M, Sandoval-Rodriguez A, Rodriguez-Echevarria R, Dominguez-Rosales J, Santos-Garcia A, Armendariz-Borunda J. Delphinidin ameliorates hepatic triglyceride accumulation in human HepG2 cells, but not in diet-induced obese mice. Nutrients 2018; 10(8): 1060.
[http://dx.doi.org/10.3390/nu10081060] [PMID: 30103390]
[124]
Kim B, Bae M, Park YK, et al. Blackcurrant anthocyanins stimulated cholesterol transport via post-transcriptional induction of LDL receptor in Caco-2 cells. Eur J Nutr 2018; 57(1): 405-15.
[http://dx.doi.org/10.1007/s00394-017-1506-z] [PMID: 28718016]
[125]
Gomes JVP, Rigolon TCB, Souza MSS, et al. Antiobesity effects of anthocyanins on mitochondrial biogenesis, inflammation, and oxidative stress: A systematic review. Nutrition 2019; 66: 192-202.
[http://dx.doi.org/10.1016/j.nut.2019.05.005] [PMID: 31310961]
[126]
Aboonabi A, Aboonabi A. Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR-γ gene expression in metabolic syndrome subjects. Free Radic Biol Med 2020; 150: 30-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.004] [PMID: 32061902]
[127]
Zhu X, Lin X, Zhang P, Liu Y, Ling W, Guo H. Upregulated NLRP3 inflammasome activation is attenuated by anthocyanins in patients with nonalcoholic fatty liver disease: A case-control and an intervention study. Clin Res Hepatol Gastroenterol 2022; 46(4): 101843.
[http://dx.doi.org/10.1016/j.clinre.2021.101843] [PMID: 34922061]
[128]
Pahlke G, Ahlberg K, Oertel A, et al. Antioxidant effects of elderberry anthocyanins in human colon carcinoma cells: a study on structure–activity relationships. Mol Nutr Food Res 2021; 65(17): 2100229.
[http://dx.doi.org/10.1002/mnfr.202100229] [PMID: 34212508]
[129]
Ngamlerst C, Udomkasemsab A, Kongkachuichai R, Kwanbunjan K, Chupeerach C, Prangthip P. The potential of antioxidant-rich Maoberry (Antidesma bunius) extract on fat metabolism in liver tissues of rats fed a high-fat diet. BMC Complement Altern Med 2019; 19(1): 294.
[http://dx.doi.org/10.1186/s12906-019-2716-0] [PMID: 31684925]
[130]
Mohammed HA, Khan RA. Anthocyanins: traditional uses, structural and functional variations, approaches to increase yields and products’ quality, hepatoprotection, liver longevity, and commercial products. Int J Mol Sci 2022; 23(4): 2149.
[http://dx.doi.org/10.3390/ijms23042149] [PMID: 35216263]
[131]
Zhang PW, Chen FX, Li D, Ling WH, Guo HH. A CONSORT- compliant, randomized, double-blind, placebo-controlled pilot trial of purified anthocyanin in patients with nonalcoholic fatty liver disease. Medicine (Baltimore) 2015; 94(20): e758.
[http://dx.doi.org/10.1097/MD.0000000000000758] [PMID: 25997043]
[132]
LIczbiński P, Bukowska B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. Ind Crops Prod 2022; 175: 114265.
[http://dx.doi.org/10.1016/j.indcrop.2021.114265] [PMID: 34815622]
[133]
Pinta NM, Montoliu I, Aura AM, Seppänen-Laakso T, Barron D, Moco S. In vitro gut metabolism of [U- 13 C]-quinic acid, the other hydrolysis product of chlorogenic acid. Mol Nutr Food Res 2018; 62(22): 1800396.
[http://dx.doi.org/10.1002/mnfr.201800396] [PMID: 30113130]
[134]
Olthof MR, Hollman PC, Zock PL, Katan MB. Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am J Clin Nutr 2001; 73(3): 532-8.
[http://dx.doi.org/10.1093/ajcn/73.3.532] [PMID: 11237928]
[135]
Xu J, Gao L, Liang H, Zhang S, Lai P, Chen S. Evidence for the anti-NAFLD effectiveness of chlorogenic acid as a HAT inhibitor using in vivo experiments supported by virtual molecular docking. Phytomedicine Plus 2021; 1(4): 100055.
[http://dx.doi.org/10.1016/j.phyplu.2021.100055]
[136]
Shi A, Li T, Zheng Y, et al. Chlorogenic acid improves NAFLD by regulating gut microbiota and GLP-1. Front Pharmacol 2021; 12: 693048.
[http://dx.doi.org/10.3389/fphar.2021.693048] [PMID: 34276380]
[137]
Mansour A, Mohajeri-Tehrani MR, Samadi M, et al. Effects of supplementation with main coffee components including caffeine and/or chlorogenic acid on hepatic, metabolic, and inflammatory indices in patients with non-alcoholic fatty liver disease and type 2 diabetes: A randomized, double-blind, placebo-controlled, clinical trial. Nutr J 2021; 20(1): 35.
[http://dx.doi.org/10.1186/s12937-021-00694-5] [PMID: 33838673]
[138]
Rupasinghe H, Boehm M, Sekhon-Loodu S, Parmar I, Bors B, Jamieson A. Anti-inflammatory activity of haskap cultivars is polyphenols-dependent. Biomolecules 2015; 5(2): 1079-98.
[http://dx.doi.org/10.3390/biom5021079] [PMID: 26043379]
[139]
Oszmiański J, Wojdyło A, Lachowicz S. Effect of dried powder preparation process on polyphenolic content and antioxidant activity of blue honeysuckle berries (Lonicera caerulea L. var. kamtschatica). Lebensm Wiss Technol 2016; 67: 214-22.
[http://dx.doi.org/10.1016/j.lwt.2015.11.051]
[140]
Sharma A, Lee HJ. Lonicera caerulea: An updated account of its phytoconstituents and health-promoting activities. Trends Food Sci Technol 2021; 107: 130-49.
[http://dx.doi.org/10.1016/j.tifs.2020.08.013]
[141]
Wu S, Hu R, Nakano H, et al. Modulation of gut microbiota by Lonicera caerulea L. berry polyphenols in a mouse model of fatty liver induced by high fat diet. Molecules 2018; 23(12): 3213.
[http://dx.doi.org/10.3390/molecules23123213] [PMID: 30563142]
[142]
Park M, Yoo JH, Lee YS, Lee HJ. Lonicera caerulea extract attenuates non-alcoholic fatty liver disease in free fatty acid-induced HepG2 hepatocytes and in high fat diet-fed mice. Nutrients 2019; 11(3): 494.
[http://dx.doi.org/10.3390/nu11030494] [PMID: 30813654]
[143]
Takahashi M, Ishiko T, Kamohara H, et al. Curcumin (1, 7-bis (4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3, 5-dione) blocks the chemotaxis of neutrophils by inhibiting signal transduction through IL-8 receptors. Mediators of inflammation 2007; 2007.
[144]
Mansour-Ghanaei F, Pourmasoumi M, Hadi A, Joukar F. Efficacy of curcumin/turmeric on liver enzymes in patients with non-alcoholic fatty liver disease: A systematic review of randomized controlled trials. Integr Med Res 2019; 8(1): 57-61.
[http://dx.doi.org/10.1016/j.imr.2018.07.004] [PMID: 30949432]
[145]
Lee DE, Lee SJ, Kim SJ, Lee HS, Kwon OS. Curcumin ameliorates nonalcoholic fatty liver disease through inhibition of O-GlcNAcylation. Nutrients 2019; 11(11): 2702.
[http://dx.doi.org/10.3390/nu11112702] [PMID: 31717261]
[146]
Sun Q, Niu Q, Guo Y, et al. Regulation on citrate influx and metabolism through inhibiting SLC13A5 and ACLY: A novel mechanism mediating the therapeutic effects of curcumin on NAFLD. J Agric Food Chem 2021; 69(31): 8714-25.
[http://dx.doi.org/10.1021/acs.jafc.1c03105] [PMID: 34323067]
[147]
Li W, Jiang L, Lu X, Liu X, Ling M. Curcumin protects radiation-induced liver damage in rats through the NF-κB signaling pathway. BMC Complementary Medicine and Therapies 2021; 21(1): 10.
[http://dx.doi.org/10.1186/s12906-020-03182-1] [PMID: 33386071]
[148]
Yan C, Zhang Y, Zhang X, Aa J, Wang G, Xie Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed Pharmacother 2018; 105: 274-81.
[http://dx.doi.org/10.1016/j.biopha.2018.05.135] [PMID: 29860219]
[149]
Chen WJ, Cai B, Chen HT, et al. Retracted: The role of ADIPOQ methylation in curcumin-administrated experimental nonalcoholic fatty liver disease. J Dig Dis 2016; 17(12): 829-36.
[http://dx.doi.org/10.1111/1751-2980.12431] [PMID: 27860427]
[150]
Santamarina Aline B, et al. Decaffeinated green tea extract rich in epigallocatechin-3-gallate prevents fatty liver disease by increased activities of mitochondrial respiratory chain complexes in diet-induced obesity mice. J Nutr Biochem 2015; 26(11): 1348-56.
[151]
Hou H, Yang W, Bao S, Cao Y. Epigallocatechin gallate suppresses inflammatory responses by inhibiting toll-like receptor 4 signaling and alleviates insulin resistance in the livers of high-fat-diet rats. J Oleo Sci 2020; 69(5): 479-86.
[http://dx.doi.org/10.5650/jos.ess19303] [PMID: 32281563]
[152]
Ning K, Lu K, Chen Q, et al. Epigallocatechin gallate protects mice against methionine-choline-deficient-diet-induced nonalcoholic steatohepatitis by improving gut microbiota to attenuate hepatic injury and regulate metabolism. ACS Omega 2020; 5(33): 20800-9.
[http://dx.doi.org/10.1021/acsomega.0c01689] [PMID: 32875214]
[153]
Yang Z, Zhu M, Zhang Y, et al. Coadministration of epigallocatechin-3-gallate (EGCG) and caffeine in low dose ameliorates obesity and nonalcoholic fatty liver disease in obese rats. Phytother Res 2019; 33(4): 1019-26.
[http://dx.doi.org/10.1002/ptr.6295] [PMID: 30746789]
[154]
Tang GY, Zhao CN, Xu XY, et al. Phytochemical composition and antioxidant capacity of 30 Chinese teas. Antioxidants 2019; 8(6): 180.
[http://dx.doi.org/10.3390/antiox8060180] [PMID: 31216700]
[155]
Xiao J, Ho CT, Liong EC, et al. Epigallocatechin gallate attenuates fibrosis, oxidative stress, and inflammation in non-alcoholic fatty liver disease rat model through TGF/SMAD, PI3 K/Akt/FoxO1, and NF-kappa B pathways. Eur J Nutr 2014; 53(1): 187-99.
[http://dx.doi.org/10.1007/s00394-013-0516-8] [PMID: 23515587]
[156]
Du Y, Paglicawan L, Soomro S, et al. Epigallocatechin-3-gallate dampens non-alcoholic fatty liver by modulating liver function, lipid profile and macrophage polarization. Nutrients 2021; 13(2): 599.
[http://dx.doi.org/10.3390/nu13020599] [PMID: 33670347]
[157]
Zhang Y, Yin R, Lang J, Fu Y, Yang L, Zhao D. Epigallocatechin-3-gallate ameliorates hepatic damages by relieve FGF21 resistance and promotion of FGF21–AMPK pathway in mice fed a high fat diet. Diabetol Metab Syndr 2022; 14(1): 53.
[http://dx.doi.org/10.1186/s13098-022-00823-y] [PMID: 35418153]
[158]
Wu D, Liu Z, Wang Y, Zhang Q, Li J, Zhong P, et al. Epigallocatechin-3-gallate alleviates high-fat diet-induced nonalcoholic fatty liver disease via inhibition of apoptosis and promotion of autophagy through the ROS/MAPK signaling pathway. Oxidative Medicine and Cellular Longevity 2021; 2021
[159]
Shang X, Pan H, Wang X, He H, Li M. Leonurus japonicus Houtt.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol 2014; 152(1): 14-32.
[http://dx.doi.org/10.1016/j.jep.2013.12.052] [PMID: 24412548]
[160]
Lee MR, Park K, Ma J. Leonurus japonicus Houtt attenuates nonalcoholic fatty liver disease in free fatty acid-induced HepG2 cells and mice fed a high-fat diet. Nutrients 2017; 10(1): 20.
[http://dx.doi.org/10.3390/nu10010020] [PMID: 29295591]
[161]
Kulczyński B, Gramza-Michałowska A. Goji Berry (Lycium barbarum): Composition and health effects–a review. Pol J Food Nutr Sci 2016; 66(2): 67-75.
[http://dx.doi.org/10.1515/pjfns-2015-0040]
[162]
Zhu L, Peng Z, Zhang X, Yang J, Lai X, Yang G. Determination of polyphenols in Lycium barbarum leaves by high-performance liquid chromatography–tandem mass spectrometry. Anal Lett 2017; 50(5): 761-76.
[http://dx.doi.org/10.1080/00032719.2016.1202956]
[163]
Potterat O. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med 2010; 76(1): 7-19.
[http://dx.doi.org/10.1055/s-0029-1186218] [PMID: 19844860]
[164]
Juan C, Montesano D, Mañes J, Juan-García A. Carotenoids present in goji berries Lycium barbarum L. are suitable to protect against mycotoxins effects: An in vitro study of bioavailability. J Funct Foods 2022; 92: 105049.
[http://dx.doi.org/10.1016/j.jff.2022.105049]
[165]
Xiao J, Wang F, Liong EC, So KF, Tipoe GL. Lycium barbarum polysaccharides improve hepatic injury through NFkappa-B and NLRP3/6 pathways in a methionine choline deficient diet steatohepatitis mouse model. Int J Biol Macromol 2018; 120(Pt B): 1480-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.151] [PMID: 30266645]
[166]
Xiao J, Xing F, Huo J, et al. Lycium barbarum polysaccharides therapeutically improve hepatic functions in non-alcoholic steatohepatitis rats and cellular steatosis model. Sci Rep 2015; 4(1): 5587.
[http://dx.doi.org/10.1038/srep05587] [PMID: 24998389]
[167]
Jia L, Li W, Li J, et al. Lycium barbarum polysaccharide attenuates high-fat diet-induced hepatic steatosis by up-regulating SIRT1 expression and deacetylase activity. Sci Rep 2016; 6(1): 36209.
[http://dx.doi.org/10.1038/srep36209] [PMID: 27824080]
[168]
Yang Y, Chen J, Gao Q, Shan X, Wang J, Lv Z. Study on the attenuated effect of Ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease. Toxicology 2020; 445: 152599.
[http://dx.doi.org/10.1016/j.tox.2020.152599] [PMID: 32976958]
[169]
Choi MS, Kim JK, Kim DH, Yoo HH. Effects of gut microbiota on the bioavailability of bioactive compounds from ginkgo leaf extracts. Metabolites 2019; 9(7): 132.
[http://dx.doi.org/10.3390/metabo9070132] [PMID: 31284440]
[170]
Singh B, Kaur P, Gopichand , Singh RD, Ahuja PS. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008; 79(6): 401-18.
[http://dx.doi.org/10.1016/j.fitote.2008.05.007] [PMID: 18639617]
[171]
Yan Z, Fan R, Yin S, et al. Protective effects of Ginkgo biloba leaf polysaccharide on nonalcoholic fatty liver disease and its mechanisms. Int J Biol Macromol 2015; 80: 573-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.054] [PMID: 26047899]
[172]
Li L, Yang L, Yang F, Zhao X, Xue S, Gong F. Ginkgo biloba extract 50 (GBE50) ameliorates insulin resistance, hepatic steatosis and liver injury in high fat diet-fed mice. J Inflamm Res 2021; 14: 1959-71.
[http://dx.doi.org/10.2147/JIR.S302934] [PMID: 34040411]
[173]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[174]
Chen H, Zheng X, Zong X, et al. Metabolic syndrome, metabolic comorbid conditions and risk of early-onset colorectal cancer. Gut 2021; 70(6): 1147-54.
[http://dx.doi.org/10.1136/gutjnl-2020-321661] [PMID: 33037055]
[175]
O’Sullivan DE, Sutherland RL, Town S, et al. Risk factors for early-onset colorectal cancer: A systematic review and meta-analysis. Clin Gastroenterol Hepatol 2021.
[PMID: 33524598]
[176]
Wong VWS, Wong GLH, Tsang SWC, et al. High prevalence of colorectal neoplasm in patients with non-alcoholic steatohepatitis. Gut 2011; 60(6): 829-36.
[http://dx.doi.org/10.1136/gut.2011.237974] [PMID: 21339204]
[177]
Huang KW, Leu HB, Wang YJ, et al. Patients with nonalcoholic fatty liver disease have higher risk of colorectal adenoma after negative baseline colonoscopy. Colorectal Dis 2013; 15(7): 830-5.
[http://dx.doi.org/10.1111/codi.12172] [PMID: 23398678]
[178]
Stadlmayr A, Aigner E, Steger B, et al. Nonalcoholic fatty liver disease: an independent risk factor for colorectal neoplasia. J Intern Med 2011; 270(1): 41-9.
[http://dx.doi.org/10.1111/j.1365-2796.2011.02377.x] [PMID: 21414047]
[179]
Zhang X, Wong VWS, Yip TCF, et al. Colonoscopy and risk of colorectal cancer in patients with nonalcoholic fatty liver disease: a retrospective territory-wide cohort study. Hepatol Commun 2021; 5(7): 1212-23.
[http://dx.doi.org/10.1002/hep4.1705] [PMID: 34278170]
[180]
Komaki Y, Komaki F, Micic D, Ido A, Sakuraba A. Risk of colorectal cancer in chronic liver diseases: A systematic review and meta-analysis. Gastrointestinal endoscopy 2017; 86(1): 93-104.
[http://dx.doi.org/10.1016/j.gie.2016.12.009]
[181]
Alam S, Mustafa G, Alam M, Ahmad N. Insulin resistance in development and progression of nonalcoholic fatty liver disease. World J Gastrointest Pathophysiol 2016; 7(2): 211-7.
[http://dx.doi.org/10.4291/wjgp.v7.i2.211] [PMID: 27190693]
[182]
Song M, Sasazuki S, Camargo MC, et al. Circulating inflammatory markers and colorectal cancer risk: A prospective case-cohort study in Japan. Int J Cancer 2018; 143(11): 2767-76.
[http://dx.doi.org/10.1002/ijc.31821] [PMID: 30132835]
[183]
Kim S, Keku TO, Martin C, et al. Circulating levels of inflammatory cytokines and risk of colorectal adenomas. Cancer Res 2008; 68(1): 323-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2924] [PMID: 18172326]
[184]
Tasci I, Dogru T, Ercin CN, Erdem G, Sonmez A. Adipokines and cytokines in non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2008; 28(2): 266-7.
[http://dx.doi.org/10.1111/j.1365-2036.2008.03697.x] [PMID: 18611188]
[185]
Mikolasevic I, Orlic L, Stimac D, Hrstic I, Jakopcic I, Milic S. Non-alcoholic fatty liver disease and colorectal cancer. Postgrad Med J 2017; 93(1097): 153-8.
[http://dx.doi.org/10.1136/postgradmedj-2016-134383] [PMID: 27852946]
[186]
Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 2014; 12(10): 661-72.
[http://dx.doi.org/10.1038/nrmicro3344] [PMID: 25198138]
[187]
Fang YL, Chen H, Wang CL, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”. World J Gastroenterol 2018; 24(27): 2974-83.
[http://dx.doi.org/10.3748/wjg.v24.i27.2974] [PMID: 30038464]
[188]
Sokkar HH, Abo Dena AS, Mahana NA, Badr A. Artichoke extracts in cancer therapy: Do the extraction conditions affect the anticancer activity? Future Journal of Pharmaceutical Sciences 2020; 6(1): 78.
[http://dx.doi.org/10.1186/s43094-020-00088-0]
[189]
Macharia JM, Mwangi RW, Rozmann N, et al. Medicinal plants with anti-colorectal cancer bioactive compounds: Potential game-changers in colorectal cancer management. Biomed Pharmacother 2022; 153: 113383.
[http://dx.doi.org/10.1016/j.biopha.2022.113383] [PMID: 35820316]
[190]
Fakhri M, Yousefi SS, Moosazadeh M, Azadbakht M, Fakheri H. Relationship between green tea drinking and the risk of colorectal cancer; a systematic review and meta-analysis. Immunopathologia Persa 2022.
[http://dx.doi.org/10.34172/ipp.2022.29287]
[191]
Villota H, Moreno-Ceballos M, Santa-González GA, et al. Biological impact of phenolic compounds from coffee on colorectal cancer. Pharmaceuticals (Basel) 2021; 14(8): 761.
[http://dx.doi.org/10.3390/ph14080761] [PMID: 34451858]
[192]
Wang G, Hiramoto K, Ma N, et al. Glycyrrhizin attenuates carcinogenesis by inhibiting the inflammatory response in a murine model of colorectal cancer. Int J Mol Sci 2021; 22(5): 2609.
[http://dx.doi.org/10.3390/ijms22052609] [PMID: 33807620]
[193]
Qiblawi S, Kausar MA, Shahid SMA, Saeed M, Alazzeh AY. Therapeutic interventions of cardamom in cancer and other human diseases. J Pharm Res Int 2020; 17: 74-84.
[http://dx.doi.org/10.9734/jpri/2020/v32i2230774]
[194]
Sakata R, Nakamura T, Torimura T, Ueno T, Sata M. Green tea with high-density catechins improves liver function and fat infiltration in non-alcoholic fatty liver disease (NAFLD) patients: A double-blind placebo-controlled study. Int J Mol Med 2013; 32(5): 989-94.
[http://dx.doi.org/10.3892/ijmm.2013.1503] [PMID: 24065295]
[195]
Hosseinabadi S, Rafraf M, Asghari S, Asghari-Jafarabadi M, Vojouhi S. Effect of green coffee extract supplementation on serum adiponectin concentration and lipid profile in patients with non-alcoholic fatty liver disease: A randomized, controlled trial. Complement Ther Med 2020; 49: 102290.
[http://dx.doi.org/10.1016/j.ctim.2019.102290] [PMID: 32147076]
[196]
Goodarzi R, Jafarirad S, Mohammadtaghvaei N, Dastoorpoor M, Alavinejad P. The effect of pomegranate extract on anthropometric indices, serum lipids, glycemic indicators, and blood pressure in patients with nonalcoholic fatty liver disease: A randomized double-blind clinical trial. Phytother Res 2021; 35(10): 5871-82.
[http://dx.doi.org/10.1002/ptr.7249] [PMID: 34498307]
[197]
Hormoznejad R, Mohammad Shahi M, Rahim F, Helli B, Alavinejad P, Sharhani A. Combined cranberry supplementation and weight loss diet in non-alcoholic fatty liver disease: A double-blind placebo-controlled randomized clinical trial. Int J Food Sci Nutr 2020; 71(8): 991-1000.
[http://dx.doi.org/10.1080/09637486.2020.1746957] [PMID: 32237922]
[198]
Guo H, Zhong R, Liu Y, et al. Effects of bayberry juice on inflammatory and apoptotic markers in young adults with features of non-alcoholic fatty liver disease. Nutrition 2014; 30(2): 198-203.
[http://dx.doi.org/10.1016/j.nut.2013.07.023] [PMID: 24377455]
[199]
Shidfar F, Bahrololumi SS, Doaei S, Mohammadzadeh A, Gholamalizadeh M, Mohammadimanesh A. The effects of extra virgin olive oil on alanine aminotransferase, aspartate aminotransferase, and ultrasonographic indices of hepatic steatosis in nonalcoholic fatty liver disease patients undergoing low calorie diet. Canadian J Gastroenterol Hepatol 2018; 2018: Article ID 1053710.
[http://dx.doi.org/10.1155/2018/1053710]
[200]
Sangsefidi ZS, Yarhosseini F, Hosseinzadeh M, et al. The effect of (Cornus mas L.) fruit extract on liver function among patients with nonalcoholic fatty liver: A double-blind randomized clinical trial. Phytother Res 2021; 35(9): 5259-68.
[http://dx.doi.org/10.1002/ptr.7199] [PMID: 34254372]
[201]
Dorosti M, Jafary Heidarloo A, Bakhshimoghaddam F, Alizadeh M. Whole-grain consumption and its effects on hepatic steatosis and liver enzymes in patients with non-alcoholic fatty liver disease: A randomised controlled clinical trial. Br J Nutr 2020; 123(3): 328-36.
[http://dx.doi.org/10.1017/S0007114519002769] [PMID: 31685037]
[202]
Whittaker A, Dinu M, Cesari F, et al. A khorasan wheat-based replacement diet improves risk profile of patients with type 2 diabetes mellitus (T2DM): A randomized crossover trial. Eur J Nutr 2017; 56(3): 1191-200.
[http://dx.doi.org/10.1007/s00394-016-1168-2] [PMID: 26853601]
[203]
Chang HC, Huang CN, Yeh DM, Wang SJ, Peng CH, Wang CJ. Oat prevents obesity and abdominal fat distribution, and improves liver function in humans. Plant Foods Hum Nutr 2013; 68(1): 18-23.
[http://dx.doi.org/10.1007/s11130-013-0336-2] [PMID: 23371785]
[204]
Khonche A, Huseini HF, Gholamian M, Mohtashami R, Nabati F, Kianbakht S. Standardized Nigella sativa seed oil ameliorates hepatic steatosis, aminotransferase and lipid levels in non-alcoholic fatty liver disease: A randomized, double-blind and placebo-controlled clinical trial. J Ethnopharmacol 2019; 234: 106-11.
[http://dx.doi.org/10.1016/j.jep.2019.01.009] [PMID: 30639231]
[205]
Taghavi SA, Babaei A, Mohammadi A, et al. Comparison of the efficacy of oral fenugreek seeds hydroalcoholic extract versus placebo in nonalcoholic fatty liver disease; a randomized, triple-blind controlled pilot clinical trial. Indian J Pharmacol 2020; 52(2): 86-93.
[http://dx.doi.org/10.4103/ijp.IJP_17_19] [PMID: 32565595]
[206]
Gheflati A, Adelnia E, Nadjarzadeh A. The clinical effects of purslane (Portulaca oleracea) seeds on metabolic profiles in patients with nonalcoholic fatty liver disease: A randomized controlled clinical trial. Phytother Res 2019; 33(5): 1501-9.
[http://dx.doi.org/10.1002/ptr.6342] [PMID: 30895694]
[207]
Darvish Damavandi R, Shidfar F, Najafi M, et al. Effect of Portulaca oleracea (purslane) extract on liver enzymes, lipid profile, and glycemic status in nonalcoholic fatty liver disease: A randomized, double-blind clinical trial. Phytother Res 2021; 35(6): 3145-56.
[http://dx.doi.org/10.1002/ptr.6972] [PMID: 33880813]
[208]
Daneshi-Maskooni M, Keshavarz SA, Qorbani M, et al. Green cardamom supplementation improves serum irisin, glucose indices, and lipid profiles in overweight or obese non-alcoholic fatty liver disease patients: A double-blind randomized placebo-controlled clinical trial. BMC Complement Altern Med 2019; 19(1): 59.
[http://dx.doi.org/10.1186/s12906-019-2465-0] [PMID: 30871514]
[209]
Zamani N, Shams M, Nimrouzi M, et al. The effects of Zataria multiflora Boiss. (Shirazi thyme) on nonalcoholic fatty liver disease and insulin resistance: A randomized double-blind placebo- controlled clinical trial. Complement Ther Med 2018; 41: 118-23.
[http://dx.doi.org/10.1016/j.ctim.2018.09.010] [PMID: 30477827]
[210]
Darand M, Darabi Z, Yari Z, et al. Nigella sativa and inflammatory biomarkers in patients with non-alcoholic fatty liver disease: Results from a randomized, double-blind, placebo-controlled, clinical trial. Complement Ther Med 2019; 44: 204-9.
[http://dx.doi.org/10.1016/j.ctim.2019.04.014] [PMID: 31126557]
[211]
Hussain M, Tunio AG, Akhtar L, Shaikh GS. Effects of Nigella sativa on various parameters in patients of non-alcoholic fatty liver disease. J Ayub Med Coll Abbottabad 2017; 29(3): 403-7.
[PMID: 29076670]
[212]
Askari F, Rashidkhani B, Hekmatdoost A. Cinnamon may have therapeutic benefits on lipid profile, liver enzymes, insulin resistance, and high-sensitivity C-reactive protein in nonalcoholic fatty liver disease patients. Nutr Res 2014; 34(2): 143-8.
[http://dx.doi.org/10.1016/j.nutres.2013.11.005] [PMID: 24461315]
[213]
Sangouni AA, Alizadeh M, Jamalzehi A, Parastouei K. Effects of garlic powder supplementation on metabolic syndrome components, insulin resistance, fatty liver index, and appetite in subjects with metabolic syndrome: A randomized clinical trial. Phytother Res 2021; 35(8): 4433-41.
[http://dx.doi.org/10.1002/ptr.7146] [PMID: 33974725]
[214]
Anushiravani A, Haddadi N, Pourfarmanbar M, Mohammadkarimi V. Treatment options for nonalcoholic fatty liver disease: A double-blinded randomized placebo-controlled trial. Eur J Gastroenterol Hepatol 2019; 31(5): 613-7.
[http://dx.doi.org/10.1097/MEG.0000000000001369] [PMID: 30920975]
[215]
Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE, Sahebkar A. Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: A randomized controlled trial. J Cardiovasc Pharmacol 2016; 68(3): 223-9.
[http://dx.doi.org/10.1097/FJC.0000000000000406] [PMID: 27124606]
[216]
Saadati S, Sadeghi A, Mansour A, et al. Curcumin and inflammation in non-alcoholic fatty liver disease: A randomized, placebo controlled clinical trial. BMC Gastroenterol 2019; 19(1): 133.
[http://dx.doi.org/10.1186/s12876-019-1055-4] [PMID: 31345163]
[217]
Saberi-Karimian M, Keshvari M, Ghayour-Mobarhan M, et al. Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Complement Ther Med 2020; 49: 102322.
[http://dx.doi.org/10.1016/j.ctim.2020.102322] [PMID: 32147075]
[218]
Magosso E, Ansari MA, Gopalan Y, et al. Tocotrienols for normalisation of hepatic echogenic response in nonalcoholic fatty liver: a randomised placebo-controlled clinical trial. Nutr J 2013; 12(1): 166.
[http://dx.doi.org/10.1186/1475-2891-12-166] [PMID: 24373555]
[219]
Xie X, Meng X, Zhou X, Shu X, Kong H. Research on therapeutic effect and hemorrheology change of berberine in new diagnosed patients with type 2 diabetes combining nonalcoholic fatty liver disease. Zhongguo Zhongyao Zazhi 2011; 36(21): 3032-5.
[PMID: 22308697]
[220]
Daniel T, Ben-Shachar M, Drori E, et al. Grape pomace reduces the severity of non-alcoholic hepatic steatosis and the development of steatohepatitis by improving insulin sensitivity and reducing ectopic fat deposition in mice. J Nutr Biochem 2021; 98: 108867.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108867] [PMID: 34571189]
[221]
Uchiyama H, Komatsu KI, Nakata A, et al. Global liver gene expression analysis on a murine hepatic steatosis model treated with mulberry (Morus alba L.) leaf powder. Anticancer Res 2018; 38(7): 4305-11.
[http://dx.doi.org/10.21873/anticanres.12729] [PMID: 29970566]
[222]
Zidani S, Benakmoum A, Ammouche A, Benali Y, Bouhadef A, Abbeddou S. Effect of dry tomato peel supplementation on glucose tolerance, insulin resistance, and hepatic markers in mice fed high-saturated-fat/high-cholesterol diets. J Nutr Biochem 2017; 40: 164-71.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.001] [PMID: 27907824]
[223]
Lee GH, Peng C, Park SA, et al. Citrus peel extract ameliorates high-fat diet-induced NAFLD via activation of AMPK signaling. Nutrients 2020; 12(3): 673.
[http://dx.doi.org/10.3390/nu12030673] [PMID: 32121602]
[224]
Lai YS, Chen WC, Ho CT, et al. Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. J Agric Food Chem 2014; 62(25): 5897-906.
[http://dx.doi.org/10.1021/jf500803c] [PMID: 24857364]
[225]
Torres L, Cogliati B, Otton R. Green tea prevents NAFLD by modulation of miR-34a and miR-194 expression in a high-fat diet mouse model. Oxidative Medicine and Cellular Longevity 2019; 2019
[http://dx.doi.org/10.1155/2019/4168380]
[226]
Di Mauro S, Salomone F, Scamporrino A, et al. Coffee restores expression of lncRNAs involved in steatosis and fibrosis in a mouse model of NAFLD. Nutrients 2021; 13(9): 2952.
[http://dx.doi.org/10.3390/nu13092952] [PMID: 34578828]
[227]
Kim HM, Kim Y, Lee ES, Huh JH, Chung CH. Caffeic acid ameliorates hepatic steatosis and reduces ER stress in high fat diet–induced obese mice by regulating autophagy. Nutrition 2018; 55-56: 63-70.
[http://dx.doi.org/10.1016/j.nut.2018.03.010] [PMID: 29960159]
[228]
Zhang P, Li J, Li M, Sui Y, Zhou Y, Sun Y. Effects of lycopene on metabolism of glycolipid and inflammation in non-alcoholic fatty liver disease rats. Wei Sheng Yen Chiu 2020; 49(2): 254-71.
[PMID: 32290942]
[229]
Gómez-Zorita S, Fernández-Quintela A, Macarulla MT, et al. Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br J Nutr 2012; 107(2): 202-10.
[http://dx.doi.org/10.1017/S0007114511002753] [PMID: 21733326]
[230]
Liu Q, Pan R, Ding L, et al. Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries. Int Immunopharmacol 2017; 49: 132-41.
[http://dx.doi.org/10.1016/j.intimp.2017.05.026] [PMID: 28577437]
[231]
Sun R, Xu D, Wei Q, et al. Silybin ameliorates hepatic lipid accumulation and modulates global metabolism in an NAFLD mouse model. Biomed Pharmacother 2020; 123: 109721.
[http://dx.doi.org/10.1016/j.biopha.2019.109721] [PMID: 31865143]
[232]
Saleh Al-maamari JN, Rahmadi M, Panggono SM, et al. The effects of quercetin on the expression of SREBP-1c mRNA in high- fat diet-induced NAFLD in mice. J Basic Clin Physiol Pharmacol 2021; 32(4): 637-44.
[http://dx.doi.org/10.1515/jbcpp-2020-0423] [PMID: 34214346]
[233]
Jian T, Lü H, Ding X, et al. Polyphenol-rich Trapa quadrispinosa pericarp extract ameliorates high-fat diet induced non-alcoholic fatty liver disease by regulating lipid metabolism and insulin resistance in mice. PeerJ 2019; 7: e8165.
[http://dx.doi.org/10.7717/peerj.8165] [PMID: 31803542]
[234]
Al Zarzour R, Ahmad M, Asmawi M, et al. Phyllanthus niruri standardized extract alleviates the progression of non-alcoholic fatty liver disease and decreases atherosclerotic risk in Sprague–Dawley rats. Nutrients 2017; 9(7): 766.
[http://dx.doi.org/10.3390/nu9070766] [PMID: 28718838]
[235]
Tan Y, Lao W, Xiao L, Wang Z, Xiao W, Kamal MA, et al. Managing the combination of nonalcoholic fatty liver disease and metabolic syndrome with Chinese herbal extracts in high-fat-diet fed rats. Evidence-Based Complementary and Alternative Medicine 2013; 2013.
[http://dx.doi.org/10.1155/2013/306738]
[236]
Hong X, Tang H, Wu L, Li L. Protective effects of the Alisma orientalis extract on the experimental nonalcoholic fatty liver disease. J Pharm Pharmacol 2010; 58(10): 1391-8.
[http://dx.doi.org/10.1211/jpp.57.10.0013] [PMID: 17034663]
[237]
Chang CJ, Liou SS, Tzeng TF, Liu IM. The ethanol extract of Zingiber zerumbet Smith attenuates non-alcoholic fatty liver disease in hamsters fed on high-fat diet. Food Chem Toxicol 2014; 65: 33-42.
[http://dx.doi.org/10.1016/j.fct.2013.11.048] [PMID: 24342243]
[238]
Bae UJ, Oh MR, Jung TS, Chae SW, Park BH. Decursin and decursinol angelate-rich Angelica gigas Nakai extract suppresses de novo lipogenesis and alleviates nonalcoholic fatty liver disease and dyslipidemia in mice fed a high fat diet. J Funct Foods 2017; 31: 208-16.
[http://dx.doi.org/10.1016/j.jff.2017.02.008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy