Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Age-Related Alterations in Mesenchymal Stem Cell Function: Understanding Mechanisms and Seeking Opportunities to Bypass the Cellular Aging

Author(s): Mehdi Rasouli, Yasaman Naeimzadeh, Nader Hashemi and Simzar Hosseinzadeh*

Volume 19, Issue 1, 2024

Published on: 03 February, 2023

Page: [15 - 32] Pages: 18

DOI: 10.2174/1574888X18666230113144016

Price: $65

conference banner
Abstract

Undoubtedly, mesenchymal stem cells (MSCs) are the most common cell therapy candidates in clinical research and therapy. They not only exert considerable therapeutic effects to alleviate inflammation and promote regeneration, but also show low-immunogenicity properties, which ensure their safety following allogeneic transplantation. Thanks to the necessity of providing a sufficient number of MSCs to achieve clinically efficient outcomes, prolonged in vitro cultivation is indisputable. However, either following long-term in vitro expansion or aging in elderly individuals, MSCs face cellular senescence. Senescent MSCs undergo an impairment in their function and therapeutic capacities and secrete degenerative factors which negatively affect young MSCs. To this end, designing novel investigations to further elucidate cellular senescence and to pave the way toward finding new strategies to reverse senescence is highly demanded. In this review, we will concisely discuss current progress on the detailed mechanisms of MSC senescence and various inflicted changes following aging in MSC. We will also shed light on the examined strategies underlying monitoring and reversing senescence in MSCs to bypass the comprised therapeutic efficacy of the senescent MSCs.

Graphical Abstract

[1]
Rochette L, Meloux A, Rigal E, et al. Regenerative capacity of endogenous factor: Growth differentiation factor 11; a new approach of the management of age-related cardiovascular events. Int J Mol Sci 2018; 19(12): 3998.
[http://dx.doi.org/10.3390/ijms19123998] [PMID: 30545044]
[2]
García-Prat L, Sousa-Victor P, Muñoz-Cánoves P. Functional dysregulation of stem cells during aging: A focus on skeletal muscle stem cells. FEBS J 2013; 280(17): 4051-62.
[http://dx.doi.org/10.1111/febs.12221] [PMID: 23452120]
[3]
da Silva PFL, Schumacher B. Principles of the molecular and cellular mechanisms of aging. J Invest Dermatol 2021; 141(4): 951-60.
[http://dx.doi.org/10.1016/j.jid.2020.11.018] [PMID: 33518357]
[4]
Yang YHK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchy-mal stem cells aging in vitro. Stem Cell Res Ther 2018; 9(1): 131.
[http://dx.doi.org/10.1186/s13287-018-0876-3] [PMID: 29751774]
[5]
Haigis MC, Yankner BA. The aging stress response. Mol Cell 2010; 40(2): 333-44.
[http://dx.doi.org/10.1016/j.molcel.2010.10.002] [PMID: 20965426]
[6]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[7]
Le Moal E, Pialoux V, Juban G, et al. Redox control of skeletal muscle regeneration. Antioxid Redox Signal 2017; 27(5): 276-310.
[http://dx.doi.org/10.1089/ars.2016.6782] [PMID: 28027662]
[8]
Singh VK, Saini A, Kalsan M, Kumar N, Chandra R. Describing the stem cell potency: The various methods of functional assessment and in silico diagnostics. Front Cell Dev Biol 2016; 4: 134.
[http://dx.doi.org/10.3389/fcell.2016.00134] [PMID: 27921030]
[9]
Rasouli M, Vakilian F, Ranjbari J. Therapeutic and protective potential of mesenchymal stem cells, pharmaceutical agents and current vaccines against COVID-19. Curr Stem Cell Res Ther 2022; 17(2): 166-85.
[http://dx.doi.org/10.2174/1574888X16666201221151853] [PMID: 34530719]
[10]
Rasouli M, Rahimi A, Soleimani M. keshel SH. The interplay between extracellular matrix and progenitor/stem cells during wound healing: Opportunities and future directions. Acta Histochem 2021; 123(7): 151785.
[http://dx.doi.org/10.1016/j.acthis.2021.151785] [PMID: 34500185]
[11]
Saremi J, Mahmoodi N, Rasouli M, et al. Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engi-neering therapy and combinational treatments. Biomed Pharmacother 2022; 146: 112529.
[http://dx.doi.org/10.1016/j.biopha.2021.112529] [PMID: 34906773]
[12]
Baghaei K, Hashemi SM, Tokhanbigli S, et al. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol Hepatol Bed Bench 2017; 10(3): 208-13.
[PMID: 29118937]
[13]
Fernández-Francos S, Eiro N, Costa LA, Escudero-Cernuda S, Fernández-Sánchez ML, Vizoso FJ. Mesenchymal stem cells as a corner-stone in a galaxy of intercellular signals: Basis for a new era of medicine. Int J Mol Sci 2021; 22(7): 3576.
[http://dx.doi.org/10.3390/ijms22073576] [PMID: 33808241]
[14]
Galipeau J, Sensébé L. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell 2018; 22(6): 824-33.
[http://dx.doi.org/10.1016/j.stem.2018.05.004] [PMID: 29859173]
[15]
Timaner M, Tsai KK, Shaked Y. The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 2020; 60: 225-37.
[http://dx.doi.org/10.1016/j.semcancer.2019.06.003] [PMID: 31212021]
[16]
Wagner W, Horn P, Castoldi M, et al. Replicative senescence of mesenchymal stem cells: A continuous and organized process. PLoS One 2008; 3(5): e2213.
[http://dx.doi.org/10.1371/journal.pone.0002213] [PMID: 18493317]
[17]
Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev 2006; 5(1): 91-116.
[http://dx.doi.org/10.1016/j.arr.2005.10.001] [PMID: 16310414]
[18]
Baker N, Boyette LB, Tuan RS. Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 2015; 70: 37-47.
[http://dx.doi.org/10.1016/j.bone.2014.10.014] [PMID: 25445445]
[19]
Piñeiro-Ramil M, Sanjurjo-Rodríguez C, Rodríguez-Fernández S, et al. Generation of mesenchymal cell lines derived from aged donors. Int J Mol Sci 2021; 22(19): 10667.
[http://dx.doi.org/10.3390/ijms221910667] [PMID: 34639008]
[20]
Bijonowski BM, Yuan X, Jeske R, Li Y, Grant SC. Cyclical aggregation extends in vitro expansion potential of human mesenchymal stem cells. Sci Rep 2020; 10(1): 20448.
[http://dx.doi.org/10.1038/s41598-020-77288-4] [PMID: 33235227]
[21]
Block TJ, Marinkovic M, Tran ON, et al. Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies. Stem Cell Res Ther 2017; 8(1): 239.
[http://dx.doi.org/10.1186/s13287-017-0688-x] [PMID: 29078802]
[22]
Meiliana A, Dewi NM, Wijaya A. In search for anti-aging strategy: Can we rejuvenate our aging stem cells? Indones Biomed J 2015; 7(2): 57-72.
[http://dx.doi.org/10.18585/inabj.v7i2.72]
[23]
Mazzolini R, Gonzàlez N, Garcia-Garijo A, et al. Snail1 transcription factor controls telomere transcription and integrity. Nucleic Acids Res 2018; 46(1): 146-58.
[http://dx.doi.org/10.1093/nar/gkx958] [PMID: 29059385]
[24]
Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: Telomere shortening, cell senescence and mitochon-dria dysfunction. Biogerontology 2019; 20(1): 1-16.
[http://dx.doi.org/10.1007/s10522-018-9769-1] [PMID: 30229407]
[25]
Gruber HJ, Semeraro MD, Renner W, Herrmann M. Telomeres and age-related diseases. Biomedicines 2021; 9(10): 1335.
[http://dx.doi.org/10.3390/biomedicines9101335] [PMID: 34680452]
[26]
Masutomi K, Yu EY, Khurts S, et al. Telomerase maintains telomere structure in normal human cells. Cell 2003; 114(2): 241-53.
[http://dx.doi.org/10.1016/S0092-8674(03)00550-6] [PMID: 12887925]
[27]
Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells. Int J Mol Med 2017; 39(4): 775-82.
[http://dx.doi.org/10.3892/ijmm.2017.2912] [PMID: 28290609]
[28]
Turinetto V, Vitale E, Giachino C. Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy. Int J Mol Sci 2016; 17(7): 1164.
[http://dx.doi.org/10.3390/ijms17071164] [PMID: 27447618]
[29]
Zhou X, Hong Y, Zhang H, Li X. Mesenchymal stem cell senescence and rejuvenation: Current status and challenges. Front Cell Dev Biol 2020; 8: 364.
[http://dx.doi.org/10.3389/fcell.2020.00364] [PMID: 32582691]
[30]
Alves-Paiva RM, Nascimento S, De Oliveira D, et al. Senescence state in mesenchymal stem cells at low passages: Implications in clinical use. Front Cell Dev Biol 2022; 10: 858996.
[http://dx.doi.org/10.3389/fcell.2022.858996] [PMID: 35445029]
[31]
Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 2004; 22(5): 675-82.
[http://dx.doi.org/10.1634/stemcells.22-5-675] [PMID: 15342932]
[32]
Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345(6274): 458-60.
[http://dx.doi.org/10.1038/345458a0] [PMID: 2342578]
[33]
Nadeau S, Cheng A, Colmegna I, Rodier F. Quantifying senescence-associated phenotypes in primary multipotent mesenchymal stromal cell cultures. Methods Mol Biol 2019; 2045: 93-105.
[http://dx.doi.org/10.1007/7651_2019_217] [PMID: 31020633]
[34]
Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 2007; 25(3): 646-54.
[http://dx.doi.org/10.1634/stemcells.2006-0208] [PMID: 17124009]
[35]
Graakjaer J, Christensen R, Kolvraa S, Serakinci N. Mesenchymal stem cells with high telomerase expression do not actively restore their chromosome arm specific telomere length pattern after exposure to ionizing radiation. BMC Mol Biol 2007; 8(1): 49.
[http://dx.doi.org/10.1186/1471-2199-8-49] [PMID: 17565702]
[36]
Ryu E, Hong S, Kang J, et al. Identification of senescence-associated genes in human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2008; 371(3): 431-6.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.111] [PMID: 18452712]
[37]
Madonna R, De Caterina R, Willerson JT, Geng YJ. Biologic function and clinical potential of telomerase and associated proteins in cardi-ovascular tissue repair and regeneration. Eur Heart J 2011; 32(10): 1190-6.
[http://dx.doi.org/10.1093/eurheartj/ehq450] [PMID: 21148539]
[38]
Madonna R, Taylor DA, Geng YJ, et al. Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myo-cardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. Circ Res 2013; 113(7): 902-14.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301690] [PMID: 23780385]
[39]
Serakinci N, Christensen R, Graakjaer J, et al. Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart. Exp Cell Res 2007; 313(5): 1056-67.
[http://dx.doi.org/10.1016/j.yexcr.2007.01.002] [PMID: 17274981]
[40]
Sawada R, Ito T, Tsuchiya T. Changes in expression of genes related to cell proliferation in human mesenchymal stem cells during in vitro culture in comparison with cancer cells. J Artif Organs 2006; 9(3): 179-84.
[http://dx.doi.org/10.1007/s10047-006-0338-z] [PMID: 16998703]
[41]
Yoo YS, Park S, Gwak J, Ju BG, Oh S. Involvement of transcription repressor Snail in the regulation of human telomerase reverse tran-scriptase (hTERT) by transforming growth factor-β. Biochem Biophys Res Commun 2015; 465(1): 131-6.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.146] [PMID: 26235880]
[42]
Kumari R, Jat P. Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 2021; 9: 645593.
[http://dx.doi.org/10.3389/fcell.2021.645593] [PMID: 33855023]
[43]
Liu J, Ding Y, Liu Z, Liang X. Senescence in mesenchymal stem cells: Functional alterations, molecular mechanisms, and rejuvenation strategies. Front Cell Dev Biol 2020; 8: 258.
[http://dx.doi.org/10.3389/fcell.2020.00258] [PMID: 32478063]
[44]
Kahoul Y, Oger F, Montaigne J, Froguel P, Breton C, Annicotte JS. Emerging roles for the INK4a/ARF (CDKN2A) locus in adipose tissue: Implications for obesity and type 2 diabetes. Biomolecules 2020; 10(9): 1350.
[http://dx.doi.org/10.3390/biom10091350] [PMID: 32971832]
[45]
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: Aging, cancer, and injury. Physiol Rev 2019; 99(2): 1047-78.
[http://dx.doi.org/10.1152/physrev.00020.2018] [PMID: 30648461]
[46]
Chikenji TS, Saito Y, Konari N, et al. p16INK4A-expressing mesenchymal stromal cells restore the senescence-clearance-regeneration se-quence that is impaired in chronic muscle inflammation. EBioMedicine 2019; 44: 86-97.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.012] [PMID: 31129096]
[47]
Piccinato CA, Sertie AL, Torres N, Ferretti M, Antonioli E. High OCT4 and low p16 INK4A expressions determine in vitro lifespan of mesenchymal stem cells. Stem Cells Int 2015; 2015: 369828.
[http://dx.doi.org/10.1155/2015/369828] [PMID: 26089914]
[48]
Yu KR, Kang KS. Aging-related genes in mesenchymal stem cells: A mini-review. Gerontology 2013; 59(6): 557-63.
[http://dx.doi.org/10.1159/000353857] [PMID: 23970150]
[49]
Yu KR, Park SB, Jung JW, et al. HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway. Stem Cell Res 2013; 10(2): 156-65.
[http://dx.doi.org/10.1016/j.scr.2012.11.002] [PMID: 23276696]
[50]
Lee S, Jung JW, Park SB, et al. Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging. Cell Mol Life Sci 2011; 68(2): 325-36.
[http://dx.doi.org/10.1007/s00018-010-0457-9] [PMID: 20652617]
[51]
Philipot D, Guérit D, Platano D, et al. p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther 2014; 16(1): R58.
[http://dx.doi.org/10.1186/ar4494] [PMID: 24572376]
[52]
Fafián-Labora J, Lesende-Rodriguez I, Fernández-Pernas P, et al. Effect of age on pro-inflammatory miRNAs contained in mesenchymal stem cell-derived extracellular vesicles. Sci Rep 2017; 7(1): 43923.
[http://dx.doi.org/10.1038/srep43923] [PMID: 28262816]
[53]
Ciccia A, Elledge SJ. The DNA damage response: Making it safe to play with knives. Mol Cell 2010; 40(2): 179-204.
[http://dx.doi.org/10.1016/j.molcel.2010.09.019] [PMID: 20965415]
[54]
Cao K, Blair CD, Faddah DA, et al. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibro-blasts. J Clin Invest 2011; 121(7): 2833-44.
[http://dx.doi.org/10.1172/JCI43578] [PMID: 21670498]
[55]
Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 2008; 10(4): 452-9.
[http://dx.doi.org/10.1038/ncb1708] [PMID: 18311132]
[56]
Cianflone E, Torella M, Biamonte F, et al. Targeting cardiac stem cell senescence to treat cardiac aging and disease. Cells 2020; 9(6): 1558.
[http://dx.doi.org/10.3390/cells9061558] [PMID: 32604861]
[57]
Mohrin M, Bourke E, Alexander D, et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 2010; 7(2): 174-85.
[http://dx.doi.org/10.1016/j.stem.2010.06.014] [PMID: 20619762]
[58]
Tümpel S, Rudolph KL. Quiescence: Good and bad of stem cell aging. Trends Cell Biol 2019; 29(8): 672-85.
[http://dx.doi.org/10.1016/j.tcb.2019.05.002] [PMID: 31248787]
[59]
Qi Y, Warmenhoven JW, Henthorn NT, et al. Mechanistic modelling of slow and fast NHEJ DNA repair pathways following radiation for G0/G1 normal tissue cells. Cancers 2021; 13(9): 2202.
[http://dx.doi.org/10.3390/cancers13092202] [PMID: 34063683]
[60]
Panwar U, Mishra K, Patel P, et al. Assessment of Long-Term in vitro Multiplied Human Wharton’s jelly-derived mesenchymal stem cells prior to their use in clinical administration. Cells Tissues Organs 2021; 210(4): 239-49.
[http://dx.doi.org/10.1159/000517423] [PMID: 34521091]
[61]
Roemeling-van Rhijn M, de Klein A, Douben H, et al. Culture expansion induces non-tumorigenic aneuploidy in adipose tissue-derived mesenchymal stromal cells. Cytotherapy 2013; 15(11): 1352-61.
[http://dx.doi.org/10.1016/j.jcyt.2013.07.004] [PMID: 24094487]
[62]
Pustovalova M, Grekhova A, Astrelina T, et al. Accumulation of spontaneous γH2AX foci in long-term cultured mesenchymal stromal cells. Aging 2016; 8(12): 3498-506.
[http://dx.doi.org/10.18632/aging.101142] [PMID: 27959319]
[63]
Neri S, Guidotti S, Lilli NL, Cattini L, Mariani E. Infrapatellar fat pad-derived mesenchymal stromal cells from osteoarthritis patients: In vitro genetic stability and replicative senescence. J Orthop Res 2017; 35(5): 1029-37.
[http://dx.doi.org/10.1002/jor.23349] [PMID: 27334047]
[64]
Scheers I, Lombard C, Paganelli M, et al. Human umbilical cord matrix stem cells maintain multilineage differentiation abilities and do not transform during long-term culture. PLoS One 2013; 8(8): e71374.
[http://dx.doi.org/10.1371/journal.pone.0071374] [PMID: 23951150]
[65]
Neri S, Borzì R. Molecular mechanisms contributing to mesenchymal stromal cell aging. Biomolecules 2020; 10(2): 340.
[http://dx.doi.org/10.3390/biom10020340] [PMID: 32098040]
[66]
Li Z, Liu C, Xie Z, et al. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 2011; 6(6): e20526.
[http://dx.doi.org/10.1371/journal.pone.0020526] [PMID: 21694780]
[67]
Yuan HF, Zhai C, Yan XL, et al. SIRT1 is required for long-term growth of human mesenchymal stem cells. J Mol Med 2012; 90(4): 389-400.
[http://dx.doi.org/10.1007/s00109-011-0825-4] [PMID: 22038097]
[68]
Jung JW, Lee S, Seo MS, et al. Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cell Mol Life Sci 2010; 67(7): 1165-76.
[http://dx.doi.org/10.1007/s00018-009-0242-9] [PMID: 20049504]
[69]
Ren J, Huang D, Li R, Wang W, Zhou C. Control of mesenchymal stem cell biology by histone modifications. Cell Biosci 2020; 10(1): 11.
[http://dx.doi.org/10.1186/s13578-020-0378-8] [PMID: 32025282]
[70]
Yu KR, Lee S, Jung JW, et al. MicroRNA-141-3p plays a role in human mesenchymal stem cell aging by directly targeting ZMPSTE24. J Cell Sci 2013; 126(Pt 23): jcs.133314.
[http://dx.doi.org/10.1242/jcs.133314] [PMID: 24101728]
[71]
So AY, Jung JW, Lee S, Kim HS, Kang KS. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through mi-croRNAs. PLoS One 2011; 6(5): e19503.
[http://dx.doi.org/10.1371/journal.pone.0019503] [PMID: 21572997]
[72]
Wang R, Wang Y, Zhu L, Liu Y, Li W. Epigenetic regulation in mesenchymal stem cell aging and differentiation and osteoporosis. Stem Cells Int 2020; 2020: 8836258.
[http://dx.doi.org/10.1155/2020/8836258] [PMID: 32963550]
[73]
Goodell MA, Rando TA. Stem cells and healthy aging. Science 2015; 350(6265): 1199-204.
[http://dx.doi.org/10.1126/science.aab3388] [PMID: 26785478]
[74]
Bhattacharya R, Banerjee Mustafi S, Street M, Dey A, Dwivedi SKD. Bmi-1: At the crossroads of physiological and pathological biology. Genes Dis 2015; 2(3): 225-39.
[http://dx.doi.org/10.1016/j.gendis.2015.04.001] [PMID: 26448339]
[75]
Zhang D, Pan Y, Zhang C, et al. Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS produc-tion. Mol Cell Biochem 2013; 374(1-2): 13-20.
[http://dx.doi.org/10.1007/s11010-012-1498-1] [PMID: 23124852]
[76]
Ma Y, Qi M, An Y, et al. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell 2018; 17(1): e12709.
[http://dx.doi.org/10.1111/acel.12709] [PMID: 29210174]
[77]
Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech Ageing Dev 2008; 129(3): 163-73.
[http://dx.doi.org/10.1016/j.mad.2007.12.002] [PMID: 18241911]
[78]
Boutten A, Goven D, Boczkowski J, Bonay M. Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets 2010; 14(3): 329-46.
[http://dx.doi.org/10.1517/14728221003629750] [PMID: 20148719]
[79]
Zhang F, Cui J, Liu X, et al. Roles of microRNA-34a targeting SIRT1 in mesenchymal stem cells. Stem Cell Res Ther 2015; 6(1): 195.
[http://dx.doi.org/10.1186/s13287-015-0187-x] [PMID: 26446137]
[80]
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: Machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27(1): 69.
[http://dx.doi.org/10.1186/s11658-022-00366-0] [PMID: 35986247]
[81]
Lv Z, Wang Q, Liu X, et al. Genetic instability-related lncRNAs predict prognosis and influence the immune microenvironment in breast cancer. Front Genet 2022; 13: 926984.
[http://dx.doi.org/10.3389/fgene.2022.926984] [PMID: 36118853]
[82]
Zhou X, Xu W, Wang Y, et al. LncRNA DNM3OS regulates GREM2 via miR-127-5p to suppress early chondrogenic differentiation of rat mesenchymal stem cells under hypoxic conditions. Cell Mol Biol Lett 2021; 26(1): 22.
[http://dx.doi.org/10.1186/s11658-021-00269-6] [PMID: 34049478]
[83]
Potter ML, Hill WD, Isales CM, Hamrick MW, Fulzele S. MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone 2021; 142: 115679.
[http://dx.doi.org/10.1016/j.bone.2020.115679] [PMID: 33022453]
[84]
Hong Y, He H, Jiang G, et al. miR‐155‐5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. Aging Cell 2020; 19(4): e13128.
[http://dx.doi.org/10.1111/acel.13128] [PMID: 32196916]
[85]
Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M, Ashraf M. Abrogation of age-induced microRNA-195 rejuvenates the senescent mes-enchymal stem cells by reactivating telomerase. Stem Cells 2016; 34(1): 148-59.
[http://dx.doi.org/10.1002/stem.2211] [PMID: 26390028]
[86]
Fan J, An X, Yang Y, et al. MiR-1292 targets FZD4 to regulate senescence and osteogenic differentiation of stem cells in TE/SJ/mesenchymal tissue system via the wnt/β-catenin pathway. Aging Dis 2018; 9(6): 1103-21.
[http://dx.doi.org/10.14336/AD.2018.1110] [PMID: 30574422]
[87]
Liu W, Qi M, Konermann A, Zhang L, Jin F, Jin Y. The p53/miR-17/Smurf1 pathway mediates skeletal deformities in an age-related model via inhibiting the function of mesenchymal stem cells. Aging 2015; 7(3): 205-18.
[http://dx.doi.org/10.18632/aging.100728] [PMID: 25855145]
[88]
Zhang T, Wang P, Liu Y, et al. Overexpression of FOXQ1 enhances anti-senescence and migration effects of human umbilical cord mes-enchymal stem cells in vitro and in vivo. Cell Tissue Res 2018; 373(2): 379-93.
[http://dx.doi.org/10.1007/s00441-018-2815-0] [PMID: 29500491]
[89]
Schellenberg A, Stiehl T, Horn P, et al. Population dynamics of mesenchymal stromal cells during culture expansion. Cytotherapy 2012; 14(4): 401-11.
[http://dx.doi.org/10.3109/14653249.2011.640669] [PMID: 22149184]
[90]
Wilson A, Hodgson-Garms M, Frith JE, Genever P. Multiplicity of mesenchymal stromal cells: Finding the right route to therapy. Front Immunol 2019; 10: 1112.
[http://dx.doi.org/10.3389/fimmu.2019.01112] [PMID: 31164890]
[91]
Pipino C, Pierdomenico L, Di Tomo P, et al. Molecular and phenotypic characterization of human amniotic fluid-derived cells: A morpho-logical and proteomic approach. Stem Cells Dev 2015; 24(12): 1415-28.
[http://dx.doi.org/10.1089/scd.2014.0453] [PMID: 25608581]
[92]
Alessio N, Squillaro T, Özcan S, et al. Stress and stem cells: Adult Muse cells tolerate extensive genotoxic stimuli better than mesenchy-mal stromal cells. Oncotarget 2018; 9(27): 19328-41.
[http://dx.doi.org/10.18632/oncotarget.25039] [PMID: 29721206]
[93]
Das A, Adhikary S, Chowdhury AR, Barui A. Leveraging substrate stiffness to promote stem cell asymmetric division via mechanotrans-duction-polarity protein axis and its Bayesian regression analysis. Rejuvenation Res 2022; 25(2): 59-69.
[http://dx.doi.org/10.1089/rej.2021.0039] [PMID: 35316074]
[94]
Andrzejewska A, Lukomska B, Janowski M. Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells 2019; 37(7): 855-64.
[http://dx.doi.org/10.1002/stem.3016] [PMID: 30977255]
[95]
Weng Z, Wang Y, Ouchi T, et al. Mesenchymal stem/stromal cell senescence: Hallmarks, mechanisms, and combating strategies. Stem Cells Transl Med 2022; 11(4): 356-71.
[http://dx.doi.org/10.1093/stcltm/szac004] [PMID: 35485439]
[96]
Madsen SD, Jones SH, Tucker HA, et al. Survival of aging CD264+ and CD264- populations of human bone marrow mesenchymal stem cells is independent of colony‐forming efficiency. Biotechnol Bioeng 2020; 117(1): 223-37.
[http://dx.doi.org/10.1002/bit.27195] [PMID: 31612990]
[97]
Liu Y, Chen Q. Senescent mesenchymal stem cells: Disease mechanism and treatment strategy. Curr Mol Biol Rep 2020; 6(4): 173-82.
[http://dx.doi.org/10.1007/s40610-020-00141-0] [PMID: 33816065]
[98]
Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003; 33(6): 919-26.
[http://dx.doi.org/10.1016/j.bone.2003.07.005] [PMID: 14678851]
[99]
Stolzing A, Scutt A. Age-related impairment of mesenchymal progenitor cell function. Aging Cell 2006; 5(3): 213-24.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00213.x] [PMID: 16842494]
[100]
Oja S, Komulainen P, Penttilä A, Nystedt J, Korhonen M. Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures. Stem Cell Res Ther 2018; 9(1): 6.
[http://dx.doi.org/10.1186/s13287-017-0740-x] [PMID: 29321040]
[101]
Jiang T, Xu G, Wang Q, et al. In vitro expansion impaired the stemness of early passage mesenchymal stem cells for treatment of cartilage defects. Cell Death Dis 2017; 8(6): e2851.
[http://dx.doi.org/10.1038/cddis.2017.215] [PMID: 28569773]
[102]
Geißler S, Textor M, Kühnisch J, et al. Functional comparison of chronological and in vitro aging: Differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells. PLoS One 2012; 7(12): e52700.
[http://dx.doi.org/10.1371/journal.pone.0052700] [PMID: 23285157]
[103]
Bustos ML, Huleihel L, Kapetanaki MG, et al. Aging mesenchymal stem cells fail to protect because of impaired migration and anti-inflammatory response. Am J Respir Crit Care Med 2014; 189(7): 787-98.
[http://dx.doi.org/10.1164/rccm.201306-1043OC] [PMID: 24559482]
[104]
Rombouts WJC, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 2003; 17(1): 160-70.
[http://dx.doi.org/10.1038/sj.leu.2402763] [PMID: 12529674]
[105]
Kyriakou C, Rabin N, Pizzey A, Nathwani A, Yong K. Factors that influence short-term homing of human bone marrow-derived mesen-chymal stem cells in a xenogeneic animal model. Haematologica 2008; 93(10): 1457-65.
[http://dx.doi.org/10.3324/haematol.12553] [PMID: 18728032]
[106]
Guan M, Yao W, Liu R, et al. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 2012; 18(3): 456-62.
[http://dx.doi.org/10.1038/nm.2665] [PMID: 22306732]
[107]
Di G, Liu Y, Lu Y, Liu J, Wu C, Duan HF. IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLoS One 2014; 9(11): e113572.
[http://dx.doi.org/10.1371/journal.pone.0113572] [PMID: 25419563]
[108]
Skolekova S, Matuskova M, Bohac M, et al. Cisplatin-induced mesenchymal stromal cells-mediated mechanism contributing to decreased antitumor effect in breast cancer cells. Cell Commun Signal 2016; 14(1): 4.
[http://dx.doi.org/10.1186/s12964-016-0127-0] [PMID: 26759169]
[109]
Gnani D, Crippa S, della Volpe L, et al. An early‐senescence state in aged mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell clonogenic impairment through the activation of a pro‐inflammatory program. Aging Cell 2019; 18(3): e12933.
[http://dx.doi.org/10.1111/acel.12933] [PMID: 30828977]
[110]
Carlos Sepúlveda J, Tomé M, Eugenia Fernández M, et al. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells 2014; 32(7): 1865-77.
[http://dx.doi.org/10.1002/stem.1654] [PMID: 24496748]
[111]
Gu Z, Tan W, Ji J, et al. Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging 2016; 8(5): 1102-14.
[http://dx.doi.org/10.18632/aging.100925] [PMID: 27048648]
[112]
Musavi M, Kohram F, Abasi M, et al. Rn7SK small nuclear RNA is involved in cellular senescence. J Cell Physiol 2019; 234(8): 14234-45.
[http://dx.doi.org/10.1002/jcp.28119] [PMID: 30637716]
[113]
Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell 2004; 3(6): 379-89.
[http://dx.doi.org/10.1111/j.1474-9728.2004.00127.x] [PMID: 15569355]
[114]
Bruedigam C, Eijken M, Koedam M, et al. A new concept underlying stem cell lineage skewing that explains the detrimental effects of thiazolidinediones on bone. Stem Cells 2010; 28(5): 916-27.
[http://dx.doi.org/10.1002/stem.405] [PMID: 20213769]
[115]
Efimenko A, Starostina E, Kalinina N, Stolzing A. Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med 2011; 9(1): 10.
[http://dx.doi.org/10.1186/1479-5876-9-10] [PMID: 21244679]
[116]
Khan M, Mohsin S, Khan SN, Riazuddin S. Repair of senescent myocardium by mesenchymal stem cells is dependent on the age of donor mice. J Cell Mol Med 2011; 15(7): 1515-27.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00998.x] [PMID: 20041970]
[117]
Ou Y, Wilson RE, Weber SG. Methods of measuring enzyme activity ex vivo and in vivo. Annu Rev Anal Chem 2018; 11(1): 509-33.
[http://dx.doi.org/10.1146/annurev-anchem-061417-125619] [PMID: 29505726]
[118]
Tjempakasari A, Suroto H, Santoso D. Mesenchymal stem cell senescence and osteogenesis. Medicina 2021; 58(1): 61.
[http://dx.doi.org/10.3390/medicina58010061] [PMID: 35056369]
[119]
Singh M, Piekorz RP. Senescence-associated lysosomal α-L-fucosidase (SA-α-Fuc): A sensitive and more robust biomarker for cellular senescence beyond SA-β-Gal. Cell Cycle 2013; 12(13): 1996.
[http://dx.doi.org/10.4161/cc.25318] [PMID: 23759573]
[120]
Lunyak VV, Amaro-Ortiz A, Gaur M. Mesenchymal stem cells secretory responses: Senescence messaging secretome and immunomodu-lation perspective. Front Genet 2017; 8: 220.
[http://dx.doi.org/10.3389/fgene.2017.00220] [PMID: 29312442]
[121]
Kong CM, Lee XW, Wang X. Telomere shortening in human diseases. FEBS J 2013; 280(14): 3180-93.
[http://dx.doi.org/10.1111/febs.12326] [PMID: 23647631]
[122]
Penev A, Markiewicz-Potoczny M, Sfeir A, Lazzerini Denchi E. Stem cells at odds with telomere maintenance and protection. Trends Cell Biol 2022; 32(6): 527-36.
[http://dx.doi.org/10.1016/j.tcb.2021.12.007] [PMID: 35063336]
[123]
Rossiello F, Jurk D, Passos JF, d’Adda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol 2022; 24(2): 135-47.
[http://dx.doi.org/10.1038/s41556-022-00842-x] [PMID: 35165420]
[124]
Montpetit AJ, Alhareeri AA, Montpetit M, et al. Telomere Length. Nurs Res 2014; 63(4): 289-99.
[http://dx.doi.org/10.1097/NNR.0000000000000037] [PMID: 24977726]
[125]
Jenkins FJ, Kerr CM, Fouquerel E, Bovbjerg DH, Opresko PL. Modified terminal restriction fragment analysis for quantifying telomere length using in-gel hybridization. J Vis Exp 2017; (125): 56001.
[http://dx.doi.org/10.3791/56001] [PMID: 28715381]
[126]
Ohtani N. The roles and mechanisms of senescence-associated secretory phenotype (SASP): Can it be controlled by senolysis? Inflamm Regen 2022; 42(1): 11.
[http://dx.doi.org/10.1186/s41232-022-00197-8] [PMID: 35365245]
[127]
Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: General methodologies and latest trends. BioMed Res Int 2018; 2018: 1-27.
[http://dx.doi.org/10.1155/2018/8545347] [PMID: 29662902]
[128]
Takahashi A, Okada R, Nagao K, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun 2017; 8(1): 15287.
[http://dx.doi.org/10.1038/ncomms15287] [PMID: 28508895]
[129]
Boulestreau J, Maumus M, Rozier P, Jorgensen C, Noël D. Mesenchymal stem cell derived extracellular vesicles in aging. Front Cell Dev Biol 2020; 8: 107.
[http://dx.doi.org/10.3389/fcell.2020.00107] [PMID: 32154253]
[130]
Huang R, Qin C, Wang J, et al. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging 2019; 11(18): 7996-8014.
[http://dx.doi.org/10.18632/aging.102314] [PMID: 31575829]
[131]
Mishra P, Martin DC, Androulakis IP, Moghe PV. Fluorescence imaging of actin turnover parses early stem cell lineage divergence and senescence. Sci Rep 2019; 9(1): 10377.
[http://dx.doi.org/10.1038/s41598-019-46682-y] [PMID: 31316098]
[132]
Frobel J, Hemeda H, Lenz M, et al. Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Reports 2014; 3(3): 414-22.
[http://dx.doi.org/10.1016/j.stemcr.2014.07.003] [PMID: 25241740]
[133]
Lian Q, Zhang Y, Zhang J, et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 2010; 121(9): 1113-23.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.898312] [PMID: 20176987]
[134]
Chang YH, Wu KC, Ding DC. Induced pluripotent stem cell-differentiated chondrocytes repair cartilage defect in a rabbit osteoarthritis model. Stem Cells Int 2020; 2020: 1-16.
[http://dx.doi.org/10.1155/2020/8867349] [PMID: 33224204]
[135]
Ozay EI, Vijayaraghavan J, Gonzalez-Perez G, et al. Cymerus™ iPSC-MSCs significantly prolong survival in a pre-clinical, humanized mouse model of Graft-vs-host disease. Stem Cell Res 2019; 35: 101401.
[http://dx.doi.org/10.1016/j.scr.2019.101401] [PMID: 30738321]
[136]
Fernandez-Rebollo E, Franzen J, Goetzke R, et al. Senescence-associated metabolomic phenotype in primary and iPSC-derived mesen-chymal stromal cells. Stem Cell Reports 2020; 14(2): 201-9.
[http://dx.doi.org/10.1016/j.stemcr.2019.12.012] [PMID: 31983656]
[137]
Hynes K, Menicanin D, Han J, et al. Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. J Dent Res 2013; 92(9): 833-9.
[http://dx.doi.org/10.1177/0022034513498258] [PMID: 23884555]
[138]
Zhang J, Chen M, Liao J, et al. Induced pluripotent stem cell-derived mesenchymal stem cells hold lower heterogeneity and great promise in biological research and clinical applications. Front Cell Dev Biol 2021; 9: 716907.
[http://dx.doi.org/10.3389/fcell.2021.716907] [PMID: 34660579]
[139]
Liu Y, Schwam J, Chen Q. Senescence-Associated Cell Transition and Interaction (SACTAI): A proposed mechanism for tissue aging, repair, and degeneration. Cells 2022; 11(7): 1089.
[http://dx.doi.org/10.3390/cells11071089] [PMID: 35406653]
[140]
Csekes E, Račková L. Skin aging, cellular senescence and natural polyphenols. Int J Mol Sci 2021; 22(23): 12641.
[http://dx.doi.org/10.3390/ijms222312641] [PMID: 34884444]
[141]
Curry AM, White DS, Donu D, Cen Y. Human sirtuin regulators: The “Success” Stories. Front Physiol 2021; 12: 752117.
[http://dx.doi.org/10.3389/fphys.2021.752117] [PMID: 34744791]
[142]
Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Rep 2019; 52(1): 24-34.
[http://dx.doi.org/10.5483/BMBRep.2019.52.1.290] [PMID: 30526767]
[143]
Lin CH, Li NT, Cheng HS, Yen ML. Oxidative stress induces imbalance of adipogenic/osteoblastic lineage commitment in mesenchymal stem cells through decreasing SIRT1 functions. J Cell Mol Med 2017; 22(2): 786-96.
[http://dx.doi.org/10.1111/jcmm.13356] [PMID: 28975701]
[144]
Wang Y, Sui Y, Niu Y, et al. PBX1-SIRT1 positive feedback loop attenuates ROS-mediated HF-MSC senescence and apoptosis. Stem Cell Rev Rep 2022.
[http://dx.doi.org/10.1007/s12015-022-10425-w] [PMID: 35962175]
[145]
Ganguly P, El-Jawhari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA. Age-related changes in bone marrow mesenchymal stromal cells. Cell Transplant 2017; 26(9): 1520-9.
[http://dx.doi.org/10.1177/0963689717721201] [PMID: 29113463]
[146]
Kim DH, Jung IH, Kim DH, Park SW. Knockout of longevity gene Sirt1 in zebrafish leads to oxidative injury, chronic inflammation, and reduced life span. PLoS One 2019; 14(8): e0220581.
[http://dx.doi.org/10.1371/journal.pone.0220581] [PMID: 31386694]
[147]
Yuan X, Liu Y, Bijonowski BM, et al. NAD+/NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesen-chymal stem cells in vitro. Commun Biol 2020; 3(1): 774.
[http://dx.doi.org/10.1038/s42003-020-01514-y] [PMID: 33319867]
[148]
Tsai CC, Su PF, Huang YF, Yew TL, Hung SC. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 2012; 47(2): 169-82.
[http://dx.doi.org/10.1016/j.molcel.2012.06.020] [PMID: 22795133]
[149]
Lu Y, Qu H, Qi D, et al. OCT4 maintains self-renewal and reverses senescence in human hair follicle mesenchymal stem cells through the downregulation of p21 by DNA methyltransferases. Stem Cell Res Ther 2019; 10(1): 28.
[http://dx.doi.org/10.1186/s13287-018-1120-x] [PMID: 30646941]
[150]
Zhang Y, Zhu W, He H, et al. Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair. Aging 2019; 11(24): 12641-60.
[http://dx.doi.org/10.18632/aging.102592] [PMID: 31881006]
[151]
Zhao Q, Wang XY, Yu XX, et al. Expression of human telomerase reverse transcriptase mediates the senescence of mesenchymal stem cells through the PI3K/AKT signaling pathway. Int J Mol Med 2015; 36(3): 857-64.
[http://dx.doi.org/10.3892/ijmm.2015.2284] [PMID: 26178664]
[152]
Dai Z, Jin Y, Zheng J, et al. MiR-217 promotes cell proliferation and osteogenic differentiation of BMSCs by targeting DKK1 in steroid-associated osteonecrosis. Biomed Pharmacother 2019; 109: 1112-9.
[http://dx.doi.org/10.1016/j.biopha.2018.10.166] [PMID: 30551361]
[153]
Dong J, Zhang Z, Huang H, et al. miR-10a rejuvenates aged human mesenchymal stem cells and improves heart function after myocardial infarction through KLF4. Stem Cell Res Ther 2018; 9(1): 151.
[http://dx.doi.org/10.1186/s13287-018-0895-0] [PMID: 29848383]
[154]
Yang Y, Liu S, He C, et al. LncRNA LYPLAL1-AS1 rejuvenates human adipose-derived mesenchymal stem cell senescence via transcrip-tional MIRLET7B inactivation. Cell Biosci 2022; 12(1): 45.
[http://dx.doi.org/10.1186/s13578-022-00782-x] [PMID: 35449031]
[155]
Bahmani B, Roudkenar MH, Halabian R, Jahanian-Najafabadi A, Amiri F, Jalili MA. Lipocalin 2 decreases senescence of bone marrow-derived mesenchymal stem cells under sub-lethal doses of oxidative stress. Cell Stress Chaperones 2014; 19(5): 685-93.
[http://dx.doi.org/10.1007/s12192-014-0496-5] [PMID: 24452457]
[156]
Zhao Y, Wu D, Fei C, et al. Down-regulation of Dicer1 promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells in patients with myelodysplastic syndrome. Haematologica 2015; 100(2): 194-204.
[http://dx.doi.org/10.3324/haematol.2014.109769] [PMID: 25361944]
[157]
Liang X, Ding Y, Lin F, et al. Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. FASEB J 2019; 33(3): 4559-70.
[http://dx.doi.org/10.1096/fj.201801690R] [PMID: 30566395]
[158]
Shahini A, Mistriotis P, Asmani M, Zhao R, Andreadis ST. NANOG restores contractility of mesenchymal stem cell-based senescent mi-crotissues. Tissue Eng Part A 2017; 23(11-12): 535-45.
[http://dx.doi.org/10.1089/ten.tea.2016.0494] [PMID: 28125933]
[159]
Gu Z, Cao X, Jiang J, et al. Upregulation of p16INK4A promotes cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Cell Signal 2012; 24(12): 2307-14.
[http://dx.doi.org/10.1016/j.cellsig.2012.07.012] [PMID: 22820504]
[160]
Gu Z, Jiang J, Tan W, et al. p53/p21 Pathway involved in mediating cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Clin Dev Immunol 2013; 2013: 134243.
[http://dx.doi.org/10.1155/2013/134243] [PMID: 24151513]
[161]
Ma C, Pi C, Yang Y, et al. Nampt expression decreases age-related senescence in rat bone marrow mesenchymal stem cells by targeting Sirt1. PLoS One 2017; 12(1): e0170930.
[http://dx.doi.org/10.1371/journal.pone.0170930] [PMID: 28125705]
[162]
Liu X, Chen H, Zhu W, et al. Transplantation of SIRT1-engineered aged mesenchymal stem cells improves cardiac function in a rat myo-cardial infarction model. J Heart Lung Transplant 2014; 33(10): 1083-92.
[http://dx.doi.org/10.1016/j.healun.2014.05.008] [PMID: 25034794]
[163]
Zhang DY, Gao T, Xu RJ, et al. SIRT3 transfection of aged human bone marrow-derived mesenchymal stem cells improves cell therapy-mediated myocardial repair. Rejuvenation Res 2020; 23(6): 453-64.
[http://dx.doi.org/10.1089/rej.2019.2260] [PMID: 32228121]
[164]
Linares GR, Leng Y, Maric D, Chuang DM. Overexpression of fibroblast growth factor‐21 (FGF‐21) protects mesenchymal stem cells against caspase‐dependent apoptosis induced by oxidative stress and inflammation. Cell Biol Int 2020; 44(10): 2163-9.
[http://dx.doi.org/10.1002/cbin.11409] [PMID: 32557962]
[165]
Liang H, Hou H, Yi W, et al. Increased expression of pigment epithelium-derived factor in aged mesenchymal stem cells impairs their therapeutic efficacy for attenuating myocardial infarction injury. Eur Heart J 2013; 34(22): 1681-90.
[http://dx.doi.org/10.1093/eurheartj/ehr131] [PMID: 21606086]
[166]
Fang J, Zhao X, Li S, et al. Protective mechanism of artemisinin on rat bone marrow-derived mesenchymal stem cells against apoptosis induced by hydrogen peroxide via activation of c-Raf-Erk1/2-p90rsk-CREB pathway. Stem Cell Res Ther 2019; 10(1): 312.
[http://dx.doi.org/10.1186/s13287-019-1419-2] [PMID: 31655619]
[167]
Deng J, Ouyang P, Li W, et al. Curcumin alleviates the senescence of canine bone marrow mesenchymal stem cells during in vitro expan-sion by activating the autophagy pathway. Int J Mol Sci 2021; 22(21): 11356.
[http://dx.doi.org/10.3390/ijms222111356] [PMID: 34768788]
[168]
Borojević A, Jauković A, Kukolj T, et al. Vitamin D3 stimulates proliferation capacity, expression of pluripotency markers, and osteogen-esis of human bone marrow mesenchymal stromal/stem cells, partly through SIRT1 signaling. Biomolecules 2022; 12(2): 323.
[http://dx.doi.org/10.3390/biom12020323] [PMID: 35204824]
[169]
Yoon DS, Choi Y, Choi SM, Park KH, Lee JW. Different effects of resveratrol on early and late passage mesenchymal stem cells through β-catenin regulation. Biochem Biophys Res Commun 2015; 467(4): 1026-32.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.017] [PMID: 26456654]
[170]
Song X, Dai J, Li H, et al. Anti-aging effects exerted by Tetramethylpyrazine enhances self-renewal and neuronal differentiation of rat bMSCs by suppressing NF-kB signaling. Biosci Rep 2019; 39(6): BSR20190761.
[http://dx.doi.org/10.1042/BSR20190761] [PMID: 31171713]
[171]
Umbayev B, Masoud AR, Tsoy A, et al. Elevated levels of the small GTPase Cdc42 induces senescence in male rat mesenchymal stem cells. Biogerontology 2018; 19(3-4): 287-301.
[http://dx.doi.org/10.1007/s10522-018-9757-5] [PMID: 29804242]
[172]
Chen W, Lv N, Liu H, et al. Melatonin improves the resistance of oxidative stress-induced cellular senescence in osteoporotic bone mar-row mesenchymal stem cells. Oxid Med Cell Longev 2022; 2022: 7420726.
[http://dx.doi.org/10.1155/2022/7420726] [PMID: 35087617]
[173]
Wang L, Han X, Qu G, Su L, Zhao B, Miao J. A pH probe inhibits senescence in mesenchymal stem cells. Stem Cell Res Ther 2018; 9(1): 343.
[http://dx.doi.org/10.1186/s13287-018-1081-0] [PMID: 30526663]
[174]
Zhang J, Zhang J, Li T, et al. Effect of idebenone on bone marrow mesenchymal stem cells inï¿1/2vitro. Mol Med Rep 2018; 17(4): 5376-83.
[http://dx.doi.org/10.3892/mmr.2018.8506] [PMID: 29393352]
[175]
Gu Z, Tan W, Feng G, et al. Wnt/β-catenin signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients through the p53/p21 pathway. Mol Cell Biochem 2014; 387(1-2): 27-37.
[http://dx.doi.org/10.1007/s11010-013-1866-5] [PMID: 24130040]
[176]
Wang Y, Chen T, Yan H, et al. Role of histone deacetylase inhibitors in the aging of human umbilical cord mesenchymal stem cells. J Cell Biochem 2013; 114(10): 2231-9.
[http://dx.doi.org/10.1002/jcb.24569] [PMID: 23564418]
[177]
Grezella C, Fernandez-Rebollo E, Franzen J, Ventura Ferreira MS, Beier F, Wagner W. Effects of senolytic drugs on human mesenchymal stromal cells. Stem Cell Res Ther 2018; 9(1): 108.
[http://dx.doi.org/10.1186/s13287-018-0857-6] [PMID: 29669575]
[178]
Lee J, Yun C, Hur J, Lee S. Fucoidan rescues p-cresol-induced cellular senescence in mesenchymal stem cells via FAK-Akt-TWIST axis. Mar Drugs 2018; 16(4): 121.
[http://dx.doi.org/10.3390/md16040121] [PMID: 29642406]
[179]
Zanichelli F, Capasso S, Cipollaro M, et al. Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesen-chymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug dos-es, it has a cytotoxic effect. Age (Omaha) 2012; 34(2): 281-93.
[http://dx.doi.org/10.1007/s11357-011-9231-7] [PMID: 21465338]
[180]
Sun J, Ming L, Shang F, Shen L, Chen J, Jin Y. Apocynin suppression of NADPH oxidase reverses the aging process in mesenchymal stem cells to promote osteogenesis and increase bone mass. Sci Rep 2015; 5(1): 18572.
[http://dx.doi.org/10.1038/srep18572] [PMID: 26686764]
[181]
Shin JH, Jeon HJ, Park J, Chang MS. Epigallocatechin-3-gallate prevents oxidative stress-induced cellular senescence in human mesen-chymal stem cells via Nrf2. Int J Mol Med 2016; 38(4): 1075-82.
[http://dx.doi.org/10.3892/ijmm.2016.2694] [PMID: 27498709]
[182]
Mobarak H, Fathi E, Farahzadi R, Zarghami N, Javanmardi S. L-carnitine significantly decreased aging of rat adipose tissue-derived mes-enchymal stem cells. Vet Res Commun 2017; 41(1): 41-7.
[http://dx.doi.org/10.1007/s11259-016-9670-9] [PMID: 27943151]
[183]
Wang JY, Chen WM, Wen CS, Hung SC, Chen PW, Chiu JH. Du-Huo-Ji-Sheng-Tang and its active component Ligusticum chuanxiong promote osteogenic differentiation and decrease the aging process of human mesenchymal stem cells. J Ethnopharmacol 2017; 198: 64-72.
[http://dx.doi.org/10.1016/j.jep.2016.12.011] [PMID: 28040510]
[184]
Xia W, Zhang F, Xie C, Jiang M, Hou M. Macrophage migration inhibitory factor confers resistance to senescence through CD74-dependent AMPK-FOXO3a signaling in mesenchymal stem cells. Stem Cell Res Ther 2015; 6(1): 82.
[http://dx.doi.org/10.1186/s13287-015-0076-3] [PMID: 25896286]
[185]
Andreeva NV, Zatsepina OG, Garbuz DG, Evgen’ev MB, Belyavsky AV. Recombinant HSP70 and mild heat shock stimulate growth of aged mesenchymal stem cells. Cell Stress Chaperones 2016; 21(4): 727-33.
[http://dx.doi.org/10.1007/s12192-016-0691-7] [PMID: 27091568]
[186]
Tian Y, Xu Y, Xue T, et al. Notch activation enhances mesenchymal stem cell sheet osteogenic potential by inhibition of cellular senes-cence. Cell Death Dis 2017; 8(2): e2595.
[http://dx.doi.org/10.1038/cddis.2017.2] [PMID: 28151468]
[187]
Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-β2. Biochem Biophys Res Commun 2007; 359(1): 108-14.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.067] [PMID: 17532297]
[188]
Zhang Y, Xu J, Liu S, et al. Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics 2019; 9(23): 6976-90.
[http://dx.doi.org/10.7150/thno.35305] [PMID: 31660081]
[189]
Mohd Ali N, Boo L, Yeap SK, et al. Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone mar-row-derived human mesenchymal stem cells. PeerJ 2016; 4: e1536.
[http://dx.doi.org/10.7717/peerj.1536] [PMID: 26788424]
[190]
Gao B, Lin X, Jing H, et al. Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stro-mal cells and creates an anti-inflammatory and angiogenic environment in aging mice. Aging Cell 2018; 17(3): e12741.
[http://dx.doi.org/10.1111/acel.12741] [PMID: 29488314]
[191]
Yan L, Jiang B, Li E, et al. Scalable generation of mesenchymal stem cells from human embryonic stem cells in 3D. Int J Biol Sci 2018; 14(10): 1196-210.
[http://dx.doi.org/10.7150/ijbs.25023] [PMID: 30123069]
[192]
Racchetti G, Meldolesi J. Extracellular vesicles of mesenchymal stem cells: Therapeutic properties discovered with extraordinary success. Biomedicines 2021; 9(6): 667.
[http://dx.doi.org/10.3390/biomedicines9060667] [PMID: 34200818]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy