Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Fatty Acid Synthase (FASN): A Patent Review Since 2016-Present

Author(s): Shailendra Singh, Chandrabose Karthikeyan* and Narayana Subbiah Hari Narayana Moorthy*

Volume 19, Issue 1, 2024

Published on: 03 February, 2023

Page: [37 - 56] Pages: 20

DOI: 10.2174/1574892818666230112170003

Price: $65

conference banner
Abstract

Fatty acid synthase (FASN), is a key metabolic enzyme involved in fatty acid biosynthesis and is an essential target for multiple disease progressions like cancer, obesity, NAFLD, etc. Aberrant expression of FASN is associated with deregulated energy metabolism of cells in these diseases. This article provides a summary of the most recent developments in the discovery of novel FASN inhibitors with potential therapeutic uses in cancer, obesity, and other metabolic disorders such as nonalcoholic fatty liver disease from 2016 to the present. The recently published patent applications and forthcoming clinical data of FASN inhibitors from both academia and the pharma industries are also highlighted in this study. The implication of FASN in multiple diseases has provided an impetus for developing novel inhibitors by both pharma companies and academia. Critical analysis of the patent literature reveals the exploration of diverse molecular scaffolds to identify potential FASN inhibitors that target the different catalytic domains of the enzyme. In spite of these multifaceted efforts, only one molecule, TVB-2640, has reached phase II trials for non-alcoholic steatohepatitis (NASH) and many malignancies. However, the combined efforts of pharma companies to produce several FASN inhibitors might facilitate the clinical translation of this unique class of inhibitors. Nevertheless, concerted efforts towards developing multiple FASN inhibitors by pharma companies might facilitate the clinical translation of this novel class of inhibitors.

[1]
Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: A therapeutic perspective. Nat Rev Clin Oncol 2017; 14(1): 11-31.
[http://dx.doi.org/10.1038/nrclinonc.2016.60] [PMID: 27141887]
[2]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[3]
Abramson HN. The lipogenesis pathway as a cancer target. J Med Chem 2011; 54(16): 5615-38.
[http://dx.doi.org/10.1021/jm2005805] [PMID: 21726077]
[4]
Liu Q, Luo Q, Halim A, Song G. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer. Cancer Lett 2017; 401: 39-45.
[http://dx.doi.org/10.1016/j.canlet.2017.05.002] [PMID: 28527945]
[5]
Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy. Cell Chem Biol 2017; 24(9): 1161-80.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.028] [PMID: 28938091]
[6]
Mullen GE, Yet L. Progress in the development of fatty acid synthase inhibitors as anticancer targets. Bioorg Med Chem Lett 2015; 25(20): 4363-9.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.087] [PMID: 26364942]
[7]
Brignole EJ, Smith S, Asturias FJ. Conformational flexibility of metazoan fatty acid synthase enables catalysis. Nat Struct Mol Biol 2009; 16(2): 190-7.
[http://dx.doi.org/10.1038/nsmb.1532] [PMID: 19151726]
[8]
Maier T, Jenni S, Ban N. Architecture of mammalian fatty acid synthase at 4.5 A0 resolution. Science 2006; 311(5765): 1258-62.
[http://dx.doi.org/10.1126/science.1123248] [PMID: 16513975]
[9]
Maier T, Leibundgut M, Ban N. The crystal structure of a mammalian fatty acid synthase. Science 2008; 321(5894): 1315-22.
[http://dx.doi.org/10.1126/science.1161269] [PMID: 18772430]
[10]
Maier T, Leibundgut M, Boehringer D, Ban N. Structure and function of eukaryotic fatty acid synthases. Q Rev Biophys 2010; 43(3): 373-422.
[http://dx.doi.org/10.1017/S0033583510000156] [PMID: 20731893]
[11]
Viegas MF, Neves RPP, Ramos MJ, Fernandes PA. Modeling of human fatty acid synthase and in silico docking of acyl carrier protein domain and its partner catalytic domains. J Phys Chem B 2018; 122(1): 77-85.
[http://dx.doi.org/10.1021/acs.jpcb.7b09645] [PMID: 29210581]
[12]
Kuhajda FP, Jenner K, Wood FD, et al. Fatty acid synthesis: A potential selective target for antineoplastic therapy. Proc Natl Acad Sci 1994; 91(14): 6379-83.
[http://dx.doi.org/10.1073/pnas.91.14.6379] [PMID: 8022791]
[13]
Innocenzi D, Alò PL, Balzani A, et al. Fatty acid synthase expression in melanoma. J Cutan Pathol 2003; 30(1): 23-8.
[http://dx.doi.org/10.1034/j.1600-0560.2003.300104.x] [PMID: 12534800]
[14]
Veigel D, Wagner R, Stübiger G, et al. Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. Int J Cancer 2015; 136(9): 2078-90.
[http://dx.doi.org/10.1002/ijc.29261] [PMID: 25302649]
[15]
Alo PL, Amini M, Piro F, et al. Immunohistochemical expression and prognostic significance of fatty acid synthase in pancreatic carcinoma. Anticancer Res 2007; 27(4B): 2523-7.
[PMID: 17695548]
[16]
Madigan AA, Rycyna KJ, Parwani AV, et al. Novel nuclear localization of fatty acid synthase correlates with prostate cancer aggressiveness. Am J Pathol 2014; 184(8): 2156-62.
[http://dx.doi.org/10.1016/j.ajpath.2014.04.012] [PMID: 24907642]
[17]
Walz JZ, Saha J, Arora A, Khammanivong A, O'Sullivan MG, Dickerson EB. Fatty acid synthase as a potential therapeutic target in feline oral squamous cell carcinoma. Vet Comp Oncol 2018; 16(1): E99-E108. Epub 2017 Sep 4.
[http://dx.doi.org/10.1111/vco.12341] [PMID: 28871635]
[18]
Rossi S, Ou W, Tang D, et al. Gastrointestinal stromal tumours overexpress fatty acid synthase. J Pathol 2006; 209(3): 369-75.
[http://dx.doi.org/10.1002/path.1983] [PMID: 16583360]
[19]
Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007; 7(10): 763-77.
[http://dx.doi.org/10.1038/nrc2222] [PMID: 17882277]
[20]
Teran-Garcia M, Adamson AW, Yu G, et al. Polyunsaturated fatty acid suppression of fatty acid synthase (FASN): Evidence for dietary modulation of NF-Y binding to the FASN promoter by SREBP-1c. Biochem J 2007; 402(3): 591-600.
[http://dx.doi.org/10.1042/BJ20061722] [PMID: 17313375]
[21]
Ishii S. IIzuka K, Miller BC, Uyeda K. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc Natl Acad Sci 2004; 101(44): 15597-602.
[http://dx.doi.org/10.1073/pnas.0405238101] [PMID: 15496471]
[22]
Buckley D, Duke G, Heuer TS, et al. Fatty acid synthase - MODERN tumor cell biology insights into a classical oncology target. Pharmacol Ther 2017; 177(2): 23-31.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.021] [PMID: 28202364]
[23]
Guichard C, Dugail I, Le Liepvre X, Lavau M. Genetic regulation of fatty acid synthetase expression in adipose tissue: overtranscription of the gene in genetically obese rats. J Lipid Res 1992; 33(5): 679-87.
[http://dx.doi.org/10.1016/S0022-2275(20)41432-4] [PMID: 1619362]
[24]
Dorn C, Riener MO, Kirovski G, et al. Expression of fatty acid synthase in nonalcoholic fatty liver disease. Int J Clin Exp Pathol 2010; 3(5): 505-14.
[PMID: 20606731]
[25]
Yang W, Hood BL, Chadwick SL, et al. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 2008; 48(5): 1396-403.
[http://dx.doi.org/10.1002/hep.22508] [PMID: 18830996]
[26]
Nakagawa K, Miyazawa T. Chemiluminescence-high-performance liquid chromatographic determination of tea catechin, (-)-epigallocatechin 3-gallate, at picomole levels in rat and human plasma. Anal Biochem 1997; 248(1): 41-9.
[http://dx.doi.org/10.1006/abio.1997.2098] [PMID: 9177723]
[27]
Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem 2005; 280(7): 5636-45.
[http://dx.doi.org/10.1074/jbc.M408177200] [PMID: 15533929]
[28]
Aras A, Khokhar AR, Qureshi MZ, et al. Targeting cancer with nano-bullets: curcumin, EGCG, resveratrol and quercetin on flying carpets. Asian Pac J Cancer Prev 2014; 15(9): 3865-71.
[http://dx.doi.org/10.7314/APJCP.2014.15.9.3865] [PMID: 24935565]
[29]
Wu J, Du J, Fu X, et al. Icaritin, a novel FASN inhibitor, exerts anti-melanoma activities through IGF-1R/STAT3 signaling. Oncotarget 2016; 7(32): 51251-69.
[http://dx.doi.org/10.18632/oncotarget.9984] [PMID: 27323414]
[30]
Lee JS, Sul JY, Park JB, et al. Fatty acid synthase inhibition by amentoflavone suppresses HER2/neu (erbB2) oncogene in SKBR3 human breast cancer cells. Phytother Res 2013; 27(5): 713-20.
[http://dx.doi.org/10.1002/ptr.4778] [PMID: 22767439]
[31]
Fan H, Tian W, Ma X. Curcumin induces apoptosis of HepG2 cells via inhibiting fatty acid synthase. Target Oncol 2014; 9(3): 279-86.
[http://dx.doi.org/10.1007/s11523-013-0286-5] [PMID: 23821378]
[32]
Zhang JS, Lei JP, Wei GQ, Chen H, Ma CY, Jiang HZ. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review. Pharm Biol 2016; 54(9): 1919-25.
[http://dx.doi.org/10.3109/13880209.2015.1113995] [PMID: 26864638]
[33]
Fan H, Wu D, Tian W, Ma X. Inhibitory effects of tannic acid on fatty acid synthase and 3T3-L1 preadipocyte. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831(7): 1260-6.
[http://dx.doi.org/10.1016/j.bbalip.2013.04.003] [PMID: 24046866]
[34]
Quan X, Wang Y, Ma X, et al. α-Mangostin induces apoptosis and suppresses differentiation of 3T3-L1 cells via inhibiting fatty acid synthase. PLoS One 2012; 7(3): e33376.
[http://dx.doi.org/10.1371/journal.pone.0033376] [PMID: 22428036]
[35]
Li P, Tian W, Ma X. Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells. Mol Cancer 2014; 13(1): 138.
[http://dx.doi.org/10.1186/1476-4598-13-138] [PMID: 24894151]
[36]
Wang J, Soisson SM, Young K, et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 2006; 441(7091): 358-61.
[http://dx.doi.org/10.1038/nature04784] [PMID: 16710421]
[37]
Wang X, Tian W. Green tea epigallocatechin gallate: A natural inhibitor of fatty-acid synthase. Biochem Biophys Res Commun 2001; 288(5): 1200-6.
[http://dx.doi.org/10.1006/bbrc.2001.5923] [PMID: 11700039]
[38]
Pandey PR, Liu W, Xing F, Fukuda K, Watabe K. Anti-cancer drugs targeting fatty acid synthase (FAS). Recent Patents Anticancer Drug Discov 2012; 7(2): 185-97.
[http://dx.doi.org/10.2174/157489212799972891] [PMID: 22338595]
[39]
Bitencourt TA, Komoto TT, Massaroto BG, et al. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum. BMC Complement Altern Med 2013; 13(1): 229.
[http://dx.doi.org/10.1186/1472-6882-13-229] [PMID: 24044691]
[40]
Tian W, Ma X, Zhang S, Sun Y, Li B. Fatty acid synthase inhibitors from plants and their potential application in the prevention of metabolic syndrome. Clin Oncol Cancer Res 2011; 8(1): 1-9.
[http://dx.doi.org/10.1007/s11805-011-0550-3]
[41]
Jiang HZ, Quan XF, Tian WX, et al. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana. Bioorg Med Chem Lett 2010; 20(20): 6045-7.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.061] [PMID: 20817450]
[42]
Wu M, Singh SB, Wang J, et al. Antidiabetic and antisteatotic effects of the selective fatty acid synthase (FAS) inhibitor platensimycin in mouse models of diabetes. Proc Natl Acad Sci USA 2011; 108(13): 5378-83.
[http://dx.doi.org/10.1073/pnas.1002588108] [PMID: 21389266]
[43]
Funabashi H, Kawaguchi A, Tomoda H, Ömura S, Okuda S, Iwasaki S. Binding site of cerulenin in fatty acid synthetase. J Biochem 1989; 105(5): 751-5.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a122739] [PMID: 2666407]
[44]
Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci 2000; 97(7): 3450-4.
[http://dx.doi.org/10.1073/pnas.97.7.3450] [PMID: 10716717]
[45]
Wang X, Zhao G, Chen Y, et al. 1-Oxo-3-substitute-isothiochro man-4-carboxylic acid compounds: Synthesis and biological activities of FAS inhibition. Bioorg Med Chem Lett 2009; 19(3): 770-2.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.010] [PMID: 19097781]
[46]
McFadden JM, Medghalchi SM, Thupari JN, et al. Application of a flexible synthesis of (5R)-thiolactomycin to develop new inhibitors of type I fatty acid synthase. J Med Chem 2005; 48(4): 946-61.
[http://dx.doi.org/10.1021/jm049389h] [PMID: 15715465]
[47]
Makowski K, Mir JF, Mera P, et al. (−)-UB006: A new fatty acid synthase inhibitor and cytotoxic agent without anorexic side effects. Eur J Med Chem 2017; 131: 207-21.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.012] [PMID: 28324785]
[48]
Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 2004; 64(6): 2070-5.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3645] [PMID: 15026345]
[49]
Pemble CW IV, Johnson LC, Kridel SJ, Lowther WT. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat. Nat Struct Mol Biol 2007; 14(8): 704-9.
[http://dx.doi.org/10.1038/nsmb1265] [PMID: 17618296]
[50]
Oslob JD, Johnson RJ, Cai H, et al. Imidazopyridine-based fatty acid synthase inhibitors that show anti-HCV activity and in vivo target modulation. ACS Med Chem Lett 2013; 4(1): 113-7.
[http://dx.doi.org/10.1021/ml300335r] [PMID: 24900571]
[51]
Ventura R, Mordec K, Waszczuk J, et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2015; 2(8): 808-24.
[http://dx.doi.org/10.1016/j.ebiom.2015.06.020] [PMID: 26425687]
[52]
Patel M, Infante J, Von Hoff D, et al. Abstract CT203: Report of a first-in-human study of the first-in-class fatty acid synthase (FASN) inhibitor TVB-2640. Cancer Res 2015; 75(S15): CT203.
[http://dx.doi.org/10.1158/1538-7445.AM2015-CT203]
[53]
Vázquez MJ, Leavens W, Liu R, et al. Discovery of GSK837149A, an inhibitor of human fatty acid synthase targeting the β‐ketoacyl reductase reaction. FEBS J 2008; 275(7): 1556-67.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06314.x] [PMID: 18312417]
[54]
Hardwicke MA, Rendina AR, Williams SP, et al. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site. Nat Chem Biol 2014; 10(9): 774-9.
[http://dx.doi.org/10.1038/nchembio.1603] [PMID: 25086508]
[55]
Lu T, Schubert C, Cummings MD, et al. Design and synthesis of a series of bioavailable fatty acid synthase (FASN) KR domain inhibitors for cancer therapy. Bioorg Med Chem Lett 2018; 28(12): 2159-64.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.014] [PMID: 29779975]
[56]
Martin MW, Lancia DR Jr, Li H, et al. Discovery and optimization of novel piperazines as potent inhibitors of fatty acid synthase (FASN). Bioorg Med Chem Lett 2019; 29(8): 1001-6.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.012] [PMID: 30803804]
[57]
Kley JT, Mack J, Hamilton B, Scheuerer S, Redemann N. Discovery of BI 99179, a potent and selective inhibitor of type I fatty acid synthase with central exposure. Bioorg Med Chem Lett 2011; 21(19): 5924-7.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.083] [PMID: 21873051]
[58]
Rivkin A, Kim YR, Goulet MT, et al. 3-Aryl-4-hydroxyquinolin-2(1H)-one derivatives as type I fatty acid synthase inhibitors. Bioorg Med Chem Lett 2006; 16(17): 4620-3.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.014] [PMID: 16784844]
[59]
Qu H, Shan K, Tang C, et al. A novel small-molecule fatty acid synthase inhibitor with antitumor activity by cell cycle arrest and cell division inhibition. Eur J Med Chem 2021; 219(2): 113407.
[http://dx.doi.org/10.1016/j.ejmech.2021.113407] [PMID: 33901805]
[60]
Tan YJ, Ali A, Tee SY, et al. Galloyl esters of trans-stilbenes are inhibitors of FASN with anticancer activity on non-small cell lung cancer cells. Eur J Med Chem 2019; 182: 111597.
[http://dx.doi.org/10.1016/j.ejmech.2019.111597] [PMID: 31422225]
[61]
Alwarawrah Y, Hughes P, Loiselle D, et al. A selective FASN inhibitor, shows potent antitumor activity in the MMTV-Neu model of HER2+ breast cancer. Cell Chem Biol 2016; 23(6): 678-88.
[http://dx.doi.org/10.1016/j.chembiol.2016.04.011] [PMID: 27265747]
[62]
Connolly PJ, Lu T. Benzamide derivatives is useful as FASN inhibitors for the treatment of cancer. United States Patent Application Publication; US 20160009688A12016.,
[63]
Connolly PJ, Lu T. Imidazolin-5-one derivatives useful as FASN inhibitors for the treatment of cancer. United States Patent Application Publication; US97188132017.,
[64]
Tsaklakidis C, Staehle W, Leuthner B, Fuchss T. 1,3-disubstituted cyclopentane derivatives. United States Patent Application Publication; US20160176824A1, 2016.
[65]
Tsaklakidis C, Staehle W, Leuthner B. 3-substituted cyclopentylamine derivatives. United States Patent Application Publication; US20160200714A1, 2016.
[66]
Tsaklakidis C, Staehle W, Leuthner B, Czodrowski P. 3-Aminocyclopentane carboxamide derivatives. United States Patent Application Publication; US20160264517A12016.,
[67]
Staehle W, Tsaklakidis C, Friese-Hamim M, Leuthner B, Wienke D. Piperazine derivatives as fasn inhibitors. United States Patent Application Publication; US20160280655A12016.,
[68]
Tsaklakidis C, Staehle W, Leuthner B, Czodrowski P, Fuchss T. 1,3-Diaminocyclopentane carboxamide derivatives. United States Patent Application Publication; US9670142B22017.,
[69]
Becknell CN, Dandu Reddy R, Dorsey DB, et al. 1,4-substituted piperidine derivatives. WO2016205633, 2016.
[70]
Hudkins RL, Whitman DB, Zificsak CA, Zulli AL, Mcwherter M. Spiropiperidine derivatives. Patent WO2018112204A1 2018.
[71]
Cosford DPN, Smith J, Ardecky JR, Zou J, Mattman M, Teriete P. Small molecule fatty acid synthase inhibitors. Patent US20170066731A12017.,
[72]
Bahadoor A, Castro CA, Chan KL, et al. Tetrazolones as inhibitors of fatty acid synthase. Patent US20170119734, 2017.
[73]
Kwiek JJ, Haystead T, Hughes P, Alwarawrah Y. Fatty acid synthase inhibitors. Patent WO20171848442017,
[74]
Becknell CN, Dandu Reddy R, Dorsey DB, Gotchev BD, Hudkins LR, Weinberg L. 1,4-Substituted piperidine derivatives. Patent US201901529132019.,
[75]
Becknell CN, Dandu Reddy R, Dorsey DB, et al. Substituted 4-benzyl and 4-benzoyl piperidine derivatives. Patent US10919875, 2021.
[76]
Chen Y, Qu H, Tang C, et al. Fatty acid synthase inhibitor and application thereof United States Patent US202100460272021.,
[77]
Bair KW, Lancia DR, Li H. Novel compounds and compositions for inhibition of FASN United States Patent US201600021882016.,
[78]
Millan DS, Lu W. Methods of using FASN inhibitors Patent WO20171896132017.,
[79]
Martin MW, Zablocki MM, Mente S, Dinsmore C, Wang Z, Zheng X. Inhibiting fatty acid synthase (FASN). Patent US202100245082021.,
[80]
Oslob JD, Mcdowell RS, Johnson R, et al. Heterocyclic modulators of lipid synthesis Patent US20160311803, 2016.
[81]
Heuer TS, Oslob JD, McDowell RS, et al. Heterocyclic modulators of lipid synthesis and combinations thereof Patent US201603389982016.,
[82]
Wagman AS, Johnson RJ, Zaharia CA, et al. Heterocyclic modulators of lipid synthesis for use against cancer and viral infections Patent US201603261412016.,
[83]
Buckley DI, Duke G, Wagman AS, Evanchik M. McDowell R S. Heterocyclic modulators of lipid synthesis. Patent US20190269694A1, 2019.
[84]
Buckley DI, Duke G, Wagman AS, Evanchik M, Mcdowell RS. Heterocyclic modulators of lipid synthesis Patent WO20180899042018.,
[85]
Falchook G, Infante J, Arkenau HT, et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. EClinicalMedicine 2021; 34: 100797.
[http://dx.doi.org/10.1016/j.eclinm.2021.100797] [PMID: 33870151]
[86]
Phase 2 Study of TVB-2640 in KRAS Non-Small Cell Lung Carcinomas. ClinicalTrials.gov identifier: NCT03808558. Updated December 21, 2022. https://clinicaltrials.gov/ct2/show/NCT03808558?term=NCT03808558&draw=2&rank=1 (accessed Sep 17, 2022).
[87]
TVB 2640 for Resectable Colon Cancer Other Resectable Cancers; a Window Trial. ClinicalTrials.gov identifier: NCT02980029. Updated October 12, 2022. https://clinicaltrials.gov/ct2/show/NCT02980029?term=NCT02980029&draw=2&rank=1 (accessed Sep 17, 2022).
[88]
TVB 2640 in Combination with Bevacizumab in Patients with First Relapse of High Grade Astrocytoma. ClinicalTrials.gov identifier: NCT03032484. Updated April 28, 2020. https://clinicaltrials.gov/ct2/show/NCT03032484?term=NCT03032484&draw=2&rank=1 (accessed Sep 17, 2022).
[89]
FASN Inhibitor TVB 2640 and Trastuzumab in Combination with Paclitaxel or Endocrine Therapy for the Treatment of HER2 Positive Metastatic Breast Cancer. ClinicalTrials.gov. identifier: NCT03179904. Updated June 1, 2022. https://clinicaltrials.gov/ct2/show/NCT03179904?term=NCT03179904&draw=2&rank=1 (accessed Sep 17, 2022).
[90]
Inhibiting Fatty Acid Synthase to Improve Efficacy of Neoadjuvant Chemotherapy. ClinicalTrials.gov identifier: NCT02595372. Updated December 15, 2021. https://clinicaltrials.gov/ct2/show/NCT02595372?term=NCT02595372&draw=2&rank=1 (accessed Sep 17, 2022).
[91]
Neoadjuvant Therapy of Locally Advanced Gastric Carcinoma by Green Tea Extract and XELOX: A prospective randomized controlled trial. Chinese Clinical Trial Registry identifier: ChiCTR1800014296. Updated December 31, 2018. http://www.chictr.org.cn/showprojen.aspx?proj=24193 (accessed Sep 17, 2022).
[92]
Syed-Abdul MM, Parks EJ, Gaballah AH, et al. Fatty acid synthase inhibitor TVB-2640 reduces hepatic de novo lipogenesis in males with metabolic abnormalities. Hepatol 2020; 72(1): 103-8.
[http://dx.doi.org/10.1002/hep.31000]
[93]
Loomba R, Mohseni R, Lucas KJ, et al. TVB-2640 (FASN inhibitor) for the treatment of nonalcoholic steatohepatitis: FASCINATE-1, a randomized, placebo-controlled Phase 2a trial. Gastroenterology 2021; 161(5): 1475-86.
[http://dx.doi.org/10.1053/j.gastro.2021.07.025] [PMID: 34310978]
[94]
Study of TVB 2640 in Subjects with Nonalcoholic Steatohepatitis (NASH). ClinicalTrials.gov identifier: NCT04906421. Updated October 4, 2022. https://clinicaltrials.gov/ct2/show/NCT04906421?term=NCT04906421&draw=2&rank=1 (accessed Sep 17, 2022).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy